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Abstract 

Standard item response theory (IRT) models have been extended with testlet 

effects to account for the nesting of items; these are well known as (Bayesian) testlet 

models or random effect models for testlets. The testlet modeling framework has 

several disadvantages. A sufficient number of testlet items are needed to estimate 

testlet effects, and a sufficient number of individuals are needed to estimate testlet 

variance. The prior for the testlet variance parameter can only represent a positive 

association among testlet items. The inclusion of testlet parameters significantly 

increases the number of model parameters, which can lead to computational 

problems. 

To avoid these problems, a Bayesian covariance structure model (BCSM) for 

testlets is proposed, where standard IRT models are extended with a covariance 

structure model to account for dependences among testlet items. In the BCSM, the 

dependence among testlet items is modeled without using testlet effects. This 

approach does not imply any sample size restrictions and is very efficient in terms of 

the number of parameters needed to describe testlet dependences. The BCSM is 

compared to the well-known Bayesian random effects model for testlets using a 

simulation study. Specifically for testlets with a few items, a small number of test 

takers, or weak associations among testlet items, the BCSM shows more accurate 

estimation results than the random effects model. 
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Introduction 

Many tests have sections consisting of sets of items that are related to a common 

stimulus (e.g., reading passage, data display). Each set of items is referred to as a 

testlet, and it is well known that the relationship between the items and the common 

stimulus can lead to positive dependence among the item responses of an individual 

(Wainer, Bradlow, & Wang, 2007). Given the test taker’s ability level, the item 

responses within each testlet are positively correlated, which leads to a violation of the 

local independence assumption of IRT models. This positive dependence structure 

cannot be ignored. When item responses are incorrectly assumed to be (conditionally) 

independent, the precision of the ability estimates will be overestimated and the ability 

and item parameter estimates will contain bias (Wainer, Bradlow, & Du, 2000). 

Conversely, when item responses are incorrectly assumed to be dependent, the 

precision of the ability estimates can be underestimated and item parameter estimates 

can contain bias. In general, meaningful statistical inferences with an IRT model 

require careful handling of the dependence structure. This has led to much discussion 

in the literature on reliable methods to evaluate the assumption of local independence 

in IRT models. 

In previous research, it has been shown that when tests are constructed with testlet 

items, the items appear to be dependent even after conditioning on the latent variable 

(Bradlow, Wainer, & Wang, 1999; Li, Bolt, & Fu, 2006; Sireci, Thissen, & Wainer, 1991; 

Thissen, Steinberg, & Mooney, 1989; Wainer & Kiely, 1987; Wang, Bradlow, & Wainer, 

2002). The item responses tend to be more related to each other than can be 

explained by the (unidimensional) latent variable. The level of dependence among the 

testlet items depends on the level of the testlet variance, (i.e., the variance of the testlet 

effects; see below). Items can be assumed to be locally independent when the testlet 
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variance is equal to zero. The greater the variance, the larger the dependence among 

the items. 

A popular model for testlets is the Bayesian random effects model (Bradlow et al., 

1999; Wainer et al., 2000), referred to as a testlet response theory (TRT) model. This 

modeling approach includes a random effect to capture the dependence among item 

responses within a testlet. This random effect approach has several limitations. Testlet 

designs are easily incorporated in a test, but the random effect models for testlets 

(e.g., Bradlow et al., 1999) are subject to strict sample size restrictions. Each testlet 

needs to consist of a sufficient number of items, and the testlet needs to be 

administered to a sufficient number of test takers. This limits the applicability of testlet 

designs in practice. When the design is incomplete, for instance due to the adaptive 

nature of the test, these sample size restrictions can become a problem. The 

assumption of local independence is a pressing issue that needs to be addressed in 

smaller-scale applications. 

For the TRT model, the number of testlet parameters can easily become 

overwhelming. A testlet parameter is introduced to address the dependence for each 

combination of testlet and test taker. When the test contains many testlets and is 

administered to a large number of test takers, a huge number of parameters are 

needed to model the testlet dependence structure. This is a very inefficient 

parameterization, since the strength of dependence depends only on the testlet 

variance parameter, which is assumed to be the same across individuals. In the 

proposed model, each testlet dependence can be modeled with a single covariance 

parameter, without the need to include a testlet effect for each test taker. In practice, 

interest usually isn’t focused on the test taker’s testlet effects. Testlet effects are only 

used to model the dependence structure. However, they can seriously complicate the 
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computational burden and imply restrictions on the sample size. They also complicate 

the interpretation of estimated item parameters, since their scale depends on the 

testlet effect parameters and the trait parameter.  

Another issue with the TRT model is the prior distribution for the testlet variance. 

The testlet variance parameter determines the strength between testlet items and is 

restricted to be positive. A noninformative prior for the variance parameter is a topic of 

much discussion. When the testlet variance is close to zero, the inverse gamma prior 

can introduce a bias by overstating the level of dependence of the testlet items. 

Furthermore, the inverse gamma prior is unable to include the point of no testlet 

variance, representing the state of an independent set of items. This makes it difficult 

to verify whether a set of items is nested within a testlet. The prior information for the 

level of dependence excludes the option that the items do not correlate. Furthermore, 

a testlet variance of zero is of specific interest, but this point lies on the boundary of 

the parameter space. Classical test procedures such as the likelihood ratio test can 

break down and have complex sampling distributions, which complicates the 

computation of critical values, when the true parameter value is on the boundary.    

A Bayesian covariance structure model (BCSM; Klotzke & Fox, 2019a, 2019b) for 

testlets is proposed to address the shortcomings of the TRT model. The BCSM also 

modifies the standard IRT models to accommodate the clustering of items: The 

covariance structure of the errors is modeled to handle the greater dependence of 

items within testlets. In this additional covariance structure, dependences between 

clusters of items are modeled. This parameterization is very efficient, since a common 

covariance can be assumed between responses to items in a testlet across test takers. 

Therefore, the number of additional model parameters for the BCSM is equal to the 

number of testlets, when assuming testlet-specific dependences. The prior information 



The BCSM For Testlets 
 

5 

for the level of dependence can also include no dependence between items in a testlet. 

Furthermore, testlet effects do not have to be estimated, since they are not needed to 

model the dependences. For the BCSM, sample size restrictions can be relaxed in 

comparison to the TRT model, which makes the BCSM more suitable for small sample 

sizes, incomplete designs, and extensive testlet structures with many testlets, each 

containing just a few items. 

In the remainder of this report, the TRT model is described as a modification of 

standard IRT models for binary and polytomous data. Then, the BCSM for testlets is 

presented, where covariance structure models are discussed as extensions of IRT 

models. The computational method to estimate the parameters is based on Markov 

chain Monte Carlo (MCMC), which is briefly described. Then, simulation results for 

several test designs are presented, which include a comparison between the TRT 

model and the BCSM for testlets. In the final section, conclusions and model 

generalizations are discussed. 

Testlet Response Theory 

TRT models were introduced as a model-based approach to handle violations of 

local independence, since sets of items are related to a single stimulus (Bradlow et. 

al., 1999; Wainer, et al., 2000; Wang & Wilson, 2005). In TRT, a standard 

unidimensional IRT model is extended to include testlet parameters to account for 

within-testlet dependence. TRT models can be viewed as a confirmatory 

multidimensional IRT (MIRT) model in which all item responses are influenced by a 

common latent trait, and item responses within a testlet are further explained by a 

testlet parameter. 
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In this research, the considered data structure consists of N examinees 

(  1, , )i N   who receive a test of K  items (  1, ,k K  ), which are scored in a binary 

or polytomous fashion. A completely observed data matrix (Y ) is assumed, where sets 

of items are clustered in testlets. A total of D  testlets (  1, ,d D  ) is assumed, and 

item k  is assigned to testlet   ,d k  where  d k  represents the testlet that contains 

item .k  The size of each testlet is represented by .dn  When the number of testlets is 

equal to the number of items, each item is in its own testlet. Items cannot be assigned 

to more than one testlet. 

A Probit version of the two-parameter TRT model is considered, where the 

probability of a correct response of test taker i  to item ,k  assigned to testlet ( )d k , is 

represented by 

    ( ) ( )1 , , ( ) ,ik k k id k k i id k kP Y a b a b       (1) 

 

( )

~ 0,

~ (0, )
d

i

id k

N

N





 

 
 

where ( )id k  represents the testlet effect of item k  to test taker ,i  with item k  nested  

in testlet  .d k  Therefore, extra dependence of items within a testlet is modelled with 

the random effect ( )id k . The testlet variance parameter 
d

  represents the variance 

in testlet effects across test takers and can be assumed to be testlet specific. The 

shared testlet effect for items within a testlet gives rise to a correlation between item 

responses of a person for that testlet. The testlet effect adds a negative (positive) 

contribution to the success of a correct response when ( ) 0id k   ( ( ) 0id k  ). The 

probability of a correct response is reduced (increased) when the item is nested in a 

testlet. 
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The model specification is completed with a prior specification for the parameters. 

Normal distributions are assumed for the item parameters, where the priors are given 

by: 

 
 

 

2

2

~ ,

~ , .
 

 

k a a

k b b

a N

b N

 

 
    

Inverse gamma priors are specified for the variance parameters 2 2( , , ),
d a b    with 

1g  and 2 g  being the shape and scale parameters, respectively. The prior is assumed 

to be vague, with shape and scale parameters equal to 0.01. Finally, the mean 

parameters a  and b  have noninformative priors ( ( ) ,ap c   ( ) ,bp c  0c  ). 

The testlet effects are zero-centered to identify the model and to interpret the testlet 

effects as deviations from the standard linear predictor in the two-parameter IRT 

model. Furthermore, the mean and variance of the ability distribution are set to zero 

and one, respectively, to identify the model. 

The BCSM for Testlets 

The BCSM also modifies the standard IRT models by including a covariance 

structure model for the extra dependence of items within a testlet. When representing 

the two-parameter IRT model in a latent variable form, where latent responses ikZ  

underlie the observed binary response ikY , a normally distributed error term is 

introduced. This error term represents the randomness in a response across 

hypothetical replications of the item to a test taker. Then, the two-parameter IRT model 

is represented by 
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          ~ (0, )

~ (0,1),

ik k i k ik

i

ik

Z a b e

N

e N





 

  

          (2) 

where 1ikY   if 0ikZ   and 0ikY   if 0.ikZ   The responses of test taker i  are assumed 

to be independently distributed, since the errors are independently distributed. 

When sets of items are nested in testlets, the errors are assumed to be dependent 

within each testlet. Consider the responses to items in testlet d  of individual ,i  .idZ  

They are assumed to be multivariate normally distributed to model the dependence 

between items in a testlet. The covariance matrix of the errors represents the 

dependence due to the nesting of items in testlet .d  To illustrate this, assume that the 

first two items are nested in testlet 1.d   A multivariate two-parameter IRT model is 

defined by assuming a multivariate distribution for the error distribution in Equation (2). 

Then, the responses 1 2( , )i iZ Z  are multivariate normally distributed, 

 
     

   
1 2 1 1 2 2 1 2

1 2

, , ,

, ~ , ,

i i i i i i

i i d

Z Z a b a b e e

e e N

    

0 Σ
 

and dΣ  has diagonal elements 
1

1   and non-diagonal components 
1
.  The 

covariance parameter represents the common covariance between responses to 

items within a testlet. The level of dependence is represented by covariance parameter 

1
,  which corresponds to the testlet variance parameter in the TRT model. It follows 

that the variance parameter describes the dependence among testlet items in the TRT 

model, which is restricted to be positive. So, under the TRT model, it is not possible to 

describe negative associations among testlet items. For instance, in a testlet with 

technology-enhanced items, the success probability can increase by heightening the 

engagement of a test taker. At the same time, multiple sources of information (e.g., 

paired text passages) can complicate testlet items, leading to a reduced success 
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probability for items in the testlet (e.g., Jiao, Lissitz, & Zhan, 2017). A negative 

correlation can occur among responses to testlet items, since the innovative character 

of the testlet can stimulate the success probabilities positively for some testlet items 

but negatively for others. In general, the complex nature of innovative testlet items can 

lead to negative associations among responses to the testlet items due to the diverse 

effect of the testlet on the success probabilities. 

The covariance structure dΣ  follows from the TRT model when the discrimination 

parameters are equal to one. Consider the latent response model for the TRT 

( ) ,ik i k id k ikZ b e      and consider the term ( )ik id k ikt e   as the error component of 

the model. This error component consists of two normally distributed variables, and 

thus ikt  is also normally distributed. The mean is zero and the variance of the ikt  

equals the sum of the variances 1.
d

   The covariance of responses to items k  and 

k   in testlet d  of individual i  is equal to the covariance of ikt  and ,ikt   which is equal 

to the variance .
d

  It follows that the BCSM for testlets directly models the extra 

covariance among responses to testlet items, where the TRT model includes a random 

effect to model this additional dependence. 

In this research, the dependence structure of the BCSM does not include the item 

discrimination parameters. In the TRT model in Equation (1), the discrimination 

parameters also influence the dependence structure through multiplication with the 

testlet effects. In the BCSM, a homogeneous association among items in a testlet is 

assumed. The inclusion of discrimination parameters is described in the discussion, 

which is a topic of further research. 

The BCSM for testlets can be represented as a multivariate distribution for the 

responses to items in a testlet .d  The superscript d  is used to represent a vector of 
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parameters or a vector of observations for testlet .d  For instance, the latent responses 

to testlet d  of individual i  is represented by .d

iZ  The latent variable form is used, and 

the latent responses to items in testlet d  are assumed to be  

multivariate normally distributed, 

 ~ (0, )

~ (0, ),

  d d d d

i i i

i

d

i d

N

N





 

  Z a b e

e Σ

  (3) 

where  
d d dd n n   JIΣ , and where 

dnI and 
dnJ  are the identity matrix and a matrix of 

ones, respectively, both of dimension .dn  

The main difference between the TRT model (Equation [1]) and the BCSM 

(Equation [3]) is that the TRT model has a testlet effect parameter to model the 

dependence structure, where the BCSM describes the extra dependence with a 

covariance matrix. The BCSM does not include any testlet parameters, which leads to 

a serious reduction in the number of model parameters. The BCSM is much more 

efficient in describing the dependence structure. Furthermore, 
d

  is a covariance 

parameter in the BCSM, which can also be negative or zero. This is in contrast to the 

TRT model, where 
d

  is a variance parameter, which is restricted to be positive. 

However, the covariance matrix 
dΣ  must be positive definite, which restricts the 

covariance parameter 
d

  to be greater than 1/ dn , where dn  is the number of items 

in testlet d  (i.e., the dimensionality of the covariance matrix). 

The extension to polytomous response data is straightforward. In the latent 

response formulation, the latent responses are assumed to be truncated multivariate 

normally distributed. For an observed response in category ,c  the corresponding 

latent response is restricted to be greater than the upper bound for category 1c  and 
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less than the lower bound for category 1.c  For ordinal response data, the category 

boundaries follow an order restriction. The latent response formulation for polytomous 

IRT models can be found in Fox (2010). 

Bayesian Inference 

An MCMC method is used to draw samples from the posterior distributions of the 

model parameters to make inferences about the unknown model parameters. For the 

binary TRT model, this method is described in Bradlow et al. (1999). The authors 

implemented a Gibbs sampler to draw parameter values from their conditional 

distributions. Wang et al. (2002) proposed Metropolis–Hastings steps to make draws 

from the conditional distributions for parameters of the polytomous TRT model for 

ordinal data. The R-package sirt (Robitzsch, 2019) contains MCMC algorithms for 

binary and polytomous TRT models. 

For the BCSM, an MCMC algorithm is proposed (a full description can be found in 

the Appendix). The novel steps of the algorithm are explained in more detail. This 

includes the conditional distribution of the parameter 
d

 , which requires specific 

attention. First, the prior specification of the model parameters is discussed. The priors 

for the item and ability parameters are similar to those in the TRT model. However, 

the prior for 
d

  is different, since this is a covariance parameter in the BCSM. The 

technique of Fox, Mulder, and Sinharay (2017) is used to obtain the posterior 

distribution of .
d

  Consider the distribution of the variable 
( ) /id id k d

k d

Z Z n


 , where

( ) ( ) ( )id k id k k i kZ Z a b   . This variable is normally distributed with mean zero and 

variance 
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     

 

( ) ( ) ( )2
,

  

,
1

1 / ( 1) /

1/ .

d d

d

id id k id k id k

k d k k dd

d d d

d

Var Z Var Z Cov Z Z
n

n n n

n

 



 





 

 
  

 

   

 

 

  

The posterior distribution of 
d

  is constructed from the normally distributed dZ  and 

the prior for ;
d

  that is, 

      

2

/2
/ 2

, , , 2 (1/ ) exp   .
1/d d d

d

id
N

d d i
d d

d

Z

p n p
n

  



   



 
 

 
  
 


∣ Z θ a b   

A conjugate prior for 
d

  is defined, which is known as a shifted inverse gamma 

distribution (Fox et al., 2017). This prior distribution can be represented as 

    
1

1 1
2 2

1 2

1

s  hifted-IG ; , ,1/ 1/ exp ,
( ) 1/d d

d

g
g

d d

d

g g
g g n n

g n
 



 


   
   

  
    

where 1g  is the shape parameter, 2g  is the scale parameter, and 1/ dn  is the shift 

parameter. As a result, the posterior distribution of 
d

  is also shifted inverse gamma 

distributed, with shape parameter 1,N g  scale parameter 2

2 / 2,id

i

g Z  and shift 

parameter 1/ .dn  From the shift parameter it follows that the covariance parameter 
d

  

is restricted to be greater than .1/ dn  Samples can be drawn directly from the shifted 

inverse gamma posterior. Therefore, we sampled values for 1/
d dn   from the 

inverse gamma distribution and subtracted 1/ dn  from the sampled values. 

The conditional distributions of the remaining parameters for the binary BCSM are 

described in the Appendix. For polytomous data, the conditional distributions of the 

BCSM parameters follow in a similar way. Although the testlet effects are not included 
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in the BCSM, testlet effects can still be estimated under the BCSM by extracting them 

from the residuals.  

This is only possible when the covariance parameter is positive, and a testlet effect 

can describe the positive associations among the testlet residuals. In that case, we 

use the model description of the TRT model, ( )( )ik k i id k k ikZ a b e     , without 

multiplying the testlet parameter by the discrimination parameter. The result is that the 

conditional distribution of the testlet parameters id  is normal with mean  

  ,  

( )

, , ,
1/d

d

ik k i k
d d d k d

id i i

d

Z a b

E
n







  




  





Z a b∣  (4) 

and variance 1(1/ ) .
d dn

  A post hoc sample can be obtained by drawing samples 

for the testlet parameter given the sampled BCSM parameters. Note that the 

covariance parameter 
d

 also contributes to the variance of the scale on which the 

testlet effects are estimated.  

 The BCSM is identified by restricting the mean and variance of the (primary) 

latent variable i . This is done by restricting the mean of the latent variable to zero. 

The mean of the discrimination parameters is restricted to one to fix the variance of 

the scale.  

Simulation Study: TRT Versus BCSM 

The performance of the TRT model for testlets was examined in a simulation study 

and compared to the performance of the BCSM model using MCMC for parameter 

estimation. The first purpose of the simulation study was to compare the BCSM to a 

current standard approach in the test industry, specifically the TRT model. In this 
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comparison, the testlet variance was also restricted to be small in order to examine 

the influence of the prior information under both models. The second purpose was to 

confirm that accurate parameter estimates can be obtained for the BCSM under a 

wide variation of experimental factors. Three factors were varied across the simulation 

conditions: (a) the number of examinees, (b) the number of items per testlet, and (c) 

the testlet variance. The parameter values were set to realistic values and defined 

similarly to the ones used by Wang et al. (2002). 

In this comparison, data was simulated under the TRT model. A population 

distribution was defined for the model parameters in order to generate data under the 

TRT model. The simulated datasets mimic real-world applications, assuming the TRT 

model structure is true for a real population. In this simulation study, binary responses 

were simulated, where a one indicates success and a zero indicates no success. The 

datasets were used to estimate the parameters for both models. The following 

population distributions were asserted for the generation of datasets: ~ (0,1)i N  and 

~ (0,.5).kb N  The discrimination parameters were equal to one to facilitate a 

comparison between the TRT model and the BCSM. The discrimination parameters 

did not affect the covariance structure in the BCSM, when they are equal to one. The 

testlet variance is directly related to the variance of the ability parameter .i  A testlet 

variance of 0.5 would indicate that the testlet variance is half the size of the ability 

variance. The testlet effects were simulated from a normal distribution with a mean of 

zero and different testlet variances. Then, data was generated from the TRT model 

(Equation [1]) given the generated testlet effects, difficulty, and ability parameters. 

Since the data was generated under the TRT model, it was expected that 

estimation results would be similar for moderate to large sample sizes. For small 

sample sizes, it was expected that the estimated testlet variance parameters under 
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the TRT model would show bias, which was also observed by Jiao, Wang, and He 

(2013). The prior for the testlet variance can lead to an overestimation when the testlet 

effect is small. 

The TRT model is only statistically equivalent to the BCSM for a fixed positive 

(co)variance parameter .
d

  When considering 
d

 to be a random variable, the 

posterior distribution of 
d

 is restricted to a positive parameter space under the TRT 

model. Under the BCSM, the 
d

 can also take on negative values, which means that  

the items within a testlet can correlate negatively. The parameter space is less 

restricted under the BCSM, and for that reason the posterior standard deviation is 

expected to be slightly higher in comparison to that under the TRT model. From this 

perspective, the simulation study favored the TRT results, since the data was 

generated under the TRT model. Nevertheless, the simulation results showed a better 

performance of the BCSM than of the TRT model. 

Each condition was replicated 1,000 times. The number of items was set to 30K   

for each condition. The number of participants was set to 1,000, 500, and 200. Second, 

the number of items per testlet was varied to 5, 10, and 15 items per testlet, 

corresponding to 6, 3, and 2 testlets per dataset, respectively. Finally, the variance of 

the testlet effect was manipulated. Small testlet variances tend to be more common in 

practice and thus were the focus of this study. Therefore, the choice was made to use 

a testlet variance of 
2 .1,  .05,  and .01.d   A Latin-square design was used to handle 

the variation of the three experimental factors. In a full factorial design, 27 conditions 

would have to be evaluated, which would have required extensive computation time. 

For relatively large sample sizes, significant differences were not expected to be found 

between the BCSM and the TRT model given the simulation results of Wang et al. 
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(2002) and Bradlow et al. (1999), which would make a full factorial design very 

inefficient. Instead of varying the third factor, representing the testlet variance, over all 

possible combinations of the first two factors, the third factor was used only once for 

every factor. The resulting simulation design had nine distinct conditions. In Table 1, 

the whole design is shown, where the numbers 1 through 9 in parentheses refer to the 

numbering of the nine experimental conditions. 

TABLE 1 

Table of simulation design 

Variance of the Testlet Effect 

# Items per Testlet 

5 10 15 

No. of 

participants 

1,000   .05 (1) .1 (2)   .01 (3) 

500 .1 (4)   .01 (5)   .05 (6) 

200   .01 (7)   .05 (8) .1 (9) 

 

MCMC procedures were used to estimate the model parameters of the TRT model 

and the BCSM. When convergence was reached, additional samples from the 

posterior distribution were drawn to make inferences. The advantage of this is that 

further inferences, like computing the mean of the posterior distribution of a parameter, 

can be easily made. In this study, the first 1,000 iterations were discarded as the burn-

in, and another 9,000 iterations were made to the model parameters. The Heidelberger 

and Welch’s convergence diagnostic (Plummer, Best, Cowles, & Vines, 2006) was 

used to evaluate the convergence of the MCMC chains. The average lag-50 

autocorrelation and the effective sample size were computed to compare the 

estimation performance of both MCMC algorithms. For M independent MCMC draws, 

the Central Limits Theorem states that the bound on the estimation error is 

proportional to 1/ M . For M dependent MCMC draws, the bound is proportional to 
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1/ effM , with effM  the effective sample size. The effM  represents the number of 

independent values that has the same estimation performance as M MCMC correlated 

values in the MCMC chain. 

The estimated model parameters were compared to the true simulated values. The 

posterior means were used as parameter estimates. Three criteria were used to 

assess the quality of the parameter estimates. The bias, root mean squared error 

(RMSE), and coverage rate were computed for each parameter. For instance, for the 

item difficulty parameter ,kb  the bias was computed as the average over 1000R   

replications: 

 
1

1ˆ ˆ( ) ( ),
R

j jr jr

r

Bias b b b
R 

    (5) 

where ˆ
krb  is the estimated difficulty parameter for item k  and krb  the true value in 

replication .r  The RMSE was calculated as the square root of the MSE,  

  
2

1

1ˆ ˆ( ) .
R

j jr jr

r

MSE b b b
R 

    (6) 

The bias and RMSE were calculated for different model parameters obtained under 

the two models. Where applicable, the results were averaged across the test items 

and participants in order to make the comparison more straightforward. 

A 95% highest posterior density (HPD) interval was used to compute the coverage 

rates. The coverage rate gives an indication of the number of times that the true value 

lies within the 95% HPD interval. The data was simulated under the TRT model, so for 

the TRT model the coverage rates were designed to be 95%. When the coverage rate 

is lower, the true parameter value is less often recovered than would be expected 

according to the 95% HPD interval. A low coverage rate indicates a problem with the 

model’s functioning. The coverage rate under the BCSM was expected to be higher 
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than 95%, since data was simulated under the TRT model. Under the BCSM, the 95% 

HPD intervals are wider, since the testlet correlations are not restricted to be positive. 

As the data was generated under the TRT model, the coverage rates under the BCSM 

were therefore not expected to match up exactly. 

Results 

The MCMC algorithm for the BCSM model performed good. Several problems 

were found with the estimation performance of the MCMC algorithm for the TRT 

model. For moderate to large sample sizes and a testlet variance of .1, the MCMC 

samples under the TRT showed reasonable stable behavior and better convergence. 

For smaller testlet variances, the chains under the TRT model showed much higher 

autocorrelations and less smooth transitions through the parameter space than the 

chains under the BCSM (Figure 1). For the TRT model, the subplots show the trace 

plots of the sampled testlet variances for N = 200 and N = 1,000. For N = 200, the 

chain shows high correlation between sampled values. When values close to zero 

were sampled, the chain showed difficulties in moving away from the state of no testlet 

variance. This can be seen around iteration numbers 4,000 and 8,000. The MCMC 

chain shows problems in moving away from the state of no testlet variance. For N = 

1,000 and a higher true testlet variance, this problem did not occur. However, the trace 

plots still show highly correlated values. For the BCSM, the behavior of the MCMC 

chain is much better. For small sample sizes, the chain did not got stuck at zero, since 

negative testlet covariances were allowed. Without this lower bound at zero, the 

movement of the chain through the entire parameter space was improved, leading to 

more informative MCMC samples (less correlated samples) from the posterior 
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distribution. When increasing the sample size to N=1000, the behavior of the chain 

under the BCSM remained almost similar to the one for N=200. 

 

 

FIGURE 1. Trace plots of MCMC chains for small and moderate sample sizes under the TRT model 

and the BCSM 

 

For each condition, the average effective sample size and lag-50 autocorrelation was 

computed for the testlet variance across replications under each model. For the TRT 

model, it can be seen in Table 2 that for 9,000 MCMC iterations the effM  is dramatically 

low in all conditions. The low effM  corresponds to high lag-50 autocorrelations. The 

effective sample sizes under the TRT model are much lower than those computed under 

the BCSM. The effective sample sizes under the BCSM are around 8%-18% of the 

total number of MCMC iterations (after the burn-in period). The MCMC samples under 
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the BCSM provide acceptable bounds on the estimation error. The estimated average 

lag-50 autocorrelation is also close to zero for the BCSM chains. To obtain the same 

estimation performance with the TRT, in theory 10 to 50 times more MCMC iterations 

are needed leading to 100,000 to 500,000 MCMC iterations. Then, the simulation 

study would take too much time to be completed. However, the main problem was that 

the MCMC chains got stuck at zero, and increasing the number of MCMC iterations 

did not solve that problem. It led to more highly autocorrelated samples.       

 

TABLE 2 

The (MCMC) effective sample size (Meff) and lag-50 autocorrelation averaged across replications per 

condition and model. 

Condition # 

TRT BCSM 

Meff Lag 50 Meff   Lag 50 

1 67 .481 1523 -.001 

2 203 .116 1731 -.001 

3 20 .810 743 .000 

4 85 .422 1748 .000 

5 18 .820 1032 -.002 

6 100 .384 1063 -.001 

7 24 .773 1278 -.001 

8 55 .603 1367 -.001 

9 200 .161 1287 .000 

 

For the 9 conditions, the estimates for the discrimination, difficulty, and ability 

parameters were obtained. The true parameters for ,a  ,b  and   were accurately 

recovered. No apparent differences were found between the parameter estimates 

under the two models. Estimates for bias and RMSE of these parameters showed an 
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accurate recovery of the true values; no significant differences were found in terms of 

bias and RMSE between the two models.  

The estimated testlet variance parameters under both models are shown in Table 

3. We see that under the TRT model, the true testlet variance was generally 

underestimated. The posterior mean was used as an estimator but the estimation 

results did not differ much from those using the posterior mode as an estimator. A 

vague inverse gamma prior for the variance parameter was used, with the shape and 

scale parameter equal to .01. For a true testlet variance value of .01, the testlet 

variance was sometimes not detected under the TRT model. Specifically in Condition 

7, a testlet variance was not detected in many of the replications (95% coverage rate 

equaled .13) and the estimated testlet variance was around .0038 under the TRT 

model. For this condition, it was investigated if the testlet variance estimates improved 

under the TRT model, when using an inverse gamma prior with a shape and scale 

value equal to one. This prior gave more support to higher testlet variances. The 

estimated testlet variance for 1,000 replications equaled .052, which is more than 13 

times greater than the estimate with the vague prior with shape and scale parameters 

equal to .01, and 5 times greater than the true value of .01. The RMSE of the estimated 

testlet variance was .051 and the coverage rate was equal to zero. In conclusion, the 

prior can be adjusted to cover higher testlet variances, but this easily leads to 

overestimating the true value. These estimation problems did not occur under the 

BCSM, where a vague prior was used for all conditions, and all testlet variances were 

accurately estimated. 

 

TABLE 3 

Estimated testlet variances of the TRT model and the BCSM across 1,000 data replications 



The BCSM For Testlets 
 

22 

Condition #   

ˆ
  

TRT BCSM 

1 .05 .0516 .0503 

2 .10 .0734 .1007 

3 .01 .0065 .0109 

4 .10 .0790 .1019 

5 .01 .0063 .0100 

6 .05 .0303 .0520 

7 .01 .0038 .0110 

8 .05 .0266 .0544 

9 .10 .0628 .1092 

 

In Table 4, the RMSEs of the testlet variances and testlet effects under both models 

are presented. The estimated differences in RMSE of the testlet variance parameters 

were very small, and the RMSEs were overall very small. Estimation of the RMSE and 

bias was based on mean parameter estimates. It was expected that under the TRT 

model, a skewed posterior distribution of the testlet variance parameter would lead to 

an overestimation of the true parameter value. Significant overestimation of the true 

value due to skewed posteriors was not detected. Estimates of testlet effects under 

the BCSM were comparable to those under the TRT model, when they were 

transformed to a common scale with mean zero and an equal testlet variance. 

Estimated testlet effects under the BCSM were less shrunken toward the prior mean. 

This led to a greater number of outliers and more variance in estimated testlet effects. 

 

TABLE 4 

RMSEs of true parameters and estimated posterior mean for the testlet variance and testlet effects. 

Condition # Testlet Variance Testlet Effect 
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TRT BCSM TRT BCSM 

1 .0141 <.0100 .2663 .2665 

2 <.0100 <.0100 .3294 .3294 

3 <.0100 <.0100 .1277 .1284 

4 .0224 .0173 .3491 .3491 

5 <.0100 <.0100 .1285 .1292 

6 .0141 .0141 .2512 .2516 

7 <.0100 .0224 .1315 .1319 

8 .0283 .0224 .2546 .2550 

9 .0300 .0316 .3289 .3298 

Note: The MSE was calculated with a precision of four decimals. When the MSE was less than .0001, 

the RMSE was less than .0100.  

      

The 95% coverage rates are presented in Table 5. A remarkable finding was that 

the coverage rates for the TRT model were not satisfactory for most conditions (i.e., 

they were generally too low). In Condition 2, for a large sample size with higher testlet 

effects, the coverage rate was close to the target 95%, with a coverage of 93%. In 

many replications the true value was not captured by the 95% HPD interval. For small 

sample sizes and small testlet effects, the coverage rates were particularly low under 

the TRT model.  

TABLE 5 

The 95% coverage rates for the testlet variance under the TRT model and  

the BCSM 

Condition # TRT BCSM 

1   .85 1.00 

2   .93 1.00 

3   .87 .98 

4   .87 1.00 
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5   .77  .99 

6   .86   .98 

7   .13 1.00 

8   .69 1.00 

9   .87   .97 

 

Coverage rates for the BCSM were too high, as expected, and most often were 

100%; parameter space for the testlet covariance parameter was also wider under the 

BCSM than under the TRT model. This leads to a wider posterior distribution of the 

testlet covariance parameter. As a result, the 95% HPD intervals are wider and the 

coverage rates higher under the BCSM than under the TRT model. Under the BCSM, 

the coverage rates were comparable across conditions, and did not show a 

relationship with sample size. In Conditions 6 and 9, the coverage rates under the 

BCSM were slightly smaller (98% and 97%, respectively).  

Figure 2 shows the estimated posterior densities of the testlet variance parameter 

using an informative and a vague prior under the TRT model, given sampled values 

in Condition 7 (200 test takers and 5 items per testlet), where the true variance is .01. 

When using a vague prior, the posterior distribution is highly peaked at zero. In that 

case, the MCMC chain is stuck at zero, as shown in the upper subplot of Figure 1. 

When increasing the prior information about the testlet variance (i.e., shape and scale 

parameter of the inverse gamma is equal to one), the posterior distribution covers 

testlet variances above the true value. The 95% HPD interval is equal to [.033, .087]  

and does not include the true parameter value. The prior gives less weight to small 

variance values and moves the posterior distribution toward higher variance values. 

This leads to an overestimation of the testlet variance and the small coverage rate in 

Condition 7, as shown in Table 5. Under the BCMS, the estimated posterior distribution 
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of the covariance parameter   is centered around the true value and less skewed, 

since it also covers negative covariance values. The 95% HPD interval equals 

[ .0737, .104] . For the BCSM, the posterior distribution is not affected by the lower 

bound of zero, and valid draws from the posterior distribution are obtained even for a 

small sample size and a small true variance.  

 

 

FIGURE 2. Posterior density of the testlet (co)variance under the BCSM and the TRT model 

 

Polytomous Response Data 

For the BCSM for polytomous data, the data was generated under the BCSM. The 

testlet covariance was varied across testlets, and ranged from −.05 to .50. The TRT 

model cannot handle a negative covariance among items in a testlet. In practice, 

negative associations among testlet responses can occur when the testlet leads to a 

stimulation of the success probability for some items but not others in the testlet. For 



The BCSM For Testlets 
 

26 

instance, when a testlet consists of innovative items, directional local dependence and 

multidimensionality can lead to opposite stimulation of the success probabilities of the 

testlet items, which leads to a negative association. 

Therefore, in this simulation study, the BCSM was not compared to the TRT model. 

Data was generated according to a BCSM for ordinal data, with three response 

categories, for a 10- and 20-item test. The number of test takers was equal to 1,000. 

The number of testlet items and the testlet variance were varied (Table 6). For the 10-

item test, three testlets had 2, 3, and 5 items, respectively. For the 20-item test, three 

testlets had 4 items and one testlet had 8 items. In Table 6, the specific conditions are 

given under the label number of items, number of testlet items, and the testlet 

covariance parameter  . 

TABLE 6 

BCSM for polytomous data: Estimated testlet variance and 95% coverage probabilities 

No. of Items 
No. of Items 

Per Testlet  
  ˆ

  SD 95% CR 

10 2 −.05 −.042 .062 .929 

 3   .10   .103 .054 .954 

 5   .20   .205 .047 .950 

20 4 −.05 −.048 .028 .948 

 4   .10   .105 .036 .957 

 4   .20   .205 .042 .941 

 8   .50   .507 .047 .952 

95% CR = 95% coverage rate 

 

The following population distributions were asserted for the generation of the 

datasets: ~ (0,1)i N ; thresholds were sampled from a uniform distribution between −1 

and 2, and discrimination parameters were sampled from a log-normal distribution with 
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a mean of zero and a standard deviation of .15. A total of 10,000 MCMC iterations 

were made for each data replication, where the first 1,000 were regarded as burn-in. 

A total of 1,000 data replications were made for each condition. 

The posterior mean estimates of the testlet variances are given in Table 6, which 

are the average posterior means across replications. It can be seen that the estimated 

testlet variances are close to the true values, even for very small testlet variances. For 

the testlet with two items, the estimated negative covariance is slightly above the true 

value and the estimated coverage rate is around 93%. For a two-item testlet, it is more 

difficult to recover the negative correlation. It can be seen that the recovery is improved 

when the number of testlet items is increased to four. For the two-item testlet, the 

posterior standard deviation of the covariance parameter is relatively high, but is 

reduced by a factor of two when the number of testlet items is increased from two to 

four. The posterior standard deviation increases as values of the testlet covariance 

increase. In Table 5, the coverage probabilities under the BCSM were higher than the 

nominal level, since the data was generated under the TRT model. In this simulation 

study, the coverage probabilities are good and correspond closely to the nominal 

coverage probability. The other BCSM estimates (i.e., ability, discriminations, 

thresholds) were also close to their true values, and the corresponding coverage 

probabilities also matched the nominal level.  
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Discussion 

The BCSM for testlets is a new modeling framework in which testlet dependences 

are modeled through an additional covariance structure. The BCSM has several 

advantages over TRT models. Under the BCSM, testlet effects do not have to be 

estimated, which leads to a serious reduction in the number of model parameters. In 

TRT models, for every combination of testlet and test taker a (random effect) 

parameter is introduced, which complicates estimation of the model parameters and 

comparison across different TRT models. Testlet effects also place restrictions on 

sample size: Each testlet needs to consist of a sufficient number of items to estimate 

the testlet effect. It was shown that for small sample sizes, it was difficult to specify the 

prior for the testlet variance. It was also shown that for the BCSM, accurate estimates 

were obtained for small sample sizes, small numbers of test takers (N = 200), and 

small numbers of items per testlet (2 items per testlet), without needing an informative 

prior. 

Under the BCSM, testlet dependence is modeled with a covariance parameter. 

This avoids issues related to lower bound problems at zero when estimating model 

parameters. Testlet dependences are also allowed to be negative. The BCSM for 

polytomous testlet data also showed accurate estimation results. Furthermore, testlet 

effects can still be estimated under the BCSM through a post-hoc sampling approach. 

The issues in obtaining reliable posterior estimates under the TRT model were not 

clearly visible in terms of bias and RMSE of the ability and item parameters. 

Nevertheless, differences were notable in terms of the coverage rates and estimated 

testlet variances. 

There have been various suggestions on how to handle testlet effects. Thissen, 

Steinberg, and Mooney (1989) suggested treating testlets as polytomous items and 
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applying polytomous IRT models. However, this approach uses the same 

discrimination parameter for all items within a testlet and a total score for each testlet 

(Zenisky, Hambleton, & Sireci, 2002). These issues will possibly cause a loss of 

measurement information by having fewer parameters, and different scoring patterns 

for each testlet will be ignored. Wang and Wilson (2005) remarked that in a polytomous 

item approach, the number of response patterns of items within a testlet are modeled, 

and the testlet parameter is treated as fixed effects. For a testlet with 10 dichotomous 

items, this leads to 102  testlet parameters. In the BCSM, the parameterization is much 

more efficient, where testlet dependences can be modeled with a single covariance 

parameter independent of the number of items within a testlet and the number of test 

takers. 

In this research, the dependence structure of the BCSM did not include item 

discrimination parameters. The testlet effect parameter in the TRT model in  

Equation (1) is multiplied by a discrimination parameter. Then, the error term is 

( ) .ik k id k ikt a e   The dependence structure can be represented as the covariance 

between ikt  and ,ikt   which equals 
dk ka a  . So, for the TRT model in Equation (1), for 

each pair of items in a testlet the discrimination parameter also modifies the 

dependence structure. For the BCSM, this discrimination parameter is not included to 

model the dependence structure. Obtaining draws from the posterior distribution of the 

discrimination parameter is complicated when the discrimination parameter is included 

in the linear term and in the covariance matrix. To avoid this situation, it is possible to 

consider the error term of the linear predictor to be ( )( ) .ik k i id k ikt a e     The 

covariance matrix of the responses to testlet d  of individual i  can be represented as 

  , 
d

t

d d d   a a I  where the mean term of the linear predictors only contains the 
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item difficulty parameters of the items in testlet .d  In that case, the discrimination 

parameters are only included in the covariance matrix. The discrimination parameters 

can be included to modify the strength of the (positive or negative) testlet dependence 

among residuals represented by the testlet covariance parameter. More research is 

needed to obtain samples from their posterior distributions. 

The TRT model is a restricted bi-factor model, where the discrimination parameters 

of the secondary factors are restricted to be proportional to the discriminations of the 

primary factor within each testlet (e.g., Rijmen, 2010). Although the bi-factor model is 

more flexible in describing the dependence structure of the testlet errors, the model 

has the same disadvantages as the TRT model. When assuming normally distributed 

factor variables, the model is identified by restricting the mean and variance of each 

factor to zero and one, respectively. Then, the linear function of the factor variables in 

the bi-factor model for an observations to item k in testlet d is represented by 

kd kg g kd d k kdt a a b e     , with multivariate normally distributed factor variables, 

 ,Nθ 0 I . The covariance structure that includes the implied dependences by the 

secondary (testlet) factor is equal to  t

d d da a I . It follows that the discrimination 

parameters da  model the strength of dependence among testlet residuals, and they 

can be freely estimated. However, it is not possible to model a common negative 

dependence structure for a testlet with more than two items. Furthermore, for (very) 

small dependences among testlet residuals, the discrimination parameters are close 

to zero, which leads to problems in estimating the secondary factor d . This secondary 

factor cannot be estimated, when the testlet discriminations parameters are equal to 

zero. This lowerbound problem is similar to the lowerbound issue of a zero factor 
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variance in the TRT model. Finally, the sample size restrictions for parameter 

estimation for the TRT model also apply to the bi-factor model.  

The BCSM differs from the well-known Gaussian copula, since it uses a structured 

covariance matrix to model the dependence structure. This structured covariance 

matrix follows from the joint conditional modeling approach of the marginal 

distributions. This dependence structure implied by the conditional model is integrated 

in the covariance structure of the BCSM and provides a clear interpretation of the 

parameters of the dependence structure. In copula modeling, the copula function 

determines the type of dependence and it operates directly on the marginals. For 

instance, in the Gaussian copula, marginal cumulative distributions functions are 

coupled using the multivariate normal cumulative distribution function with an 

unrestricted correlation matrix. This often leads to more complex dependence 

structures intertwining the factor and residual dependence. 

Under the presented BCSM testlet model, and contrary to Gaussian copula 

models, closed-form expressions for the conditional posterior distributions of all model 

parameters are available. This allows to directly sample the parameters through an 

efficient Gibbs-sampling algorithm. Therefore, the BCSM does not require the 

numerical evaluation of integrals and offers an uncomplicated way to make inferences 

about the item parameters, person parameters, and the dependence structure.  

The copula model preserves the marginal cumulative distributions in the 

construction of a multivariate distribution, which makes the modeling framework more 

flexible to define a multivariate distribution for any set of marginal cumulative 

distributions. However, estimating a fully parametric Gaussian copula model for 

categorical data is challenging and computationally expensive as it requires the 

evaluation of multivariate normal integrals in high dimensions (Pitt, Chan, & Kohn, 
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2006). A semi-parametric approach, on the other hand, neglects the information in the 

data about item and person parameters, and is therefore of limited utility in educational 

measurement applications (Hoff, 2007). The Gaussian copula is usually avoided for 

categorical data, since it requires intensive computation to evaluate the multivariate 

normal distribution (Braeken, Kuppens, De Boeck, Tuerlinckx, 2013). 

The MCMC algorithms for the TRT models and the BCSM were programmed in R. 

The computation time to complete 10,000 MCMC iterations was less than 5 minutes. 

This appears to be much faster than the computation times reported by Jiao et al. 

(2013), who reported a computation time of 6 hours to estimate the one-parameter 

TRT model using WinBugs. The MCMC estimation method was not computer 

intensive for the BCSM, and the efficient parameterization of the BCSM makes it 

possible to fit the model on large-scale tests with large sample sizes. 

The BCSM for testlets improves the flexibility of modeling dependences among 

items within a testlet. This approach can be further explored by considering more 

complex designs. For instance, additional dependences in the test data can also occur 

due to different response modes (e.g., different blocks of items require different types 

of responding), different test domains, or differential item functioning (Paek & 

Fukuhara, 2015). Future research will focus on developing BCSMs to simultaneously 

model various types of clustered items, where testlets represent just one way of 

clustering the items in a test. 

References 

Bradlow, E. T., Wainer, H., & Wang, X. (1999). A Bayesian random effects model for 

testlets. Psychometrika, 64(2), 153–168. 



The BCSM For Testlets 
 

33 

Braeken J, Kuppens P, De Boeck P, Tuerlinckx F. (2013). Contextualized personality 

questionnaires: A case for Copulas in structural equation models for categorical 

data. Multivariate Behavioral Research, 48(6), 845-870. DOI: 

10.1080/00273171.2013.827965. 

Fox, J. P. (2010). Bayesian item response modeling: Theory and applications. 

Springer Science & Business Media. 

Fox, J. P., Mulder, J., & Sinharay, S. (2017). Bayes factor covariance testing in item 

response models. Psychometrika, 82(4), 979–1006. 

Hoff, P. D. (2007). Extending the rank likelihood for semiparametric copula 

estimation. The Annals of Applied Statistics, 1(1), 265-283. 

Jiao, H., Lissitz, R. W., & Zhan, P. (2017). A noncompensatory testlet model for 

calibrating innovative items embedded in multiple contexts. In Jiao, Hong, and 

Robert W. Lissitz (Eds.), Technology enhanced innovative assessment: 

Development, modeling, and scoring from an interdisciplinary perspective. 

Charlotte, NC: IAP. 

Jiao, H., Wang, S., & He, W. (2013). Estimation methods for one-parameter testlet 

models. Journal of Educational Measurement, 50(2), 186–203. 

Klotzke, K., & Fox, J.-P. (2019a). Bayesian Covariance Structure Modelling of 

responses and process data. Frontiers in Psychology, 10, 1675. 

doi:10.3389/fpsyg.2019.01675 

Klotzke, K., & Fox, J.-P. (2019b). Modeling dependence structures for response 

times in a Bayesian framework. Psychometrika, 1-24. doi:10.1007/s11336-019-

09671-8 

Li, Y., Bolt, D. M., & Fu, J. (2006). A comparison of alternative models for testlets. 

Applied Psychological Measurement, 30(1), 3–21. 



The BCSM For Testlets 
 

34 

Paek, I., & Fukuhara, H. (2015). An investigation of DIF mechanisms in the context 

of differential testlet effects. British Journal of Mathematical and Statistical 

Psychology, 68(1), 142–157. 

Pitt, M., Chan, D., & Kohn, R. (2006). Efficient Bayesian inference for Gaussian 

copula regression models. Biometrika, 93(3), 537-554. 

Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence 

Diagnosis and Output Analysis for MCMC. R News, 6(1), 7–11. 

Robitzsch, R. (2019). Sirt: Supplementary item response theory models. R package 

version 3.1-80. Retrieved from: http://CRAN.R-project.org/package=sirt 

Rijmen, F. (2010). Formal relations and an empirical comparison among the bi-

factor, the testlet, and a second-order multidimensional IRT model. Journal of 

Educational Measurement, 47(3), 361-372. 

Sireci, S. G., Thissen, D., & Wainer, H. (1991). On the reliability of testlet-based 

tests. Journal of Educational Measurement, 28(3), 237–247. 

Thissen, D., Steinberg, L., & Mooney, J. A. (1989). Trace lines for testlets: A use of 

multiple-categorical-response models. Journal of Educational Measurement, 

26(3), 247–260. 

Wainer, H., Bradlow, E. T., & Du, Z. (2000). Testlet response theory: An analog for 

the 3PL model useful in testlet-based adaptive testing. In W. J. van der Linden & 

C. A. S. Glas (Eds.), Computerized adaptive testing: Theory and practice (pp. 

245–269). Dordrecht, the Netherlands: Kluwer Academic Publishers.  

Wainer, H., Bradlow, E. T., & Wang, X. (2007). Testlet response theory and its 

applications. New York, NY: Cambridge University Press. 

Wainer, H., & Kiely, G. L. (1987). Item clusters and computerized adaptive testing: A 

case for testlets. Journal of Educational Measurement, 24(3), 185–201. 

http://cran.r-project.org/package=sirt


The BCSM For Testlets 
 

35 

Wang, X., Bradlow, E. T., & Wainer, H. (2002). A general Bayesian model for 

testlets: Theory and applications. (ETS Research Report Series, RR 02-02). 

Princeton, NJ: 2002. 

Wang, W. C., & Wilson, M. (2005). The Rasch testlet model. Applied Psychological 

Measurement, 29(2), 126–149. 

Zenisky, A. L., Hambleton, R. K., & Sireci, S. G. (2002). Identification and evaluation 

of local item dependencies in the Medical College Admissions Test. Journal of 

Educational Measurement, 39(4), 291–309. 

Appendix 

To implement the MCMC algorithm, samples need to be drawn from the conditional 

distributions of the parameters i , ka , kb , and .
d

  The sampling of the model 

parameters is facilitated by sampling latent responses and by sampling the model 

parameters given the latent response data. 

Consider the BCSM model (Equation [3]), where the augmented data are 

multivariate normally distributed .d

iZ  The conditional distribution of the augmented 

data can be simplified by using an explicit form for the covariance matrix dΣ  (Fox, 

2010). Let ,i jZ  denote the vector of augmented responses of subject i  excluding the

j th response. Furthermore, for covariance matrix ,
dd d d Σ I J  let , 1d d

t

j j n Σ 1  

denote the j th row of the covariance matrix excluding the j th value, and let 

, 1 1d d dj j n n    Σ I J  denote the covariance matrix excluding row j  and column .j  

The conditional distribution of ijZ  given ,i jZ  is normal with mean 
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For the responses to items in testlet ,d  the components of variable 
d

iZ  are 

conditionally independent normally distributed, with each mean and variance given in 

Equations A-1 and A-2, respectively. Each ( )id jZ  is truncated to be positive if ( ) 1id jY   

and truncated to be negative if ( ) 0.id jY   

The parameter 
d

  is sampled from the shifted inverse gamma distribution with 

shape parameter 1N g , scale parameter 2

2 / 2id

i

g Z , and shift parameter 1/ dn , 

where 

2 2

( )( ( )) /id id k k i k d

k d

Z Z a b n


   . 

The item difficulty parameters can be sampled from a normal distribution given the 

latent response data. The item difficulty parameters are assumed to be normally 

distributed with mean b  and variance 
2

b . The conditional distribution of each item 

parameter k  in testlet d  is normally distributed with mean 
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The ability parameter is sampled from a normal distribution. The latent response 

data iZ  for test taker i  are multivariate normally distributed. The covariance matrix iΣ  

is a diagonal matrix with D  blocks, where block d  is equal to 
d d dd n n  Σ I J . It 

follows that the mean and variance of the conditional distribution of i  is given, 
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The discrimination parameters are also sampled from a normal distribution. The 

prior distribution of the discrimination parameters is assumed to be normal with mean 

a  and variance 
2.a  Then, the conditional distribution of each discrimination 

parameter is normal with mean 
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