
Supplement to “Person-Fit Statistics for Joint Models for Accuracy and Speed”  

A Bayesian residual analysis for the joint model is proposed. The residual statistics can 

be computed as by-products of an MCMC algorithm. In correspondence to a Bayesian joint 

modeling approach, Bayesian residual analysis are considered to evaluate the fit of the joint 

model. Following the procedure of Albert and Chib (1993) and Fox (2010), expressions are 

given to estimate residuals related to response accuracy (RA) patterns and response time (RT) 

patterns. Furthermore, the extremeness of each realized residual is evaluated by computing 

the posterior probability that it is greater than a certain threshold value.  

The normality assumption of each item’s RT residuals is evaluated using the 

Kolmogorov-Smirnov test. The empirical distribution is compared to the normal distribution 

and a Bayesian p-value is computed, which quantifies the extremeness of the violation of the 

normality assumption. The tools for model evaluation are also applied to the joint model with 

a three-parameter model for ability to account for guessing behavior. The fit statistics and 

computation of residuals are also applicable to this joint model. MCMC will be used for 

parameter estimation, which closely connects to the MCMC method of Klein Entink, Fox, et al. 

(2009) and Fox (2010), which are extended to handle guessing behavior. 

Residual Analysis 

 Albert and Chib (1995), Johnson and Albert (1999), and Fox (2010) considered Bayesian 

residuals to evaluate the fit of an IRT model. Their methods can be applied to the joint model 

(i.e, ). Latent residuals, ike , are considered, which represent the difference between the latent 

continuous response and the mean. These residuals are computed to identify extreme outliers 

and the total percentage of extreme outliers per item and per test taker. Following the 

procedure of Albert and Chib (1995), the expressions of the conditional expected latent 

residuals is given by 
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The extremeness of a latent residual is computed by the posterior probability that the latent 
residual is greater than a specific threshold r. It follows that 

  
 

 
0, , ,

1
ik ik k k i

k i k

r
P e r Y a b

a b




 
  

 
  (S3) 

and 

  
 

 
1, , ,ik ik k k i

k i k

r
P e r Y a b

a b




 
  

 
.  (S4) 



 

Next, the log-RT residuals, ik , are considered, which represent the difference between the 

RT and the mean. The extremeness of the RT residual can be expressed as the posterior 

probability that the residual is greater than a threshold q. In the same way, it follows that,  
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where  *

ik ik k k irt      . The extremeness of the latent residuals and RT residuals are 

computed as by-products of the MCMC algorithm for the joint model, thereby accounting for 

relationships between the joint model parameters.  

Evaluating Distributional Assumptions 

 The fit of the distribution of the RT residuals can be evaluated using the Kolmogorov-

Smirnov test (KS test). This is a non-parametric test that is used to compare the empirical 

distribution of the residuals for each item to the assumed normal distribution. The distance 

between the distribution of the realized residuals and the normal cumulative distribution 

function is evaluated in each MCMC iteration. Under the null hypothesis, the RT residuals are 

assumed to be normally distributed, and a significant statistic value shows evidence for non-

normally distributed RT residuals. In theory, the KS test could also be applied to evaluate the 

normality assumption of the latent residuals. However, this application of the KS test does not 

have power, since the latent residuals already depend on simulated normally distributed 

responses. 

The KS test is used as a Bayesian goodness-of-fit-test by computing the marginal posterior 

probability that each vector of item residuals is non-normally distributed. For the computed 

residuals of item k of n test-takers, the empirical distribution is given by 
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where  *

ik ik k k irt      and  .I , the indicator function, equals one when ik   and 

zero otherwise. The KS test statistic is given by, 
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The distribution of nD  is the Kolmogorov distribution and the nD converges to zero when the 

residuals are normally distributed. Subsequently, the posterior significance probability is 

computed in each MCMC iteration,  
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where the average significance probability over MCMC iterations is used as an estimate of the 

marginal posterior probability that the residuals of item k are non-normally distributed. 



Simulation Study 

 The simulated RTs under the joint model were manipulated to simulate positively 

(right-) skewed RT errors. Therefore, Gamma distributed noise (with different shape and rate 

parameters) was added to the simulated log-normally distributed RTs for items 1 to 5 of a 20-

item test. Three conditions were considered for the Gamma distributed noise. For each 

condition, a shape parameter of 2 was specified, but the rate parameter was different and 

equaled 1 (distributed noise with mean 2 and variance 2), 1.25 (distributed noise with mean 

1.6 and variance 1.28), or 1.5 (distributed noise with mean 1.33 and variance .89). The 

positively distributed errors led to positively skewed RT distributions.  

 A total of 50% Gamma distributed noise was added to the RTs of item 1, 33% to item 

2, 25% to item 3, 20% to item 4, and 17% to item 5 for the 1,000 persons. The posterior 

probability of non-lognormally distributed residuals was computed for each item and each 

specification of the Gamma distribution of added noise. The joint model with time 

discriminations equal to one was used to simulate the RA and RT data. This joint model was 

also estimated given the RA and RT data with positively skewed distributed noise.    

 The detection rates of non-normally distributed item residuals were computed for 100 

replicated data sets using a significance level of .05 using Equation (S8). The estimated 

detection rates for the 5 items and the three noise conditions are given in Table S1.  

 The detection rates were around 1 for all items when the added noise was distributed 

with a rate parameter of 1. The added Gamma distributed noise was larger than the normally 

distributed errors under the model leading to a violation of normality. When increasing the 

rate parameter of the Gamma distributed noise the detection rates are decreasing. When the 

percentage of added noise is smaller than 33%, the detection rates decreased for decreasing 

percentages of noise added. The item residuals of the remaining items 6 to 20 did not show 

significant violations of normality, since for these items the logarithm of RTs were generated 

from normal distributions.    

 

 

 

 

 

 

 

 



TABLE S1 
Performance of the KS test in identifying non-normally distributed item residuals. The reported 
detection rates are based on one hundred replications using a significance level of .05. 

Item % 

Gamma ( ,  ) 

2, 1    2, 1.25    2, 1.5    

1 50 1 0.91 0.68 

2 33.33 1 0.89 0.68 

3 25 0.98 0.88 0.58 

4 20 0.99 0.76 0.49 

5 16.67 0.94 0.64 0.45 

 

Real Data Analysis 

The joint model was fitted to a real data set of Cizek and Wollack (2016), referred to as the 

credentialing data, concerning 1,636 test takers who applied for licensure. The KS test was 

used to check the normality assumption of the RT item residuals. It followed that for 18 of the 

170 items (around 11%) the normality assumption was rejected with a significance level of 

.05, where the p-values ranged from .000 to .042. The extremeness of the residuals was 

investigated, using Equation (S5), with q equal to 2. Around 12.3% of the standardized 

residuals were considered extreme, which partly explained the non-normality residual 

distribution of the 18 items. For most of the identified extreme residuals, the observed RT was 

larger than 200s and ranging to 612s, where 128s was the highest population-average 

response time. It was concluded that the log-normal distribution failed to include this 

relatively high percentage of extreme RTs since the tails of the log-normal distribution were 

too flat.  

 The extremeness of the latent residuals was also investigated, using Equation (S3) and 

Equation (S4), where r=2. Around 1.9% of the latent response residuals were marked as 

extreme. These residuals corresponded to incorrect responses of high-ability test takers (with 

an ability level around 0.5) to easy items (with a difficulty level below -1). 

It can be concluded that the residual statistics concerning both patterns can be used to 

evaluate the fit of the joint model. The residuals and residual statistics are easily computed as 

by-products of the MCMC algorithm. The KS test, based on the realized residuals, showed 

good performance to identify non-normally distributed RT item residuals. The KS test was used 

as a Bayesian significance test, where the posterior probability of an extreme KS test statistic 

was computed. Other residual statistics can be considered to further develop Bayesian 

significance testing for the joint model. 
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