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Introduction

When computerized tests are administered, next to response accuracy (RA) response times (RTs) can be
automatically recorded. The information in the response times can help to improve routine operations in
testing, such as item calibration, adaptive item selection, latent ability estimation, as well as to explore and
measure factors that influence the performances on the test.

The issue of how to model response times has been approached from three different angles. One approach is
to model the response times with time parameters added to a regular item response theory (IRT) model (see,
e.g., Roskam, 1997; Thissen, 1983; and Verhelst et al., 1997). A second approach is characterized by modeling
the response times separately from the responses (see, e.g., Maris, 1993, and Scheiblechner, 1979). Van der
Linden (2006) discussed a selection of these models for response times on test items. In a third approach,
introduced in van der Linden (2007), the response times and responses are modeled hierarchically. At the first
level, both the distributions of response accuracy and response times are assumed to follow separate models,
each with a different set of person and item parameters. The person parameters represent the speed and
accuracy (or ability) of the test taker on the items. A test taker’s choice of speed and accuracy is generally
constrained by a tradeoff. At this first level of modeling, the RTs and RA can be assumed to be conditionally
independently distributed given the speed and accuracy parameters, respectively. However, at the second
level, these parameters are allowed to be dependent. This leads to a hierarchical modeling framework in
which the relation between speed and accuracy is defined at a higher level of modeling.

Response times have a natural lower bound at zero, the logarithm of RTs is modeled, and their distribution
is assumed to be normal. The choice of a lognormal distribution is a classic one in response-time research.
For response times on test items, this assumption was made earlier by, for example, Thissen (1983), Schnipke
and Scrams (1997), and van der Linden et al. (1999). Each of these studies showed a good fit of response
times to a lognormal distribution. Both the binomial distribution of response accauracy and the normal
distribution of the log response times can be given a traditional item-response theory (IRT) parameterization.
The binomial parameter for response accuracy has the structure of the two-parameter normal-ogive model
(Lord and Novick, 1968). The distribution of the response times has a parameterization close to that of an
IRT model for continuous response data (see, e.g., Samejima, 1973; Shi and Lee, 1998). RA and RTs are
conditionally independently distributed. Their joint distribution is the product of a binomial and a normal
distribution. This defines the level-1 model of the joint model for the analysis of RTs and RA for measuring
test takers’s speed and ability on test items, respectively.

In our Bayesian approach, a Gibbs sampler is used for estimating the model parameters. The approach
facilitates the use of informative proper priors. The Gibbs sampler was programmed in R with an R-package
of functions called LNIRT\footnote{LNIRT Version 0.3.0. https://cran.r-project.org/web/packages/LNIRT.
This R-package enables users to model patterns of response accuracy and response times using a joint model,
and to estimate and examine the model fit. A brief overview of procedures for testing the fit of the model is
given. The R-package LNIRT is described, where the description includes a listing of the input and output
variables.


https://cran.r-project.org/web/packages/LNIRT

The Joint Modeling Approach

A hierarchical modeling procedure is followed. At Level 1, separate measurement models are defined for the
response accuracy and response times. At level 2, a distributional structure is defined for the level-1 model
parameters. Subsequently, hyperprior distributions are specified for the prior parameters.

Level 1

Item responses to a set of items indexed k = 1,..., K are taken to be stored in an N x K data matrix Y.
The response patterns are characterized by both the test takers and the items. A two-parameter IRT model is
used to define a mathematical relationship between the probabilities of the responses and the person and item
parameters (see, e.g., Lord and Novick, 1968). Let 6; denote the ability of test taker 7. Then, the probability
of a correct response to item k is defined as:

P(Yi, =1 6;,a5,b;) = ®(arbh; — by), (1)

where aj and by are generally known as the discrimination parameter and difficulty parameter of item £,
respectively, and ® denotes the normal cumulative distribution function. When defining the item difficulties
on the same scale as the ability scale, additional brackets need to be placed in the mean component. The
probability of a correct response to item k is given by,

P(Yie =1|0;,a5,br) = ® (ay (6; — bi)), (2)

where 6; and by are defined on the same scale. In LNIRT, both parameterizations are implemented. Note
that the item difficulty parameters in Equation (1) and Equation (2) are not directly comparable, and are
defined on different scales. For the three-parameter model, a guessing parameter ¢y is introduced, this leads
to the following success probability

P(Y;k =1 | 91'7 ag, bk,Ck) = Cf + (]. — ck)é(akﬁi — bk), (3)

where ¢, is the probability of guessing item k correctly.

Response-time distributions have a natural lower-bound at zero and, for that reason, are skewed to the
right. A lognormal distribution is used to model the response times which are taken to be stored in an
N x K matrix RT. It is assumed that each respondent chooses to complete the items at a constant speed
that can be represented by a parameter denoted as (;. The time needed to complete an item also depends
on item characteristic parameters. They are denoted as ¢ and A\, and can be seen as a discrimination
and time-intensity parameter, respectively. The logarithm of the response times, RT;, are assumed to be
normally distributed, and it follows that,

RTy = A — ¢orG + € (4)
er ~ N(0,02), (5)

where the time intensity parameter A\, represents the average time needed to complete the item (on a
logarithmic scale), the speed parameter, (;, represents the working speed of test taker i, and the time
discrimination parameter, ¢, the item-specific effect of working speed on the RT. Increasing the time
intensity Ax leads to a positive shift of the location of the time distribution on the item. Likewise, an increase
in the speed parameter (; leads to a negative shift. In the same way as for the item response model in
Equation (2), the time intensities can be defined on the same scale as the speed parameter. It follows that,



RTy = o (M —G) + e, (6)

where the time discrimination parameter operates on the term A\ — (;.

Fox et al. (2007); Klein Entink et al. (2008) introduced the time-discrimination parameter as a slope parameter
for speed, which models the sensitivity of the item for different speed-levels of the test takers. This specification
of the item time discrimination parameter differs from the time discrimination parameter defined by van der
Linden (2007).In his approach, the reciprocal of the standard deviation of the measurement error is defined to
be the time discrimination. This also allows for item-specific variances. However, the time discriminations in
Equation (4) also model covariances between RTs. When considering responses to item k and [, the covariance
between RTs of test taker ¢ is given by,

cov (RTy,, RTy) cov (A — rCis M — ¢iGi)
cov(—9rGi, ¢1€i)

= o¢pvar(G)d

when assuming independent errors and time intensities. So, the covariance between the two RTs is influenced
by both time discriminations. Furthermore, the additional error term in Equation (4) can model variations
in RTs due to stochastic behavior of the test taker. When test takers operate with different speed values,
take small pauses during the test, or change their time management, the RTs might show more systematic
variation than explained by the structural mean term. The item-specific error component might accommodate
for these differences and avoid bias in the parameter estimates.

As already noted, modeling response times as a lognormal distribution is a classic choice. A lognormal model
with a simpler decomposition of the mean parameter was proposed by Schnipke and Scrams (1997). However,
their model was not used to describe the distribution of the response time for a fixed person and item but as
a convenient summary of the empirical distributions of the times on the items in a bank across its history
of test takers. The parameterization in (4) corresponds closely to that of the two-parameter IRT model for
continuous responses developed by Samejima (1973).

An implicit assumption of the response time model is that the speed parameter remains constant during the
test. This means that, whatever the conditions under which the test is taken, the test takers are assumed to
settle on a level of speed at the beginning of the test and then stick to it. The joint model is unable to deal
with changes in speed, for example, due to fatigue or the adoption of a new strategy during the test.

Levels 2 and 3

A bivariate normal distribution is defined for the ability and speed parameters of the test takers,

(6:,¢) ~ Na(pp, Ep)

where

pp = (ko)
2
— g9 P
o= (p 0«?)'

Parameter p denotes the covariance between the person parameters. The level-2 model for speed and ability
can be considered to represent a population of persons that take the test. The distribution can then be seen



as the sampling distribution of a random test taker from the population. From a Bayesian perspective, the
test takers are defined to be exchangeable, and the distribution represents the common prior for the person
parameters. As a hyperprior for the covariance matrix 3 p, an inverse-Wishart distribution with degrees of
freedom vp and scale parameter Vp is chosen. In the same way, a multivariate normal distribution is specified
for the item parameters of the level-1 models,

(aks br, Pis k) ~ N (g, 21), (7)

where aj and ¢y are restricted to be positive. This assumption allows for the fact that the item parameters
within each measurement model usually correlate. The covariance matrix for the item parameters also define
a correlation between the item parameters from the level-1 models. This feature models the fact that more
difficult items typically require more time to complete than relatively easy items. The full covariance matrix
for the item parameters is given by

ap (a,b), (61
v, = a, (@,0), () ) .
! ( (4.0, (ab) DIFEN (8)

Oq Oab Oa,p Oa,)

Ob,a [og33 Ob,p  Ob,\ (9)
Oga O¢b T¢  OTg¢
OXxa OXb O)g X

As a hyperprior for (p;,X), a normal-inverse-Wishart distribution is chosen. That is,

2, ~ Inv—Wishart,, (Vi) (10)
HKr | EI ~ N(I“’0721/K‘)5 (11)

where v; and V7 are the degrees of freedom and scale matrix of the inverse Wishart distribution, p is the
prior mean and  the number of prior measurements.

A Beta prior is specified for the guessing parameter, ¢, where the default hyperparameter values are 2 and 6.
This leads to a prior proportion of guessing of 1/7 with a variance of .02.

The hierarchical structure induces a shrinkage estimation method for all measurement-model parameters. In
fact, the two covariance structures introduce a relationship between the RA and RT data. The simultaneous
estimation procedure includes the available collateral information about each of the parameters: The RTs
serve as collateral information that is used to estimate the parameters of the response model. Conversely,
RA are used as collateral information when estimating the parameters of the response-time model (van der
Linden et al., 2010).

Explanatory Variables
The multivariate models for persons and item parameters can be extended to include explanatoray variables.

Let X4 denote the predictors for the ability parameter and X for the speed parameter. The mean component
for the person parameters can be expressed as

ro = XgByg
pe = XBe

For the mean component of the item parameters a similar extension can be defined,



Ha = Xaﬁa

12— Xb,Bb-
pe = XoBy-
px = X\B,.

Explanatory information can be included to explain differences between persons and item characteristics.
Noninformative normal priors are defined for the regression parameters with a mean of zero and a large variance.
In the LNIRT software, the predictors for discrimination and time-discrimination are not implemented.

Estimation and Identification

Two-parameter IRT models are usually identified by fixing the mean and variance of the latent scale to zero
and one, respectively. Typically, this can be done directly by setting the prior mean, up and variance o3

equal to a fixed value, or by putting restrictions on the item parameters.

The joint model can be identified in the same way; the restrictions are now imposed on the mean vector
and a covariance matrix. For example, it is sufficient to set up = 0 and 03 =1, and [[, ¢r = 1. The first
restriction sets the mean of the speed and ability parameters equal to zero, which implies that the mean of
the time-intensity parameters of the items is equated to the mean log response times and the mean ability is
absorbed in the mean of the item difficulties, respectively. The prior for the covariance matrix is modified,
when elements of the covariance matrix are restricted. The inverse-Wishart distribution does not apply to a
restricted covariance matrix.

The proposed procedure is Bayesian estimation of all parameters through Gibbs sampling of their joint
posterior distribution. The procedure involves the division of all unknown parameters into blocks, with
iterative sampling of the conditional posterior distributions of the parameters in each block given the preceding
draws for the parameters in all other blocks (Fox, 2010).

Examples

A simulate data function (simLNIRT) can be used to generate data for the joint model. A few examples
can be given to illustrate the options. First, data are simulated for NV = 500 persons and K = 10 items,
where the correlation between abiltiy and speed is assumed to be .7. The remaining input are given their
default values, which means that the time discrimination is restricted to be 1, and no explanatory variables
are simulated. The variance of the ability and speed parameter is set to one.

Example: Log-Normal Response Times

library (LNIRT)

N <- 500

K <- 10

rho <- 0.7

data <- simLNIRT(N=500,K=10,rho=0.7)

The object data contains an object data$Y’, which is simulated according to the parameterisation in Equation
(1) and data3Y'1, according to Equation (2). Furthermore, objects data$3Y g and data$lg are created, which
are the corresponding simulated data objects with 10% guessing. The object data also contains simulated
resonse times on a logarithmic scale, data$RT, according to Equation (4), and data$RT1 according to
Equation (6).



The object data$theta contains the simulated persons parameters ability and speed, and the object data$ab
contains the simulated discrimination, difficulty, time discrimination, and time intensity parameters (column-
wise also in this order), respectively. The simulated measurement error variances are stored in the object
data$sigma2. The product of discriminations and time discriminations is set to one, and the mean of the
difficulty and time intensity parameters is set to zero.

The parameters of the response time model can be estimated using the LNRT function, which only considers
the log of response times as data input. The default states that time discriminations are estimated as well as
item-specific measurement error variances. When including the simulated data object, the summary report
will also report the true simulated parameter values.

XG <- 5000 #number of MCMC iterations
out <- LNRT(RT=data$RT,data=data,XG=5000)

#report output
summary (out)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Log-Normal RT Modeling, 2013, J.P. Fox
Summary of results

Time Discrimination Time Intensity

item EAP SD Sim item EAP

1 1.171 0.049 1.187 1 0.768 0.048
2 1.292 0.054 1.147 2 -0.012 0.053
3 0.969 0.053 0.936 3 0.841 0.052
4 0.680 0.059 0.707 4 -0.426 0.063
5 1.329 0.045 1.317 5 -1.111 0.040
6 0.687 0.039 0.756 6 -0.475 0.040
7 0.811 0.043 0.808 7 -0.058 0.045
8 1.172 0.040 1.197 8 1.330 0.036
9 0.784 0.041 0.760 9 0.284 0.041
10 1.492 0.045 1.515 10 -1.197

Mean and Covariance matrix Items (phi,lambda)

--- Population Mean Item ---
mu_phi SD mu_lam SD
1.033 0.349 -0.009 0.624

—-- Covariance matrix Items —---
phi SD Cov SD lambda SD
0.781 0.542 -0.045 0.786 4.417 2.593

Mean and Covariance matrix Persons

--- Population Mean Person ---
mu_P SD
0.00 0.04

—-- Covariance matrix Person --—-
Sigma_P SD
1.009 0.072

Measurement Error Variance
SD

.788
.013
.762
.368
.168
.467
.051
.407
.314
.040

Sim

O O OO KPP =

|
=

.140
.430
.370
.974
.791
.795
.001
.650
.835
.205

EAP

O OO O OO O O O o

.080
.100
.092
.127
.061
.053
.068
.051
.057
.802

O O O O OO - - K~ =

.120
.375
.280
.787
778
.828
.959
.755
.822
.064

Sim

0.749

The summary report provides for each item the time discrimination, time intensity, and measurement eror



variance estimates with the estimated posterior standard deviations. Subsequently, in Figure 1, the estimated
values are plotted against the simulated values. The object out$M AB contains the simulated parameter
values for the time discriminations and time intensities. The default burn-in period for the summary report
is set to 10% of the total number of MCMC iterations.

par (mfrow=c(2,1))

plot(apply (out$MAB[500:XG, ,1],2,mean) ,data$ab[,3] ,xlab="estimated",
ylab="simulated" ,main="Time Discrimination",bty="1",
pch=15,cex=.75,cex.main=.8,cex.axis=.7,cex.lab=.8,
ylim=c(min(data$ab[,3])-.5,max(datagab[,3])+.5),
xlim=c(min(data$ab[,3])-.5,max(data$ab[,3])+.5))

abline(0,1)

plot(apply (out$MAB[500:XG, ,2] ,2,mean) ,data$ab[,4] ,xlab="estimated",
ylab="simulated" ,main="Time Intensity",bty="1",
pch=15,cex=.75,cex.main=.8,cex.axis=.7,cex.lab=.8,
ylim=c(min(data$abl,4])-.5,max(data$abl[,4])+.5),
xlim=c(min(data$abl[,4])-.5,max(data$ab[,4])+.5))

abline(0,1)

The same simulation study can be done using the parameterization with the reciprocal of the standard
deviation of the measurement error as the time discrimination. Therefore, set WL = TRUE as the indicator
for this parameterization. When including the simulated data object, it will use the variable RT in that data
object.

set.seed(1234)

data <- simLNIRT(N=500,K=10,rho=0.7,WL=TRUE)
out <- LNRT(RT,data=data,XG=5000,WL=TRUE)
summary (out)

In Figure 2, the results are plotted in the same way, where the reciprocal of the squared estimated time
discriminations are plotted against the simulated measurement error variance.

par (mfrow=c(2,1))

plot(1/(apply(out$Msigma2[500:XG,],2,mean)) **2,data$sigma2,xlab="estimated",
ylab="simulated" ,main="Measurement Error Variance",bty="1",
pch=15,cex=.75,cex.main=.8,cex.axis=.7,cex.lab=.8,
ylim=c(min(data$sigma2)-.5,max(data$sigma2)+.5),
xlim=c(min(data$sigma2)-.5,max(data$sigma2)+.5))

abline(0,1)

plot(apply (out$MAB[500:XG, ,2] ,2,mean) ,data$ab[,4] ,xlab="estimated",
ylab="simulated" ,main="Time Intensity",bty="1",
pch=15,cex=.75,cex.main=.8,cex.axis=.7,cex.lab=.8,
ylim=c(min(data$abl,4])-.5,max(data$abl[,4])+.5),
xlim=c(min(data$abl[,4])-.5,max(data$ab[,4])+.5))

abline(0,1)

A residual analysis can be performed by including the argument residual = TRUE. At least 1000 MCMC
iterations are needed, since the residual analysis will only use the sampled values after 1000 iterations.

set.seed(1234)
data <- simLNIRT(N=500,K=10,rho=0.8)
out <- LNRT(RT=data$RT,data=data,XG=5000,residual=TRUE)

summary (out)

##
## Log-Normal RT Modeling, 2013, J.P. Fox
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Summary of results

Time Discrimination Time Intensity

item EAP SD Sim item EAP

1 1.384 0.042 1.357 1 1.550 0.036
2 0.675 0.045 0.747 2 1.917 0.046
3 0.811 0.035 0.809 3 -1.006 0.034
4 0.953 0.048 0.909 4 -0.124 0.050
5 0.866 0.047 0.861 5 0.432 0.049
6 0.885 0.035 0.878 6 0.410 0.034
7 1.365 0.053 1.416 7 -0.154 0.052
8 1.081 0.045 1.074 8 -2.084 0.045
9 0.957 0.039 0.924 9 0.008 0.038
10 1.291 0.051 1.265 10 -0.946

Mean and Covariance matrix Items (phi,lambda)
-—— Population Mean Item ---
mu_phi SD mu_lam SD
1.026 0.381 0.008 0.667
—--- Covariance matrix Items —---
phi SD Cov SD lambda  SD
0.795 0.668 -0.057 0.912 5.241 2.845
Mean and Covariance matrix Persons
--— Population Mean Person ---
mu_P SD
0.00 0.04
—--- Covariance matrix Person --—-
Sigma_P SD
1.000 0.072
*** Person Fit Analysis ***

Percentage Outliers Persons (5% level)

17
2.6 %
957 Posterior Probability: 2 %

*%*% JTtem Fit Analysis **x*

Misfitting Items (5% level)
No Misfitting Items

*%* Residual Analysis **x*
No Extreme Residuals

10

Measurement Error Variance
SD

.563
.848
.918
.155
.429
.349
.162
.059
.004
.051

Sim

OO rOFr P, OFO

|
o

.655
.065
.590
.232
.210
.592
.356
.991
. 746
.899

EAP

H O O OO OO OO Oo

.054
.071
.041
.083
.082
.042
.097
.069
.053
.292

QOO RrOrEPr OoORrOo

.697
.095
.630
.210
.235
.565
.325
.935
.817
.090

Sim

1.143



##  Kolmogorov Smirnov Test (5% level)
# 0%

Marianti et al. (2014) and Fox and Marianti (2017) developed a person-fit statistic to identify extreme RT
patterns. The test is referred to as the [Z, which is known to be chi-squared distributed given the model’s
parameter values. The object out$!Z P contains the estimated posterior probability to observe a more extreme
lZ value then the estimated value. This is a posterior predictive test. In the summary report, the percentage
of RT patterns with a posterior probability of significance of less than 5% is printed under the label [Z. The
object out$ EAPC P represents for each pattern the posterior probability that the pattern is flagged to be
extreme given significance level of 5%. In the summary report, the percentage of patterns flagged with a
posterior probability of more than 95% to be extreme is reported. It can be seen that around 2.6% of the
patterns have an estimated significance probability of less than 5%, and around 2% of the patterns were
flagged as extreme.

A significance posterior probability is also computed for each vector of RT observations, and the proportion
of items with a significance probability of less than 5% is reported. In the summary report, no items were
reported as misfitting. A standardized residual is computed and the proportion of residuals with a significance
probability of less than 5% is computed and reported. Finally, the Kolmogorov-Smirnov test is used to
compare the empirical distribution of the residuals to the normal distribution. The percentage of items
showing significant violations (i.e., significance probability is less than 5%) of normality is reported. In Figure
3, a plot of the estimated person-fit statistics with respect to the RT patterns against the corresponding
posterior significance probability can be given, where the extreme RT patterns are marked in red.

plot (out$1ZPT,out$1ZP,xlab=expression(paste(1[z])),
cex=.75,cex.main=.8,cex.axis=.7,cex.lab=.8,
ylab="Bayesian significance level",pch=1,bty="1")

set <- which(out$1lZP < .05)

points (out$1ZPT [set] ,out$1ZP [set],col="red",pch=16,cex=.75)

Finally, predictor variables can be simulated for the time intensities and the speed parameter. In the summary
report, the posterior mean regression effects and the posterior standard deviations are reported. The following
R-code shows the simulation of RT data with a predictor for time intensity and speed.

data <- simLNIRT(N=500,K=10,rho=0.7,kpt=1,kit=1)

out <- LNRT(RT=data$RT,data=data,XG=5000,residual=FALSE,XPT=data$XPT,XIT=data$XIT)

Example: Response Accuracy and Response Times

The simulated data object from simLNIRT also contains the accuracy data. The joint model can be fitted
by making a call to LNIRT. The default considers the two-parameter IRT model in Equation (1), with the
log-normal response time model represented in Equation (4), and the multivariate priors for the person and
item parameters.

set.seed(1234)
data <- simLNIRT(N=500,K=10,rho=0.8)
outl <- LNIRT(RT,Y,data=data,XG=5000)

summary (out1)

##
## Log-Normal RT-IRT Modeling, 2013, J.-P. Fox
## Summary of results

#i#
##  Item Discrimination parameter Item Difficulty parameter
## item EAP SD Sim item EAP SD Sim

11
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##
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Figure 3: Person-fit statistic for RT patterns against the posterior significance probability.
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## Mean and Covariance matrix Items (mu_a,mu_b,mu_phi,mu_lambda)

##

## -—— Population Mean Item ---

## mu_a SD mu_b SD mu_phi SD mu_lam SD
## 1.037 0.142 0.029 0.217 1.020 0.094 -0.002 0.267
##

## --- Covariance matrix Items (a,b,phi,lambda)---

#i Sigmal SD Sigmal Sigmal (Correlation)

## 0.129 0.080 0.009 0.014 0.087 0.123 0.043 0.192 1.000 0.280 0.093 0.032
## 0.080 0.634 0.080 -0.227 0.123 0.348 0.087 0.371 0.280 1.000 0.372 -0.231
## 0.009 0.080 0.073 -0.046 0.043 0.087 0.050 0.142 0.093 0.372 1.000 -0.138
## 0.014 -0.227 -0.046 1.523 0.192 0.371 0.142 0.889 0.032 -0.231 -0.138 1.000
#i#

##

##  Mean and Covariance matrix Persons (ability,speed)
##

## --- Population Mean Person (Ability - Speed)---
## muP SD

##  Ability 0.000 0.057

##  Speed 0.000 0.029

##

##  SigmaP SD SigmaP  SigmaP (Correlation)

## 1.018 0.783 0.093 0.065 1.000 0.771
# 0.783 1.012 0.065 0.069 0.771 1.000

The summary report provides the estimated and simulated values, since the simulated data object is also
given in the call. In the first block, the item parameter estimates of the IRT model are given, and in the
second block those of the RT model. Subsequently, the multivariate prior estimates are given.

The joint model in the parameterization of Equation (2) and (6) can be estimated by providing the argument
that parl = TRUE, and using the data objects Y1 and RT1;

outl <- LNIRT(RT1,Y1,data=data,XG=5000,par1=TRUE)

When the log-normal model needs to be parameterized with the time discrimination equal to the reciprocal
of the standard deviation of the measurement error, the argument W L = T RUE should be provided:

data <- simLNIRT(N=500,K=10,rho=0.8,WL=TRUE)

outl <- LNIRT(RT1,Y1,data=data,XG=2000,par1=TRUE,WL=TRUE)

Joint Model Evaluation Tools

When giving the argument residual=TRUE, a residual analysis is computed for the joint model, which
includes person- and item-fit tests for both patterns, residual estimates and posterior probability estimates of
extremeness of residuals, and the evaluation of distributional assumptions (Fox and Marianti, 2017).

set.seed(1234)
data <- simLNIRT(N=500,K=10,rho=0.7)
out <- LNIRT(RT,Y,data=data,XG=5000,residual=TRUE)

summary (out)

##

## Log-Normal RT-IRT Modeling, 2013, J.-P. Fox
## Summary of results

##
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SD
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mu_a
1.036

--- Covariance matrix Items (a,b,phi,lambda)---

Sigmal
0.118 0.082
0.082 0.627
0.009 0.082
0.014 -0.211

Mean and Cova

0.009
0.082
0.074
-0.055
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--— Population Mean

muP SD
Ability 0.000 0.055
Speed 0.000 0.033
SigmaP SD SigmaP
1.009 0.679 0.095 0.062
0.679 1.011 0.062 0.070

SD

mu_phi
0.213 1.

SD Sigmal

0.014
-0.211
-0.055
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Person (Ability - Speed)---

0.080
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matrix Persons
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SD
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mu_lam SD
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Sigmal (Correlation)
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SigmaP (Correlation)
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* k% k% *x

**%x Person Fit Analysis (Log-Normal Speed) #x*x
*okk *okk

Percentage Outliers Persons (57, level)
1Z

2.4 9

957, Posterior Probability: 2 %

*xx Ttem Fit Analysis **x

Misfitting Items (5% level)
No Misfitting Items

*xx Residual Analysis **x*
No Extreme Residuals

Kolmogorov Smirnov Test (5% level)

0%

Kok K%k

x** Person Fit Analysis (IRT Model For Ability) sx**
KAk KKk

Percentage Outliers Persons (5% level)
Log-likelihood Statistic

2.6 %

95%, Posterior Probability: 2.6 %

957, Posterior Probability (Ability and Speed): 0 %

¥k JTtem Fit Analysis **x*

Misfitting Items (5% level)
No Misfitting Items

*%* Residual Analysis **x*

Percentage Extreme Residuals (.95 Posterior Probability)

0.02 % (general average across persons and items)
Extreme Residuals
Person Item Response  EAP Theta

247 10 0 1.3879

Kolmogorov Smirnov Test (5% level)

70 % of items has non-normally distributed latent residuals

Item P-value
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Figure 4: Person-fit statistic for RA patterns plotted against the posterior significance probability.

## 1 0.011
## 2 0.001
## 4 0.002
# 6 0.040
#i# 7 0.000
## 8 0.000
## 10  0.000

The same diagnostic information is obtained about the response time model, since it is a component of the
joint model. In Figure 4, the estimated person fit statistic values for response accuracy patterns is plotted
against the posterior significance probability. The critical area is above the statistic value of 1.645, when
considering a significance level of .05. Response accuracy patterns with a statistic value higher than 1.645,
are located in the critical region.

plot (out$PF1l, out$PFlp,xlab=expression(paste(1[0])),ylab="Bayesian significance level",
pch=1,cex=.75,bty="1",ylim=c(0,1) ,yaxp=c(0,1,4) ,cex.axis=.7,cex.lab=.8,
cex.main=.8,main="Person Fit (Ability)")

setl <- which(out$PFlp < .05)

set2 <- which(out$EAPCP3 > .95)

points (out$PF1l[setl] ,out$PFlp[setl],col="red",pch=22,cex=.75)

points (out$PF1l[set2] ,out$PFlp[set2],col="blue",pch=17,cex=.95)

The speed-accuracy trade-off in the population can be investigated by plotting the estimated abilities against
speed for each set of simulated patterns of response time and accuracy, see Figure 5. The RT patterns marked
as aberrant are marked in the plot with a triangle. It can be seen that the relationship between speed and
ability in the population are not influenced by the aberrant observations.
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Figure 5: Ability plotted against speed for the non-aberrant and aberrant test takers given the person-fit
statistic for RT patterns

aberrant <-out$1lZP

aberrant [which(aberrant<.05)]<-2 ## group indicator aberrant
aberrant [which(aberrant != 2)]<-1 ## group indicator not aberrant
pch.list <- as.numeric(aberrant)

par (mar=c(4,5,3,4) ,xpd=F)

plot (out$Mthetal, 1] ,out$Mthetal,2] ,xlab=expression(paste(theta)),
ylab=expression(paste(zeta)),xlim=c(min(out$Mthetal,1]) ,max(out$Mthetal,1])),
ylim=c(min(out$Mthetal,2]) ,max(out$Mthetal,2])) ,bty="1",cex.axis=.7,cex.lab=.8,
cex.main=.8,pch=pch.list,col=pch.list,cex=.75)

abline(1m(out$Mthetal,2] ~out$Mthetal,1]))

abline(h = mean(out$Mthetal,2]),1lty = 2)

legend("topleft",c("Normal","Aberrant"),

horiz=FALSE,pch=c(1,2),col=c(1,"red"),cex=.6)

In Figure 6, the person-fit statistic for response patterns is plotted against the person-fit statistic for RT
patterns. For both statistics the threshold value of the significant area is marked with a dotted line. The
extremeness of each reponse accuracy and response time pattern can be quantified by computing how likely
it is that the pattern is flagged under the log-normal RT model and under the IRT model, respectively.
The patterns that have a posterior probability of .95 or higher of being extreme are flagged and they are
plotted with filled points. Notet that the probability of making a Type-I error is reduced, since the posterior
probability quantifies the extremeness of each RT pattern, instead of classifying the pattern based on a chosen
significance level (Fox and Marianti, 2017).

It can be seen that the aberrant patterns have a statistic value greater than the critical value. However, a
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Figure 6: Person-fit statistic for RA patterns plotted against the statistic for RT patterns.

few patterns have an estimated statistic value above the critical value but are not flagged as aberrant, since
the posterior probability that the pattern is extreme is less than 95%. More MCMC iterations can increase
the accuracy of the estimated significance and classification probabilities.

pch.list <- ifelse(out$EAPCP1 > .95,15,1) #flagged aberrant response accuracy

pch.list[which(out$EAPCP2 > .95)] <- 16 #flagged aberrant response times

pch.list [which(out$EAPCP3 > .95)] <- 17 #flagged for both patterns

par (mar=c(5,5,3,2), xpd=F)

plot (out$PF1l,out$1lZPT,xlab=expression(paste(1[0])),ylab=expression(paste(1[z])),
xlim=c(min(out$PF1l) ,max (out$PF1l)) ,ylim=c (min(out$1ZPT) ,max (out$1ZPT)) ,bty="1",
pch=pch.list,cex=.75,cex.main=.8,cex.axis=.7,cex.lab=.8)

abline(h = qchisq(.95, df= nrow(out$data$ab)),lty = 2,col="red")

abline(v = gnorm(.95),1ty = 2,col="blue")

The object out$ EAPCP1 represents the posterior probability of an extreme RT pattern, out$ FAPC P2

represents the posterior probability of an extreme accuracy pattern, and out$EAPCP3 represents the
posterior probability that the response time and accuracy pattern are extreme.
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Explanatory Variables for the Joint Models

Predictor variables can be included for the item (difficulty and time intensity) and person parameters (ability
and speed). Data can be simulated using simLNIRT function, where arguments kia and kit represent the
number of predictors for the difficulty and time intensity parameter, respectively. The arguments kpa and kpt
represent the number of predictors for the ability and speed parameter, respectively. In the simulated object,
objects XITA and XIT contain the simulated predictor variables for the difficulty and the time intensity
parameter, respectively. The objects X PA and X PT the predictor variables for speed and accuracy. As
an example, data are simulated with a predictor for the difficulty parameter, two for the time-intensity
parameters, one for the ability parameter, and one for the speed parameter. The R-code for this example is
given by;

set.seed(2224)

data <- simLNIRT(N=1000,K=50,rho=0.7,kpa=1,kpt=1,kia=1,kit=2)

outp <- LNIRT(RT,Y,data=data,XG=2000,XPA=data$XPA,XPT=data$XPT,XIA=data$XIA,XIT=data$XIT)

summary (outp)

##
## Log-Normal RT-IRT Modeling, 2013, J.-P. Fox
## Summary of results

##

##  Item Discrimination parameter Item Difficulty parameter

##  ditem EAP SD Sim item EAP SD Sim
#i#

## 1 1.126 0.065 1.133 1 0.397 0.050 0.455

## 2 0.872 0.058 0.817 2 1.071 0.059 1.124

## 3 0.746 0.047 0.866 3 -0.511 0.047 -0.516

# 4 0.992 0.057 0.921 4 -0.492 0.049 -0.406

# 5 1.201 0.068 1.250 5 0.057 0.050 0.014

## 6 0.769 0.050 0.773 6 0.653 0.050 0.643

# 7 0.943 0.060 0.988 7 -1.123 0.063 -1.124

## 8 0.848 0.053 0.788 8 -0.315 0.047 -0.302

# 9 0.841 0.0563 0.844 9 0.415 0.047 0.478

# 10 0.691 0.047 0.730 10 0.508 0.045 0.536
# 11 1.173 0.070 1.064 11 -0.372 0.052 -0.304
# 12 0.798 0.051 0.837 12 -0.379 0.049 -0.416
## 13 0.993 0.055 0.988 13 -0.113 0.047 -0.001
## 14 1.468 0.080 1.622 14 0.363 0.057 0.415
## 15 1.127 0.059 1.054 15 -0.580 0.052 -0.550
## 16 0.936 0.059 0.958 16 0.617 0.051 0.623
## 17 1.017 0.060 0.966 17 0.188 0.048 0.257
## 18 1.094 0.068 1.136 18 0.491 0.051 0.498
## 19 1.326 0.074 1.239 19 -0.383 0.053 -0.308
## 20 1.024 0.067 0.995 20 -0.699 0.056 -0.634
# 21 1.100 0.062 1.140 21 0.167 0.048 0.165
## 22 1.032 0.059 0.986 22 -0.145 0.047 -0.099
# 23 1.214 0.072 1.099 23 -0.697 0.059 -0.726
## 24 0.957 0.068 0.918 24 -0.480 0.049 -0.403
## 25 0.894 0.055 0.920 25 0.654 0.052 0.733
## 26 1.187 0.070 1.215 26 -0.497 0.054 -0.486
#0027 1.200 0.067 1.227 27 -0.318 0.049 -0.356
## 28 0.912 0.054 0.933 28 0.180 0.047 0.205
## 29 1.084 0.063 0.913 29 -0.736 0.058 -0.634
## 30 1.333 0.079 1.348 30 0.436 0.056 0.486
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Item Effects and Covariance matrix Items
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EAP SD
mu_a 1.019 0.029
mu_phi 1.019 0.029
Item Difficulty Predictor Effects
EAP SD Sim
Intercept -0.024 0.140
X1 -0.2566 0.474 -0
Time Intensity Predictor Effects
EAP SD Sim
Intercept -0.008 0.139
X2 -1.331 0.541 -1
X3 0.110 0.457 O

.021

--- Covariance matrix Items (a,b,phi,lambda)---
SD Sigmal

Sigmal

0.043 -0.018
-0.018 0.328
0.002 0.020
-0.009 0.053

0.002 -

0.009 0
0.053

0.359

Person Effects and Covariance

—--- Person Effects (Ability -
Ability Predictor Effects

EAP SD

X1 -1.032

S
0.068

im
-0.965

Speed Predictor Effects

EAP SD

S

im

0
0.034 0.
0

.010
.019
007
.022

O OO OO OO OO ODOODOOOOOOOoOOo

.039
.030
.029
.037
.028
.025
.035
.039
.026
.028
.038
.031
.030
.034
.039
.034
.031
.037
.041
.029

.118
.313
.152
.905
-0.679
-0.607

0.018
-0.801
-1.265

1.086
-0.734

1.170
-0.145
-0.639

0.021
.362

0.722
-0.653
.578
0.416

[y

o

Sigmal (Correlation)

0.019 0.007
0.076 0.018
0.018 0.009
0.054 0.021

0.022
0.054
0.021
0.089

1.000
-0.152
0.047
-0.072

matrix Persons (ability,speed)

Speed) -——
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.462
.001
.840
.262
.799
.641
.143
.478
.688
.T75
.364
.930
.968
.171
.498
.271
.935
.331
.672
.887

OFRr P ORRFPRPLOORFROOREPELOORORR

-0.152
1.000
0.170
0.154

.066
.047
.039
.059
.036
.030
.052
.066
.031
.036
.062
.043
.045
.053
.068
.056
.044
.061
.076
.040

O OO OO OO ODODODOODOOOOOOOoOOo

0.047 -
0.170
1.000
0.277

OFRr P OFRRPRFPLPOOFRLROOR,LEFL,LOOR O

0.072
0.154
0.277
1.000

.484
.022
.832
.225
.763
.681
.161
.490
.655
.770
.334
.970
.100
.057
.516
.261
.994
.383
.557
.860



## X 2 2.411 0.066  2.541

##

##  SigmaP SD SigmaP  SigmaP (Correlation)
#i# 1.018 0.698 0.052 0.040 1.000 0.691
##  0.698 1.001 0.040 0.045 0.691 1.000

It follows that the estimated predictor effects are given in the output together with the standard deviations.
The true simulated values are also given. The estimates of the predictor effects for the person parameter are
quite accurate with a posterior standard deviation of .07, since 1000 response patterns were simulated. The
estimated predictor effects for the item parameters show larger standard deviations (around .50), since only
50 items were considered. The standard regression plots can be made by considering the estimated item and
person parameters as outcomes of the regression.

When dealing with categorical predictors, dummy coded variables (also known as indicator or design variables
which take on values of zero or one) of the categorical (qualitative) predictors are needed to account for the
discrete nature of the observed predictor values. For predictors with more than two levels it is better to use
effect coding, where the dummy variable takes on values of one, zero or minus one. With effect coding, the
constant or baseline is equal to the grand mean of all of the observations. This will make sure that the scale
of the dependent variable is not affected by the scale of the predictor variable. As an example, consider a
predictor X for ability, which has a qualitative scale of three levels. Then, two dummy variables X; and
X5 are needed, and regurlarly they would be coded as X; =1 if X = 1, and zero otherwise, and X5 =1 if
X =2, and zero otherwise. Then, the mean of the latent ability scale is equal to the mean ability of the
baseline group, which are represented by those with X = 3. For reasons of intepretation or numerical reasons,
this might not be desirable. To restrict the population mean of the ability scale to zero, effect coding can be
used. In that case, X7 =1if X =1, X; = —1 if X = 3, and zero otherwise. In the same way, Xo = 1 if
X =2, Xo = —1if X =3, and zero otherwise. The effect of X; and X, are interpreted as the group effects
relative to the general mean.

The following code can be used to generate a qualitative predictor with three levels, which is represented by
two dummy variables using effect coding. Subsequently, the dummy coded variables are used as predictors to
simulate ability parameters. The LNIRT model is fitted to the simulated data.

#simulate categorical predictor for ability

kpa <- 1

XPA <- matrix(factor(sample(1:3,N,replace=TRUE)) ,ncol=kpa,nrow=N)
dummy1<- dummy2 <- rep(O,N)

dummyl [XPA==1]<- 1

dummy1 [XPA==3]<- -1

dummy?2 [XPA==2]<- 1

dummy?2 [XPA==3]<- -1

XPA <- cbind(dummyl,dummy2)

Ba <- matrix(rnorm(2),ncol=1,nrow=2)

## manipulated simLNIRT code to generate dummy predictors ##

set.seed(1234)

data <- simLNIRT(N=1000,K=10,rho=0.7,kpa=1)

outl <- LNIRT(RT,Y,data=data,XG=2000,XPA=data$XPA)
summary (out1)

The output concerning the estimated effects of the dummy coded predictors for ability are given in the figure
below. The estimated values correspond to the simulated values stored in object data$Ba. The effect of the
dummy coded variables are reported, but the effect of the group coded as minus one on both variables can
also be computed, including the posterior standard deviation:

mean (-out1$MmuP [500:XG, 1] -out1$MmuP [500:XG,2])

sqrt (var (~out1$MmuP [500:XG, 1] -out1$MmuP [600:XG,2]))
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When including predictor variables for ability, then the intercept for speed is also reported as a predictor
effect. In that case, the LNIRT program generates estimates for effects of the predictors for the multivariate
outcomes ability and speed. In this multivariate regression all variables (including the intercept) are reported
as predictor variables.

Person Effects and Covariance matrix Persons (ability, speed)

=== Person Effects (Ability - Speed)===
Ability Predictor Effects

EAP sD Sim
AL =0.6828 U.054 =0,625
A2 =0.573 U053 =0.532
Speed Predictor Effects
EAP sD Sim
A3 0.000 0.032
SigmaP 50 SigmaP SigmaP (Correlation)
1.038% 0.730 0.081 0.048 1.000 0.713
0.730 1.010 0.048 0.0581 0.715 1.000

Real Data Study

In Fox and Marianti (2017), a real data set (referred to as the credentialing data) concerning 1,636 test takers
who applied for licensure were analysed (Cizek and Wollack, 2016). The candidates made Form 1 of the test,
which consisted of 170 items, and their RA and RT data were stored. The collected data followed from a year
of testing using a computer-based program that tests continuously. Besides the RA information, background
information of each candidate was available, for instance, the country where the candidate received his/her
educational training, the state in which the test taker applied for licensure, and the center where the candidate
took the exam. The test takers were pretested using three different item sets. The average scores varied
significantly across the differently pretested groups.

In this study, RT and RA patterns of 1636 test takers were analyzed using the joint model. Fox and Marianti
(2017) only considered responses of those who were pretested with the same item set. The person-fit tests
were used to detect aberrant response behavior, without using any background information. The LNIRT
program was used to estimate all model parameters and to compute the person-fit statistics.

The joint model was identified by restricting the population means of ability and speed to zero and by
restricting the product of time discriminations and discriminations to one. The MCMC convergence diagnostics
were used to evaluate the convergence of the chains. According to the diagnostics, a burn-in period of 1,000
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iterations and a total of 5,000 MCMC iterations were made to estimate the model parameters. The object
out from a workspace contains the simulated parameter values.

The following call was made,

out <- LNIRT(RT=RT1,Y=Y{1,XG=10000,residual=TRUE)
summary(out)

and object out was stored in a workspace credential.Rdata

The estimated mean of the item difficulties is —.70 and the item difficulties vary with a variance of .27. The
estimated mean of the time intensities is around 4.00 and the time intensities vary with a variance of .11. It
can be seen that the range in item difficulties is relatively large, which gives support to accurate estimation
of test-takers’ ability. Item 159 and item 169discriminate poorly with a value of .15). There is a negative
correlation between the item discrimination and item difficulty. The variety in time discriminations is not
very high with a variance ofaround .05. The average population level of ability and speed was fixed to zero to
identify the scale.

The covariance and correlation estimates are given of the population parameters of the joint model. For all
test takers, it can be seen that the estimated correlation between ability and speed, when speed is constant,
is around .395. The positive correlation indicates that the high-ability test takers worked faster than the
low-ability test takers. The variation in speed values across test takers is around .027, which is rather small,
since the variation in time intensities is .11 and almost 5 times larger. Most of the variation between RTS is
explained by the differences in time intensities.

There exists a high correlation between item discrimination and time discrimination, and item difficulty and
time intensity, around .485 and .464, respectively. This means that the discriminating items with respect to
ability also discriminate well with respect to speed. The positive relation between the item difficulty and
time intensity means that the time-intensive items are the more difficult items.

The person-fit statistics to detect aberrant response behavior given response accuracy and responser times,
respectively, were computed. In Figure 7, the estimated person-fit statistic values are plotted against the
posterior probability of significance. The statistic values are chi-square distributed with 170 degrees of freedom,
under the joint model. Subsequently, the critical statistic value is 201.4, when the level of significance equals
.05. Estimated statistic values higher than 201.4 are located in the critical region. Given this significance
level, a total of 19.5% of the response time patterns are identified as aberrant. For the response accuracy
patterns, the critical area is above the statistic value of 1.645, when considering a significance level of .05.
Test takers with a statistic value higher than 1.645, are located in the critical region. In this study, around
1.4% are identified in the critical region and hence, are detected as persons with aberrant RA patterns.

The speed-accuracy trade-off in the population was investigated by plotting the estimated ability against the
speed values. In Figure 8, the relationship between speed and ability for the identified non-aberrant and
aberrant test takers is plotted. An aberrant group of test takers was identified according to the person-fit test
using response times (significance level of .05). It can be seen that both groups show a comparable positive
correlation between speed and ability. The aberrant RT patterns do not strongly influence the estimated
relationship between speed and ability.

In Figure 8, the person-fit statistic for response accuracy (x-axis) is plotted against the person-fit statistic
for response times (y-axis). For both statistics, the threshold value of the significant area is marked with
a dotted line. It can be seen that with respect to aberrant RT patterns, a serious number of test takers
are marked as aberrant, since their value is above the threshold of 201.4. A few test takers are marked as
aberrant with respect to their RA pattern, since their statistic value is above 1.645. Those marked as aberrant
with respect to their RA and RT pattern are represented by a triangle. Only 5 test takers are marked as
aberrant for both patterns. The plotted statistic scores concerning RT and RA patterns do not seem to be
related. In theory, this relationship is possible, since in the computation of the person-fit statistics structural
relationships between parameters are taken into account. Therefore, it would be possible that differences
between aberrant and non-aberrant patterns are explained by a relationship between speed and ability or by
a relationship between item characteristics.
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Figure 7: Person-fit statistic plotted against the corresponding posterior significance probability
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Figure 8: Ability plotted against speed for the identified non-aberrant and aberrant test takers.
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Discussion

The joint modeling of responses and RTs can be used to make inferences about ability and speed given
educational test data. The relationship between speed and ability provides information about the test taker
and items. It increasingly receives attention due to the increase in computer-based testing. To make correct
inferences from the joint model, statistical tests have been developed to evaluate the fit. The R-package
LNIRT can be used to fit the joint model for RTs and RA.

Bayesian significance testing is used to evaluate person fit for observed RT and RA patterns. The developed
person-fit statistics can be used to identify aberrant test takers with respect to their RT pattern or their
response pattern or both patterns.

In practice, aberrant response behavior can seriously diminish the validity of the test results and affect
test results of other test takers. Test companies and programs require advanced technology such as video
surveillance, but also seating charts and follow-up interviews, to prevent and detect inappropriate behavior
of test takers. They should support test integrity and actively prevent and detect fraudulent or deceptive
response behavior, since the test results can have important consequences for test takers. The tools for the joint
model can be used by test companies to analyze their test data and to identify statistical irregularities. The
person-fit tests can be used to detect inappropriate behavior by identifying patterns which show irregularities
and/or extreme responses and/or RTs.
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