
Longitudinal Multiple-Group IRT Modeling:
Covariance pattern selection using MCMC and
RJMCMC

Caio L. N. Azevedo
Department of Statistics,
State University of Campinas,
Campinas, SP, Brazil
Fax: +55 19 3521-5921. E-mail: cnaber@ime.unicamp.br

Jean-Paul Fox

Department of Research Methodology, Measurement and Data Analysis,
University of Twente,
Enschede, Netherlands

Dalton F. Andrade

Department of Informatic and Statistics, Federal University of Santa
Catarina, Florianópolis, Brazil

Abstract: Longitudinal studies in Psychometric assessment are often focused on
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social level). The corresponding type of data can be characterized aslongitudinal
multiple-group item responses. For this type of data, a longitudinal multiple-
group IRT (LMGIRT) model is proposed, where group-specific dependencies
between latent traits can be modeled using the appropriate covariance structure.
The multiple-group specification together with the developed MCMC-based
algorithms make it possible to handle the scaling process simultaneously with
the estimation of latent traits, item and population parameters. Also, a reversible-
jump MCMC (RJMCMC) algorithm is proposed for joint parameter estimation
and covariance matrix selection for a single-group longitudinal IRT model. The
MCMC-based algorithms can handle identification rules, scaling issues and
selection between restricted covariance structures. Simulation studies reveal that
not only all parameters are accurately recovered, but also the correct underlying
covariance pattern model is selected. Two real data sets are used to illustrate the
longitudinal IRT models and the MCMC algorithms for estimation and model
fit assessment. One study concerns the health condition of Dutch studentsfrom
AGHLS (Amsterdam Growth and Health Longitudinal Study) and the other study
a longitudinal research program of the Brazilian federal government.
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1 Introduction

Longitudinal studies in Psychometric assessment are oftenfocused on measuring traits
of subjects who are clustered in different groups (e.g., gender, grade, social level). The
corresponding type of response data can be characterized aslongitudinal multiple group item
responses. For analyzing multiple group response data the multiple group model (MGM)
proposed by Bock and Zimowski (1997) offers a unified approach to handle different aspects
of interest. A fully Bayesian framework, including parameter estimation and model fit
assessment of the MGM, was recently developed by Azevedo et al. (2012). Furthermore,
Azevedo et al. (2014) developed a longitudinal (single-group) IRT (LIRT) model, which
extends in several directions the longitudinal IRT models of Andrade and Tavares (2005)
and Tavares and Andrade (2006), for a homogeneous group of respondents.

A longitudinal multiple-group IRT (LMGIRT) model is proposed, to model longitudinal
item response data of respondents who are clustered in higher level units. The LMGIRT
model and MCMC estimation method make it possible to handle the scaling process
simultaneously with the estimation of latent traits, item and population parameters, allowing
different dependency structures for the different groups of respondents. The modeling
framework was motivated by combining the modeling approaches of Azevedo et al. (2014)
and Azevedo et al. (2012). The LMGIRT model ensures that student performances across
groups are measured on the same scale, while the dependencies in each group are modeled
using the appropriate covariance structure. The entire estimation process can be carried out
by an efficient MCMC algorithm.

For the LIRT model, the selection of the appropriate covariance structure would
require fitting several competing models with different covariance structures. Subsequently,
a model-comparison method is required to identify the optimal higher-level covariance
structure among the competing models. This complex two-stage procedure can be optimized
by including the selection of the optimal covariance pattern model in the MCMC algorithm.
Therefore, a reversible-jump MCMC (RJMCMC) algorithm has been developed to estimate
simultaneously all LIRT model parameters including the selection of the covariance matrix.

For both models, the LIRT and the LMGIRT models, simulation studies show that with
the developed MCMC-based algorithms all parameters can be accurately recovered and that
the correct underlying covariance model can be identified with the RJMCMC algorithm. In
addition, the studies show that the LMGIRT modeling approach avoids the use of the LIRT
model with a posterior equating approach to relate measurements of subjects from different
groups to each other.

This paper is outlined as follows. After introducing the Bayesian LMGIRT model, the
MCMC algorithms are presented, which can handle group-specific covariance structures
for the latent variable distribution. Then, a reversible-jump MCMC algorithm is presented,
which handles the selection of the appropriate covariance structure, together with the
estimation of the model parameters. Then, three simulationstudies are given to show
the performance of the MCMC and RJMCMC algorithm for the LMGIRT and LIRT
models, respectively, and to show the comparison of the LMGIRT model with the LIRT
model combined with a posterior equating approach. Subsequently, data from the AGHLS
(Amsterdam Growth and Health Longitudinal Study) and a Brazilian longitudinal research
study are analyzed. In the last section, the results and somemodel extensions are discussed.
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2 The Model

One or more tests are administered to subjects clustered into different groups, which are
followed along several time-points. The subjects are randomly selected at the first time-
point from their respective groups. Subjects are measured at different time-points, which
can be related to different grades or different months in a grade year, for example. At each
measurement occasion, the groups of subjects can, for example, represent different grades,
different genders and different geographic regions. Dropouts or inclusion of subjects during
the study are allowed (even though we will treat only the complete data case). At each
time-point t, t = 1, ..., T , a test ofIkt items, from a total ofI ≤

∑K
k=1

∑T
t=1 Ikt items,

is administered to each groupk (k = 1, ...,K) of nkt subjects. Here, a complete data case
is assumed,nkt = nk, ∀k. Across measurement occasions common items are used, which
defines an incomplete test design, see Montgomery (2004). For example, for three tests,
each of 20 items, a configuration of an incomplete test designwould be where test one and
two have five common items, and test two and three six common items.

Let θjkt denote the latent trait of subjectj of groupk at time-pointt, by ζi the vector
of parameters of itemi, by ηθk the vector with the population parameters of groupk (i.e.,
the population means, variances and correlation parameters), and byYijkt the response to
item i of examineej of groupk at time-pointt. Then, the general model for longitudinal
multiple group item response data is given by:

Yijkt | (θjkt, ζi) ∼ Bernoulli(Pijkt)

Pijkt = P (Yijkt = 1 | θjkt, ζi) = Φ(aiθjkt − bi) (1)

θjk.|ηθk ∼ NT (µθk ,Ψθk), (2)

whereθjk. = (θjk1, ..., θjkT )
t, Φ(.) stands for a cdf of the standard normal distribution,

ζi = (ai, bi)
t and NT (µθk ,Ψθk), k = 1, 2, ...,K, denotes a T-dimensional normal

distribution with mean vectorµθk and covariance matrixΨθk , where

µθk =




µθk1

µθk2

...
µθkT


 ,Ψθk =




ψθk1
ψθk12

. . . ψθk1T

ψθk12
ψθk2

. . . ψθk2T

...
...

. ..
...

ψθk1T
ψθk2T

. . . ψθkT


 , (3)

ηθk = (µtθk , v(Ψθk)
t)t, v(Ψθk) = vecd(Ψθk) andvecd(.)stands for the different elements

of Ψθk . Note that a multivariate normal distribution with a flexible variance-covariance
structure is considered to model the within-subject latenttrait dependencies. A total of
K T (T+1)

2 parameters need to be estimated for the unstructured covariance model in each
group.

An important assumption is the measurement invariance of the items. Measurement
invariant items will function in the same way over groups andoccasions (time-points), see
Millsap (2010). The LMGIRT model will assume that the commonitems are measurement
invariant. This assumption, within the IRT framework, is related to differential item
functioning (DIF) and item parameter drift, see Bock and Zimowski (1997). Here, it will be
assumed that the assumption of measurement invariance holds for the common items. This
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aspect certainly deserves more investigation, but is beyond the scope of the present paper.
The LMGIRT model extends the multiple-group model of Bock and Zimowski (1997), and
it offers, in the context of longitudinal response data, a unified approach to handle different
aspects of interest (differential item functioning, groupspecific latent trait distribution, item
parameter drift, nonequivalent groups equating among others).

2.1 Unstructured covariance matrix with identification restrictions

To identify the latent scale, a reference group is required.Therefore, the mean and variance
of the latent variable distribution at the first time-point of the reference group (i.e., the first
group measured at the first occasion) will be fixed to zero and one, respectively. Furthermore,
an incomplete test design is used such that common items are administered to different
groups at different measurement occasions. The incompletetest design defines a common
latent scale across measurement occasions and groups.

The restrictions on the parameters of the latent trait distribution complicates the
specification of priors. In the proposed latent variable framework, the prior modeling
approach developed by Azevedo et al. (2014), based on the work of McCulloch et al.
(2000), to account for a restricted covariance structure, will be extended in order to
accommodate multiple groups. Besides the identifiability restrictions for the reference
group, the reparameterization presented in the Appendix 7.2, which also includes the details
of this approach, will be useful to handle restricted covariance matrices for all groups.

2.2 Restricted Covariance Pattern Structures

By correctly modeling the correlation among the latent traits across measurement occasions,
more accurate statistical inferences can be made. A time-heteroscedastic covariance
structure can be considered to describe more complex patterns over time, where population
variances of measurements can differ over time-points. A more parsimonious modeling
of the group-specific covariance structures will decrease the number of parameters to
be estimated, which can be estimated more accurately, especially in the presence of
the multiple groups. In the simulation and real data studies, four of the most important
covariance structures used in longitudinal data modeling are considered: the heteroscedastic
uniform model (HU), the heteroscedastic toeplitz model (HT), the first-order heteroscedastic
autoregressive model (ARH), and the first-order heteroscedastic autoregressive moving-
average model (ARMAH). The structures of the matrices ARH, ARMAH and UH are
presented in Appendix 7.1. A brief overview of other covariance structures can be found in
Azevedo et al. (2014) and Tavares and Andrade (2006).

3 Bayesian inference and MCMC estimation

First, an MCMC algorithm for the LMGIRT (longitudinal multiple group) model is
presented, where the covariance matrix for each group is defined in advance. Second, an
RJMCMC algorithm for selecting the covariance matrix of theLIRT model is presented.
More technical details are given in the Appendix (subsections 7.2, 7.3 and 7.4).
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3.1 LMGIRT model: MCMC Algorithm

A full Gibbs sampling (FGS) algorithm is developed to estimate simultaneously all
parameters. The MCMC algorithm can be used to obtain values from the marginal posteriors
of the model parameters. Subsequently, inferences can be made from the sampled parameter
values, see Gamerman and Lopes (2006).

This approach is an extension of the algorithm discussed by Azevedo et al. (2014) who
considered one group of respondents. A review on MCMC methods for longitudinal and
multivariate probit models is given by Azevedo et al. (2014). The idea is to define sets
of augmented data (Z), following the data augmentation procedure of Albert (1992) and
Azevedo et al. (2014), and to define indicator variables (V ) and (I) which handle the not-
selective missing responses due to uncontrolled events andthe incomplete block design,
respectively. For a more thorough discussion the reader is referred to Azevedo et al. (2014)
and for technical details see subsections 7.2 and 7.3. Here,the sequence of steps related to
the MCMC algorithm are given below. Let (.) denote the set of all necessary parameters.
Then, the full Gibbs sampling algorithm is defined as follows:

1. Start the algorithm by choosing suitable initial values.

Repeat steps 2–10.

2. SimulateZijkt from Zijkt | (.), t = 1, .., T, i = 1, ..., Ikt, j = 1, ..., nk, whereIkt is
the set of items that compose the test applied to groupk at the time-pointt.

3. Simulateθjk. from θjk. | (.), j = 1, ..., nk, k = 1, ...,K.

4. Simulateζi from ζi | (.), i =1,...,I.

5. Simulateµθk fromµθk |(.), k = 1, ...,K.

6. Simulateψθk1
fromψθk1

| (.), k = 1, ...,K.

7. Simulateψ∗
k fromψ∗

k | (.), k = 1, ...,K.

8. SimulateΨ∗
k fromΨ

∗
k | (.), k = 1, ...,K.

9. Compute, for each group, the unstructured covariance matrix using the sampled
covariance components from Steps 6-8 and Equations (8), (9)and (13)

10. Through a parameter transformation method using sampled unstructured covariance
parameters, compute restricted covariance components of interest, for each group. The
sampled restricted covariance structuresΨθk , k = 1, ...,K are used when repeating
steps 2–8.

Appendix 7.2 shows how to handle the restrictionsµθ11 = 0 andψθ11 = 1. Specifically,
the expression in Equation (10) is used to simulateµθ1(1) . Therefore, to simulate
(µθ11 , ψθ11)

t, the following decomposition is used (In Appendix 7.3, Equation (25)),

p(θj1.|ηθ1) = p(θj1(1)|ηθ1 , θj11)p(θj11|ηθ11),

whereηθ11 = (µθ11 , ψθ11)
t. To identify the model, the scale of the latent variable for the

reference group (in this case, the first time-point of the thefirst group) is transformed to
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mean zero and variance one. It is also possible to restrict the parameters(µθ11 , ψθ11)
t to

other values.
In Step 9, MCMC samples ofΨ∗

k are drawn from an inverse-Wishart distribution, and
each sampled covariance matrix is restricted to be positivedefinite. When considering the
following relationship,

det(Ψθk) = det(ψθk1
)det

(
Ψθk(1)

− ψ−1
θk1
ψθk(1)

ψ
t

θk(1)

)
= ψθk1

det(Ψ∗
k),

k = 1, ...,K, using Equations (8) and (11), it can be seen that positive definite samples of
Ψθk are obtained. When using a property of the determinant of block matrices, it follows
that the determinant ofΨθk is greater than zero, since both the determinant ofΨ

∗
k andψθk1

are greater than zero.
In each MCMC iteration, parameters of a specific covariance pattern (for each group)

are computed using sampled unstructured covariance parameters. Each covariance pattern
is nested in the most general unstructured pattern. Therefore, in MCMC Step 10, parameters
of a specific covariance structure are computed. Each simulated covariance matrix will be
positive definite, since it is based on a positive definite unstructured covariance matrix. This
whole process is carried out for each group.

3.2 RJMCMC for covariance matrix selection

One of the most important issues concerning longitudinal data analysis is the choice of
the most appropriate covariance matrix. For IRT models, theMCMC algorithms require
a large amount of computational time. Therefore, it is important to consider an efficient
mechanism of covariance structure selection. It is computationally cumbersome to estimate
different models, considering different types of covariance matrices for each group, and
choose the best one by using information criteria such as theBIC and DIC, see Azevedo
et al. (2014). Also, as pointed out by these authors, these statistics did not provide good
results. Instead, it would be preferable to select the most appropriate covariance structures
while estimating the model parameters. The RJMCMC algorithm allows selecting optimal
covariance structures, while sampling the model parameters from the marginal posterior
distributions, see Green (1995).

To ease the notation, we will consider two possible covariance matrices, the ARH and
the ARMAH and one group of respondents. In fact, we have implemented only these two
covariance matrices, for the RJMCMC algorithm. However, this procedure can be extended
to more covariance pattern models. The idea is to include an additional step in the MCMC
algorithm presented in subsection 3.1, which performs the covariance pattern selection. Let
(.) denote the set of all necessary parameters. Then, the RJMCMC algorithm is defined as
follows:

1. Start the algorithm by choosing suitable initial values.

Repeat steps 2–11.

2. SimulateZijt fromZijt | (.), t = 1, .., T, i = 1, ..., It, j = 1, ..., n, whereIt is the set
of items that compose the test applied at the time-pointt.

3. Simulateθj. from θj. | (.), j = 1, ..., n.



Long. Multiple-Group IRT Model.: Covar. pattern selection 7

4. Simulateζi from ζi | (.), i =1,...,I.

5. Simulateµθ fromµθ|(.).

6. Simulateψθ1 fromψθ1 | (.).

7. Simulateψ∗ fromψ∗ | (.).

8. SimulateΨ∗ fromΨ
∗ | (.).

9. Compute the unstructured covariance matrix using the sampled covariance components
from Steps 6-8 and Equations (8), (9) and (13) (considering only one group).

10. Through a parameter transformation method using sampled unstructured covariance
parameters, compute the current restricted covariance matrix (selected in the previous
MCMC iteration.)

11. Select the covariance matrix using the steps presented in subsection 7.4.

4 Simulation studies

The parameter recovery and model selection procedure were analyzed using simulated
data. In the first study, we explore a longitudinal multiple group structure with predefined
covariance matrices for each group. In the second study, we consider a single group
longitudinal study where the covariance matrix will be selected using the RJMCMC
algorithm. In the third study, we compare the LMGIRT model with the LIRT model
combined with a posterior equating technique.

The usual tools (traceplots, Geweke and Gelman-Rubin statistics) for monitoring
MCMC convergence are used. A burn-in of 16,000 iterations are considered, a thin of 30
iterations and a total of 46,000 iterations are simulated, which produce a valid sample of
size 1,000. For RJMCMC, the total number of iterations was set at 47,000 in order to
obtain a valid sample of approximately 1,000 iterations. Different statistics were used to
compare the results: mean of the estimates (M. Est.), correlation (Corr), the absolute bias
(ABias), variance (Var), and the root mean squared error (RMSE). Letϑl be an element
of (θjkt, ai, bi, ηθkt

)t, wherel is a convenient index or a combination of them (i, t, jt, kt,

jkt) andϑ̂lr its respective estimate obtained in the replicar, r = 1, ..., R. Define alsôϑl =
1
R

∑R
r=1 ϑ̂lr. The aforementioned statistics are, Corr: correlation betweenϑ̂l andϑl, Bias:

(
ϑ̂l − ϑl

)
, Var: 1

R−1

∑R
r=1

(
ϑ̂lr − ϑ̂l

)2
, RMSE:

√
1
R

∑R
r=1

(
ϑ̂lr − ϑl

)2
. To evaluate the

accuracy of the MCMC estimates, a total of ten replicated data sets were generated, based
on Azevedo and Andrade (2010) and De Ayala and Bolesta (1999). For the item and latent
trait parameters, average statistics were computed by averaging across data sets, items and
persons.

4.1 Parameter recovery of the longitudinal multiple-groupstudy

In this study, two groups were assessed at three occasions. For the first group (for which
the first time-point corresponds to the reference group), the latent means wereµθ1 =
(0.0, 1.0, 2.0)t, which imply growth in mean latent averages. Furthermore, aheteroscedastic
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Toeplitz matrix withψθ1 = (1.00, 0.90, 0.95)t was assumed, which imply a decrease and
then an increase in the variability, withρθ1 = 0.6, which implies a moderate magnitude
for the between-time correlations. For the second group, the latent means were set to
µθ2 = (0.2, 1.3, 2.5)t and an ARMAH matrix was assumed withψθ2 = (0.90, 0.80, 0.85)t,
with ρθ = 0.80 and γθ = 0.88. These values induce similar behavior for the second
group compared with the first group. Furthermore,nk = 1, 000; k = 1, 2, latent traits were
simulated according to appropriate three-variate normal distributions. Following DeMars
(2003), the sampled latent traits were transformed to the scale of the simulated latent traits
using,

θ∗∗jk. = Chol (Ψθk)Chol (Sθk)
−1 (

θ∗jk. − θk
)
+ µθk ,

where θ∗jk. are the simulated latent traits,θk and Sθk the sampled mean vector and
covariance matrix of groupk, respectively, andCholrepresents the Cholesky decomposition.
Finally, Table 1 represents the values of the item parameters and the structure of the adopted
incomplete test design. For example, item 1 appears in tests1 and 4, and so forth. Tests
1, 2 and 3 were administered to the first group at time-points (measurement occasions) 1,
2 and 3, respectively. Similarly, tests 4, 5 and 6 were administered to the second group at
measurement occasions 1, 2 and 3, respectively.

Table 1 Test structures (linked test design) and item parameter values for the multiple group
longitudinal study

Item Test(s) a b Item Tests a b Item Test(s) a b
1 1-4 0.8 -2.0 37 2-3 1.2 1.3 73 4-5 1.4 0.0
2 1 1.1 -1.8 38 2-3 1.3 1.4 74 4-5 0.8 0.2
3 1 1.4 -1.6 39 2-3 1.4 1.6 75 4-5 1.1 0.4
4 1 0.8 -1.4 40 2-3 0.8 1.8 76 4-5 1.4 0.6
5 1 1.1 -1.2 41 2-3 1.1 2.0 77 4-5 0.9 0.8
6 1-4 1.4 -1.0 42 2-3 1.4 2.1 78 4-5 1.2 1.0
7 1 0.8 -0.8 43 3-6 1.3 0.0 79 5 0.9 -0.6
8 1 1.1 -0.6 44 3 1.0 0.2 80 5 1.3 2.2
9 1 1.4 -0.4 45 3 1.1 0.4 81 5 1.0 2.4
10 1-4 0.8 -0.1 46 3 1.2 0.6 82 5 1.3 0.8
11 1-4 0.9 1.0 47 3 1.3 0.8 83 5 1.0 1.2
12 1 1.2 1.2 48 3-6 1.4 1.0 84 5 1.1 1.1
13 1 1.4 1.4 49 3-6 0.9 1.2 85 5-6 1.2 1.3
14 1 1.0 1.6 50 3 1.0 1.4 86 5-6 1.3 1.4
15 1 1.1 1.8 51 3-6 1.1 1.6 87 5-6 1.4 1.6
16 1-4 1.4 2.0 52 3 1.2 1.8 88 5-6 0.8 1.8
17 1 0.9 0.8 53 3 0.8 3.4 89 5-6 1.1 2.0
18 1-4 1.1 0.0 54 3 1.1 2.2 90 5-6 1.4 2.1
19 1-2 1.4 0.0 55 3-6 1.4 2.1 91 6 1.0 0.2
20 1-2 0.8 0.2 56 3 0.9 2.3 92 6 1.1 0.4
21 1-2 1.1 0.4 57 3 1.2 3.0 93 6 1.2 0.6
22 1-2 1.4 0.6 58 3 1.3 2.6 94 6 1.3 0.8
23 1-2 0.9 0.8 59 3 1.1 2.8 95 6 1.0 1.4
24 1-2 1.2 1.0 60 3-6 1.4 3.8 96 6 1.2 1.8
25 2-5 1.3 -0.8 61 4 1.1 -1.8 97 6 0.8 3.4
26 2 0.9 -0.6 62 4 1.4 -1.6 98 6 1.1 2.2
27 2-5 1.2 -0.4 63 4 0.8 -1.4 99 6 0.9 2.3
28 2-5 1.3 -0.2 64 4 1.1 -1.2 100 6 1.2 3.0
29 2-5 1.0 0.0 65 4 0.8 -0.8 101 6 1.3 2.6
30 2-5 1.2 2.0 66 4 1.1 -0.6 102 6 1.1 2.8
31 2 1.3 2.2 67 4 1.4 -0.4 - - - -
32 2 1.0 2.4 68 4 1.2 1.2 - - - -
33 2 1.3 0.8 69 4 1.4 1.4 - - - -
34 2-5 1.2 1.0 70 4 1.0 1.6 - - - -
35 2 1.0 1.2 71 4 1.1 1.8 - - - -
36 2 1.1 1.1 72 4 0.9 0.8 - - - -
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The following hyperparameter settings were used in the simulation study (see equations
(15)-(18)):

Ψk = τkIT−1 (4)

ΨΨk
= (νΨk

− T + 1) (IT−1 −Ψk) , (5)

whereIT−1 stands for an identity matrix of orderT − 1, νΨk
= 5, τk = 1/8, k = 1, 2,

and the hyperparameters for the item parameters were specified as:µζ = (1, 0)⊤, Ψζ =
diag(0, 5, 3),µ0k = (0, 0, 0)t,Ψ0k = diag(2, 2, 2), andp(ψθk1

) ∝ 11(0,∞)(ψθk1
),p(ψ∗

k) ∝
11IRT−1(ψ∗

k), for k = 1, 2.
The results presented in Table 2 indicate that the item parameters and the latent traits,

for all groups and time-points, were properly recovered. Similar conclusions can be drawn
about the estimates of the latent trait population parameters, see Table 3.

Table 2 Longitudinal multiple-group study: results for the estimated latent traits and item
parameters.

Parameter Statistic
Corr Abias Var RMSE

latent trait .994 .121 .057 .274
discrimination parameter .985 .036 .010 .105
difficulty parameter >.999 .029 .016 .114

Table 3 Longitudinal multiple-group study: results for the estimated latent trait population
parameters.

Group Param. True value M.est. Abias Var RMSE
1 µθ12 1.00 .974 .026 .001 .043

µθ13 2.00 1.939 .061 .009 .112
ψθ12 .90 .819 .081 .009 .123
ψθ13 .95 .916 .034 .017 .136
ρθ11 .60 .608 .008 <.001 .019

2 µθ21 .20 .193 .007 .001 .026
µθ22 1.30 1.253 .047 .002 .066
µθ23 2.50 2.424 .076 .012 .134
ψθ21 .90 .891 .009 .004 .065
ψθ22 .80 .768 .032 .008 .097
ψθ23 .85 .820 .030 .019 .142
ρθ21 .80 .802 .002 <.001 .020
γθ21 .88 .872 .008 <.001 .016

4.2 Parameter recovery and covariance selection for the longitudinal single group
study

A second simulation study is presented concerning the performance of the RJMCMC
algorithm in recovering the parameters and matrix covariance selection of a longitudinal
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(single group) study. The set-up of this study corresponds to the one in subsection 4.1, but
attention was restricted to the first group measured at threetime-points. With respect to the
underlying covariance structure, three different scenarios were studied;

1. ARH covariance matrix withρθ(ARH) = 0.80

2. ARMAH covariance matrix withρθ(ARMAH) = 0.80 andγθ = 0.80.

3. ARMAH covariance matrix withρθ(ARMAH) = 0.80 andγθ = 0.88.

This setting of the covariance structure ensure that all within-subject latent trait
correlations are high. Note that the second scenario is equivalent to an ARH matrix with
ρθ(ARH) = ρθ(ARMAH)γθ, since the ARH matrix is a particular case of the ARMAH
structure, whenρθ(ARMAH) = γθ. The structure of the incomplete test design and the values
of the item parameters can be found in Table 1, considering the tests 1, 2 and 3. There were six
common items between test 1 and 2, and six between test 2 and 3.The item parameter values
varied in terms of discrimination and difficulty. Also, we have used the same specification
of hyperparameters, as presented in subsection 4.1, besides µρ = µγ = 0, ψρ = ψγ = 1
(see equations (28)-(30)).

Table 4 presents the average proportion of times that the true model was selected over
ten replications. It can be seen that the RJMCMC algorithm always chose the true model
(i.e., the true model was visited at least 50% of the iterations), leading to high values for
the averaged proportions (higher than 73,9%). It shows thatthe RJMCMC algorithm was
able to select the true model.

Table 5 shows the results for the latent traits and item parameters estimates. Table 6
presents the results for the latent trait population parameter estimates. The item parameters,
the latent traits and the population parameters, for all groups, time-points and scenarios, were
properly recovered. The results were less accurate than those in the previous subsection.
This was expected since, in this case, the true covariance matrix was unknown and selected
concurrently with the estimation of the parameters. Noticethat in scenario 3, where the
within-subject latent trait correlations are higher compared to the others, the higher within-
subject latent trait correlations led to more accurate results.

Table 4 Longitudinal single group study: averaged proportion of visits for eachmodel

Scenario True model Model
ARH ARMAH

1 ARH .977 .023
2 ARH .980 .020
3 ARMAH .261 .739

4.3 Implicit scaling (LMGIRT model) compared to posterior equating (LIRT
model)

In the multiple-group model (MGM) of Bock and Zimowski (1997), subjects of different
groups are assessed using tests with a linked design, where common (anchor) items are
used to link the scales of the different groups. In a joint estimation procedure, the estimates
of the latent traits are measured directly on the same scale using the linked design property.
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Table 5 Longitudinal single group study: results for the estimated latent traits and itemparameters.

Parameter Scenario Statistic
Corr Abias Var RMSE

Latent trait 1 .994 .133 .052 .274
2 .994 .113 .058 .271
3 .982 .028 .009 .094

Discrimination parameter 1 .993 .135 .055 .280
2 .994 .115 .061 .278
3 .999 .057 .019 .135

Difficulty parameter 1 .967 .051 .009 .105
2 .979 .030 .010 .099
3 .999 .044 .016 .120

Table 6 Longitudinal single group study: results for the estimated latent trait population
parameters.

Scenario Time-point True value M. Est. Abias Var RMSE
µθ

1 2 1.00 .956 .044 .001 .053
3 2.00 1.899 .101 .003 .114

2 2 1.00 .974 .026 .001 .035
3 2.00 1.952 .048 .007 .095

3 2 1.00 .971 .029 .002 .048
3 2.00 1.954 .046 .006 .089

ψθ
1 2 .90 .825 .075 .006 .105

3 .95 .850 .100 .004 .119
2 2 .90 .881 .019 .003 .061

3 .95 .973 .023 .013 .118
3 2 .90 .879 .021 .003 .061

3 .95 .937 .013 .012 .109
ρθ

1 .80 .804 .004 < .001 .006
2 .80 .794 .006 < .001 .009
3 .80 .801 .001 < .001 .015

γθ
3 .88 .874 .006 < .001 .080

Furthermore, more accurate estimation results can be obtained using the pooled information
from both groups compared to a single-group estimation and aposterior test equating
approach to get all parameter estimates on the same scale, see Kolen and Brennan (2004).

Here, subjects from different groups were assessed at different occasions. Each group
at each occasion was considered to be a single group. The latent trait estimates under the
LMGIRT model, using the linked design property, were all estimated on the same scale.
In the single-group approach, the LIRT model was used for each group, see Azevedo et al.
(2014), and all parameters were estimated for each group at each occasion. Then, through
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the common item structure, the latent trait and item parameter estimates were transformed
to the same scale using the Mean-Sigma procedure as the equating method, see Kolen and
Brennan (2004).

The results of both procedures are compared to each other. Let Method 1 refer to a joint
estimation of all parameters on a common scale under the LMGIRT model, and Method
2 to the two-step approach, where first the traits and item parameters are estimated under
the LIRT model, and second common scale estimates are obtained using the Mean-Sigma
procedure. Data were generated according to the setup described in subsection 4.1. The
sum of the absolute bias (Abias), and the relative absolute bias (Rabias) were computed.
The results are given in Table 7 and Figure 1. It can be concluded that the gain in accuracy
is substantial, mainly in the estimation of the traits, whenusing the pooled information
over groups. The split-up pattern, observed in the upper-right figure (Figure 1) is, probably,
due to items, with no high item difficulties (see Table 1), presented to the subjects with the
highest latent trait values.

Table 7 Sum of the absolute bias and the absolute relative bias for the parameter estimates for the
two methods of scaling process (equating): Method 1 - joint estimation of allparameters
on a common scale under the LMGIRT model; Method 2 - first the parameters are
estimated under the LIRT model, and second common scale estimates are obtained using
the Mean-Sigma procedure.

Parameter Abias Rabias
Method 1 Method 2 Method 1 Method 2

discrimination parameter 6.62 12.10 5.97 10.85
difficulty parameter 5.50 13.38 42.14 75.66
latent trait 1289.87 3982.28 5605.28 10695.73

5 Real data analysis

5.1 Amsterdam Growth and Health Longitudinal Study

Data were analyzed from the AGHLS (Amsterdam Growth and Health Longitudinal Study),
which is a multidisciplinary longitudinal cohort study, originally set up to examine growth
and health among teenagers (Kemper et al., 1978). The AGHLS is focused on research
questions related to relationships between anthropometry(Hoekstra et al., 2011), physical
activity (Douw et al., 2014), cardiovascular disease risk (Wijnstok et al., 2012, 2013),
lifestyle (Twisk et al., 1997, 1998), musculoskeletal health, psychological health (Hoekstra
et al., 2013) and wellbeing. The presented sample consists of 443 participants who were
followed over the period 1993-2006 with a maximum of three measurement points for each
individual. A subscale of the STAI-DY questionnaire was used to measure the latent variable
“state anxiety”, using a total of thirteen items.

Data from three years were used in the analysis; 1993, 2000 and 2006, referred to,
respectively, as years 1, 2 and 3. Two groups were considered, male students (group 1) and
female students (group 2). Therefore, two groups were assessed at three occasions (similar
to the design of the first simulation study). A total of 59 malestudents and 72 female students
were assessed at each measurement occasion, providing 393 responses per item.
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Figure 1 Posterior mean for the latent traits, discrimination and difficulty parameter using
scaling/equating methods 1 and 2.

In an explanatory analysis, the multiple-group model (MGM)(Azevedo et al., 2012),
was used to estimate the latent traits given the response data according to a cross-sectional
design. A total of six groups were considered (the male and the female groups measured
at each of the three occasions). The MGM for cross-sectionaldata assumed that students
were nested in groups and latent traits were assumed to be independently distributed over
occasions given the mean level of the group. Subsequently, Pearson’s correlations were
estimated for the pairs of estimated latent traits corresponding to years one to three. The
results are presented in Table 8. It can be seen that the unstructured covariance pattern model
can describe the relation between traits over occasions.

Therefore, a longitudinal multiple group model (LMGM) withan unstructured
covariance matrix for males and females was considered. The95% HPD intervals of the
correlation parameters showed that they were not significantly different from each other over
occasions. Hence, an LMGM with common correlations over occasions for the latent traits
was assumed for the male and female group (i.e., an heteroscedastic uniform covariance
structure for each group).

Furthermore, model-assessment tools developed by Azevedoet al. (2014) were
considered to evaluate the fit of the model. The Pearson chi-squared discrepancy measure
(CHDM) and the predicted distribution for the scores, were used to evaluate the fit of the
model. The overall Bayesian p-value (related to the CHDM) ofp = .3922 indicated that
the model fitted well. Figure 2 presents the observed, predicted and the 95% credibility
intervals related to the score distributions. It can be seenthat almost all observed scores fall
within the credibility intervals, for each gender and year,which confirmed that the model
fitted well. The results of the item-fit analysis are shown in Figure 3. When looking at the
chi-square statistics, it can be seen that all items were fitted well by the model.
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Figure 4 represents the population parameter estimates and95% HPD credible intervals
of the population parameters for males and females. For bothgroups, a slight growth in
the means from the first to the second year and a slight decrease from the second to the
third year were detected. Most likely due to the small samplesize, the estimated mean
differences were not significant. The measurement-occasion specific variances appeared
to be common over years for males and females. Furthermore, the correlations among the
latent traits appear to be equal for males and females. In conclusion, the covariance matrix
of the latent traits for the males and for the females has time-homogenous variances and
correlations.

Finally, Figures 5 and 6 represent the posterior means and 95% credible intervals
of the discrimination and difficulty parameter estimates, respectively. The discrimination
parameter estimates indicate that, in general, the items were adequate since 75% of them had
sufficient discriminating power (≥ .60). In addition, by comparing the difficulty parameter
estimates with the population mean estimates, it follows that the symptoms measured by
the items were likely to be observed for high latent trait values, since all difficulty values
were significantly positive.

Table 8 Pearson’s between-year correlations of the latent trait scores of males and females.

Male Female
Year 2 Year 3 Year 2 Year 3

Year 1 0.616 0.499 0.596 0.635
Year 2 - 0.709 - 0.748
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Figure 2 Observed and predicted score distribution and 95% central credible intervals.
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Figure 3 Posterior predictive p-values corresponding to the item-based discrepancy measure based
on Pearson (chi-square statistic).
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Figure 5 Posterior means and HPD intervals for the discrimination parameters.
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Figure 6 Posterior means and HPD intervals for the difficulty parameters.

5.2 The Brazilian longitudinal educational study

This study was conducted from 1999 to 2003. At the start, 158 public schools were
monitored, where 55 schools were selected for the program. The sampled schools were
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located over six Brazilian states with two states in each of three Brazilian regions (North,
Northeast, and Center West). The schools had at least 200 students enrolled for the daytime
educational programs, were located at urban zones and offered an educational program to
the eighth grade. At baseline, a total of 12,580 students were sampled. From 2000 to 2003,
the cohort consisted of students from the baseline sample who were approved to the fifth
grade and did not switch schools. Students enrolled in the fifth grade but coming from
another school, and students not assessed in former grades constituted a second cohort,
which was followed the four subsequent years. Other cohortswere defined in the same way.
The longitudinal test design allowed dropouts and inclusions along the time-points. Besides
achievements, social-cultural information was collected. The selected students were tested
each year. The data has been analyzed by Azevedo et al. (2014)using the longitudinal
single-group IRT model, and they provide more details aboutthis study.

Here, the mathematic performance of 1,500 randomly selected students, who were
assessed in the fourth, fifth, and sixth grade, were considered. A total of 72 test items was
used, where 23, 26, and 31 items were used in the tests in gradefour, grade five, and grade
six, respectively. Five anchor items were used in all three tests. Another common set of five
items was used in the test in grade four and five. Furthermore,four common items were
used in the tests in grade five and six.

To investigate the time-heterogeneous covariance structure, two competing covariance
models were considered, the ARH and ARMAH, which have been implemented in the
MCMC-based algorithms. The RJMCMC algorithm results showed that the ARMAH model
was visited 80.1% of the iterations and, thus, this covariance pattern model was selected. To
have a valid sample size for the selected model of approximately 1,000 iterations, a burn-in
of 16,000 iterations was used, a thin of 30 iterations, and a total of 53,500 MCMC iterations
was considered.

The model assessment tools developed by Azevedo et al. (2014) were used to evaluate the
fit of the model. The overall Bayesian p-value (related to theCHDM) of p = .36, indicated
a well-fitting model. Figure 7 represents the observed, predicted and the 95% credibility
intervals, related to the score distributions. It can be seen that most of the observed scores
fall within the credibility intervals, for each grade. The results of the item-fit analysis are
shown in Figure 8. When looking at the chi-square statistics,it can be seen that almost all of
the items were well fitted by the model (57 of 72). Further investigation could be considered
to look for a more appropriate item response function for theother 15 items, for example,
using an asymmetric function as presented in Bazan et al (2006).

Table 9 represents the population parameter estimates and 95% HPD credible intervals
of the three grade levels while accounting for a time-heterogenous correlation structure
among latent traits. A significant growth in latent trait means was detected given the
non-overlapping credible intervals. As expected, the meangrowth of math achievement
over grade years was significant. The within-grade variability was relatively small, but
the between-grade correlations were significant. Each within-examinee latent growth was
computed, while accounting for the complex dependencies, which showed a comparable
pattern compared to the mean latent growth over grade years.

Figures 9 and 10 represent the posterior means and posteriorstandard deviations
of the item discrimination and difficulty parameters, respectively. The discrimination
parameter estimates are relatively low, where approximately 50% of the items have sufficient
discrimination power (≥ .60). In addition, by comparing the difficulty parameter estimates
with the population mean estimates, it follows that the tests were relatively easy, since most
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of the difficulty values are below zero, which corresponds tothe lowest value among all
latent trait population averages.

In Figure 11, the parameter estimates obtained using MCMC (and the ARMAH
covariance matrix) were compared to the estimates obtainedusing the RJMCMC algorithm
(which includes the selection of the covariance matrix of latent traits). It can be seen that
both posterior means and posterior standard deviations were quite similar. Therefore, the
model uncertainty related to the selection of the appropriate covariance structure did not
seem to affect the accuracy of the estimates (provided that for both cases the valid MCMC
samples had comparable sizes).

Table 9 Population parameter estimates and 95% HPD intervals.

Mean
Grade Mean SD HPD 95%

four (reference) - - -
five 0.212 0.036 [0.137 ; 0.291]
six 0.683 0.046 [0.594 ; 0.776]

Variance
Grade Mean SD HPD 95%
Grade - - -

four (reference) 0.856 0.064 [0.732;0.990]
five 0.739 0.067 [0.617 ; 873]

Correlation (ρθ)
Grades Mean SD HPD 95%

- 0.932 0.016 [0.899 ; 0.963]
Correlation (γθ)

Grades Mean SD HPD 95%
- 0.855 0.013 [0.834 ; 0.884]
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Figure 7 Observed score distribution, predicted score distribution, and 95% central credible
intervals.
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Figure 8 Posterior predictive p-values corresponding to the item-based discrepancy measure based
on Pearson (chi-square statistic).
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Figure 9 Posterior means and HPD intervals for the discrimination parameters.
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Figure 10 Posterior means and HPD intervals for the difficulty parameters.
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Figure 11 Posterior means (mean) and posterior standard deviations (sd) for thelatent traits,
discrimination and difficulty parameters using RJMCMC and MCMC algorithm.

6 Conclusions and Comments

A longitudinal multiple-group IRT model with group-specific time-heterogenous covariance
structures for the latent trait distribution has been proposed. The developed MCMC
algorithm can handle identification issues, the scaling process and the selection of restricted
covariance patterns of latent traits across groups. Furthermore, an RJMCMC algorithm for
the joint parameter estimation and covariance pattern selection have been proposed for the
single-group longitudinal IRT model.

The simulation studies showed a good recovery of the model parameters using MCMC-
based algorithms, and also showed that the correct underlying covariance pattern model can
be selected using the RJMCMC method. In addition, it was shown that the use of a posterior
equating method can be avoided, as expected, similar to the results obtained by Andrade
(2001) (who compared the multiple group model in combination with posterior equating
methods for cross-sectional data). Therefore, the proposed modeling approach will be very
useful for analyzing longitudinal multiple-group IRT data. The proposed explicit modeling
of covariance patterns of latent variables could also be useful in related works, for example,
in the longitudinal IRT models of Entink al. (2011) and van den Hout et al. (2011), and in
the longitudinal single-group IRT models of von Davier and Xu (2011), te Marveld et al.
(2006) and Embretson (1991).

Other model extensions of the LMGIRT model can be consideredto obtain a more
realistic description of the longitudinal response data. The assumed multivariate normal
latent variable distribution can be adjusted to account forskewness. For example, by
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using a multivariate skewed latent variable distribution to model asymmetric latent trait
distributions. The skewed latent variable approach of Azevedo et al. (2011) could be used.
The extension to nominal and ordinal response data can be made by defining a more flexible
item response model. Dropout and inclusion of examinees were not allowed in the current
data analysis. A multiple imputation method could be developed to support this situation, see
for example, Azevedo (2008). In general, the LIRT model can be adapted to accommodate
incomplete designs, latent growth curves, collateral information for latent traits, informative
mechanisms of non-response, mixture structures on latent traits and/or item and population
parameters, and flexible latent trait distributions, amongother things. This requires defining
a general IRT model for the response data using flexible priors that can include the different
extensions. The RJMCMC algorithm can be adapted to allow other covariance structures
(as discussed in Azevedo et al. (2014)).

7 Appendix

7.1 ARH, ARMAH and UH matrices

The strutcture of the ARMAH is given by

Ψθk =




ψθk1

√
ψθk1

ψθ2kγθk . . .
√
ψθk1

ψθkT
γθkρ
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θk√

ψθk1
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γθk ψθk2
. . .
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ψθk2

ψθkT
γθkρ
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θ
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. . .
...√
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θk

√
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γθkρ
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θk

. . . ψθkT


 . (6)

The ARH matrix is obtained by doingρθk = γθk , ∀ k in Equation (6). On the other hand,
the structure of the UH matrix is given by:

Ψθk =
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
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ρθk . . .
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. . .
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...√
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ψθkT

ρθk
√
ψθk2

√
ψθkT

ρθk . . . ψθkT


 . (7)

7.2 Restricted Unstructured Covariance Structure

Following Azevedo et al. (2014) and McCulloch et al. (2000),a parametrization of the latent
trait’s covariance structure is considered. Therefore, the following partition of the latent
traits structure is defined,

θjk. = (θj11, θjk2, . . . , θjkT )
t = (θjk1,θjk(1))

t,

µθk = (µθk1
, µθk2

, . . . , µθkT
)t = (µθk1

,µθk(1)
)t,
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where, θjk(1) = (θjk2, . . . , θjkT )
t, µθk(1)

= (µθk2
, . . . , µθkT

)t. Furthermore, the
covariance structure is partitioned as,

Ψθk =

[
ψθk1

ψtθk(1)

ψθk(1)
Ψθk(1)

]
, (8)

whereψθk(1)
= (ψθk12

, . . . , ψθk1T
)t and

Ψθk(1)
=



ψθk2

. . . ψθk2T

...
. ..

...
ψθk2T

. . . ψθkT


 . (9)

From properties of the multivariate normal distribution, see Rencher (2002), it follows
that

θjk(1)|θjk1 ∼ N(T−1) (µ
∗
k,Ψ

∗
k) , (10)

where,µ∗
k = µθk(1)

+ ψ−1
θk1
ψθk(1)

(θjk1 − µθk1
) ,

and

Ψ
∗
k = Ψθk(1)

− ψ−1
θk1
ψθk(1)

ψtθk(1)
. (11)

This is equivalent to

θjk(1) | θjk1 = µθk(1)
+

ψ∗
k√
ψθk1

(θjk1 − µθk1
) + ξjk, (12)

whereξjk ∼ N(T−1) (0,Ψ
∗
k) andψ∗

k is given by (13). That is, theθjk(1) are conditionally
multivariate normally distributed given the first component θjk1, with an unrestricted
covariance matrix. Equation (12) defines a linear multivariate regression model with
independent variable(θjk1 − µθk1

), interceptµθk1
, and regression parameters

ψ∗
k = ψθk(1)

/
√
ψθk1

. (13)

The reparameterization in Equation (13) is considered to handle the restrictionψθ11 = 1,
in the MCMC and RJMCMC algorithms. In addition, the matrixΨ∗

k is an unstructured
covariance matrix without any identifiability restrictions, see Singer and Andrade (2000).
As a result, the common modeling (e.g., using an Inverse-Wishart prior) and estimation
approaches can be applied for Bayesian inference, see Gelman et al. (2004).

Therefore, the parameters,

(ψ∗t

k ,Ψ
∗t

θk
)t , (14)

define a one-to-one relation with the free parameters of the original covariance matrixΨθk .
As a result, the estimates of the population parameters for each group (combination of the
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original group with time-point) can be obtained from the estimates of the parameters in
Equation (14). The latent variable distribution of the reference group (the combination of
the original group with time-point) will be restricted to identify the model. That is, the
mean and the variance of the latent trait distribution are fixed to arbitrary values. In our
case, without loss of generality, the reference group is thefirst group measured at the first
occasion. This is done by re-scaling the respective vector of latent variable values to a
pre-specified scale in each MCMC (RJMCMC) iteration. The latent variable population
distribution of subsequent measurement occasions for thisgroup are conditionally specified
according to Equation (12), given the restricted population distribution parameters of the first
measurement occasion. Subsequently, the covariance parameters of the latent multivariate
model are not restricted for identification purposes, whichwill facilitate a straightforward
specification of the prior distributions.

7.3 MCMC estimation for the longitudinal MGM

Following Azevedo et al. (2014) and McCulloch et al. (2000),conditional conjugate prior
distributions are considered, see Gelman et al. (2004) and Gelman (2006). Remembering
that the parameters of interest are(µtθk , ψθk1

,ψ∗t

k ) andΨk, k = 1, ...,K and conditional
conjugate priors are specified as,

µθk ∼ NT (µ0k,Ψ0k) , (15)

ψθk1
∼ IG(ν0k,κ0k) , (16)

ψ∗
k ∼ NT−1(µψk

,Ψψk
) , (17)

Ψ
∗
k ∼ IWT−1(νΨk

,ΨΨk
) , (18)

whereIG(ν0k, κ0k) stands for the inverse-gamma distribution with shape parameterν0k
and scale parameterκ0k, andIWT−1(νΨk

,ΨΨk
) for the inverse-Wishart distribution with

degrees of freedomνΨk
and dispersion matrixΨΨk

.
For the item parameters, the prior is specified as

p (ζi | µζ ,Ψζ) ∝ exp

(
−0.5 (ζi − µζ)

t
Ψ

−1
ζ

× (ζi − µζ)

)
11(ai>0)11(bi∈(−∞,∞)), (19)

whereµζ andΨζ are the hyperparameters, and11 is the usual indicator function. The
hyperparameters are fixed and often set in such a way that theyrepresent reasonable values
for the prior parameters.

As in Azevedo et al. (2014), to facilitate the FGS implementation, and to account
for missing response data, an augmented data scheme will be introduced, see also
Albert (1992). It corresponds to sample normally distributed latent response dataZ.... =
(Z1111, ...., ZIKTnKKT )

t, given the discrete observed response data; that is,

Zijkt|(θjkt, ζi, Yijkt) ∼ N(aiθjkt − bi, 1), (20)
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whereYijkt is the indicator ofZijkt being greater than zero.
To handle incomplete block designs, an indicator variableI.... =

(I1111, ...., IIKTnKKT )
t is defined that defines the set of administered items for each

occasion and subject. This indicator variable is defined as follows,

Iijkt =




1, item i administered for examineej, belonging to the groupk

at time-pointt
0,missing by design.

(21)

The not-selective missing responses due to uncontrolled events as dropouts, inclusion
of examinees, non-response, or errors in recoding data are marked by another indicator,
which is defined as,

Vijkt =




1, observed response of examineej, belonging to the groupk

at time-pointt on itemi
0, otherwise.

(22)

It is assumed that the missing data are missing at random (MAR), such that the
distribution of patterns of missing data does not depend on the unobserved data. When the
MAR assumption does not hold and the missing data are non-ignorable, a missing data
model can be defined to model explicitly the pattern of missingness. In case of MAR, the
observed data can be used to make valid inferences about the model parameters.

For the sake of simplicity, let indicator matrixI.... represent both cases of missing data.
Then, under the above assumptions, the distribution of augmented dataZ.... (conditioned
on all other quantities) is given by

p(z.... | y...., I....,θ..., ζ,ηθ) ∝

K∏

k=1

T∏

t=1

nk∏

j=1

∏

i|Iijkt=1

{
exp

{
−0.5 (zijkt − aiθjkt + bi)

2
}

×11(zijkt,yijkt)

}
, (23)

wherez.... andy.... are the vectors with all augmented data and observed responses availabe,
respectively, and11(zijkt,yijkt) represents the restriction thatzijkt is greater (lesser) than
zero whenyijkt equals one (zero), according to Equation (20).

Given the augmented data likelihood in Equation (23) and theprior distributions in
Equations (19), (15), (16), (17), (18) and (2), the joint posterior distribution is given by:

p(θ..., ζ,µθ,ψ
∗,Ψ∗|z....,y....) ∝ p(z.... | y...., I....,θ..., ζ,ηθ)p(θ...|ηθ)

× p(ζ|µζ ,Ψζ)p(ηθ), (24)

where

p(θ...|ηθ) =

K∏

k=1

nk∏

j=1

p(θjk.|ηθk), (25)



26

p(ζ|µζ ,Ψζ) =

I∏

i=1

p(ζi|µζ ,Ψζ),

p(ηθ) =

k∏

k=1

p(ηθk) =

K∏

k=1

p(µθk)p(ψθk1
)p(ψ∗

k)p(Ψ
∗
k),

and θ... = (θ111, ..., θnKKT )
t, ηθ = (ηtθ1 , ...,η

t
θK

)t, ψ∗ = (ψ∗t

k , ...,ψ
∗t

k )t and Ψ
∗ =

(Ψ1, ...,Ψk). The posterior distribution, given by equation (24), has anintractable form
but, the full conditionals are known and easy to sample from.More specifically, we have:

• Step 1 : Simulate the augmented data usingZijkt|(.), according to Equation (20).

• Step 2 : Simulate the latent traits using

θjk.|(.) ∼ NT (Ψ̂θjk θ̂jk, Ψ̂θjk)

where

θ̂jk =
∑

i|Iijkt=1

aibi1T +
∑

i|Iijkt=1

aizijk. +Ψ
−1
θk
µθk ,

Ψ̂θjk =


 ∑

i|Iijkt=1

a2i IT +Ψ
−1
θk




−1

,

zijk. = (zijk1, . . . , zijkT )
t, 1 is a unit vector of sizeT andIT is a identity matrix of

orderT .

• Step 3 : Simulate the item parameters by usingζi|(.) ∼ N(Ψ̂ζi ζ̂i, Ψ̂ζi), mutually
indepedently, where

ζ̂i =H
t
i..zi... +Ψ

−1
ζ µζ ,

Ψ̂ζi =
(
Ht
i...Hi... +Ψ

−1
ζ

)−1

,

Hi... = [θ... − 1] • Ii , (26)

wherezi... = (z1..., ..., zI...)
t, Ii is the indicator vector of itemi, which indicates the

subjects responding to itemi and “•" is the Hadamard product.



Long. Multiple-Group IRT Model.: Covar. pattern selection 27

• Step 4 : Simulate the population mean vectors, fork = 1, ...,K, by using

µθk1
|(.) ∼ N(µ̃θk1

, ψ̂µk
) ,

µθk(1)|(µθk1
, (.)) ∼ NT (µ̃θk(T−1)

, Ψ̂µk(T−1)
) ,

where

µ̂θk = Ψ
−1
θk

nk∑

j=1

θjk. +Ψ
−1
0k µ0k = (µ̂θk1

, µ̂θk2
, . . . , µ̂θkT

)t = (µ̂θk1
, µ̂

(T−1)
θk

)t ,

Ψ̂µk
=
(
nkΨ

−1
θk

+Ψ
−1
0k

)−1
=

[
ψ̂µk

ψ̂
t (T−1)
µk

ψ̂
(T−1)
µk Ψ̂

(T−1)
µk

]
,

µ̃θk = Ψ̂µk
µ̂θk = (µ̃θk1

, µ̃θk2
, . . . , µ̃θkT

)t = (µ̃θk1
, µ̃

(T−1)
θk

)t ,

µ̃θk(T−1)
= µ̃

(T−1)
θk

+ ψ̂−1
µk
ψ̂(T−1)
µk

(µθk1
− µ̃θk1

) ,

Ψ̂µk(T−1)
= Ψ̂

(T−1)
µk

− ψ̂−1
µk
ψ̂(T−1)
µk

ψ̂t (T−1)
µk

.

• Step 5 : Simulate the first time-point variance, fork = 1, ...,K, usingψθk1
|(.) ∼

IG(υ̂0k, κ̂0k), where

υ̂k1 =
nk + υ0k

2
,

κ̂k1 =

∑nk

j=1(θjk1 − µθk1
)2 + κ0k

2
.

• Step 6 : Simulate the vector of covariances, fork = 1, ...,K, using ψ∗
k ∼

NT−1(Ψ̂ψk
ψ̂ψk

, Ψ̂ψk
), where

ψ̂ψk
= ψ

−1/2
θk1

(Ψ∗
k)

−1
nk∑

j=1

(
θjk(1) − µθk(1)

)
(θjk1 − µθk1

) +Ψ
−1
ψk
µψk

,

Ψ̂ψk
=


ψ−1

θk1
(Ψ∗

k)
−1

nk∑

j=1

(θjk1 − µθk1
)
2
+Ψ

−1
ψk




−1

.

• Step 7 : Simulate the covariance matrix, fork = 1, ...,K, using Ψ
∗
k ∼

IWT−1(ν̂Ψk
, Ψ̂Ψk

), where

ν̂Ψk
= nk + νΨk

,

Ψ̂Ψk
= ΨΨk

+

nk∑

j=1

(
θjk(1) − µθk(1)

) (
θjk(1) − µθk(1)

)t
.
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• Step 8 : Calculate the original covariance matrix, fork = 1, ...,K, using (8) and
Ψθk(1)

= Ψ
∗
k +ψ

∗
kψ

∗t

k .

• Step 9 : Calculate the population variances, for(k = 1, ...,K), using

(ψθk2
, . . . , ψθkT

)t = ψ∗
θk(1)

= Diag(Ψ∗
k +ψ

∗
kψ

∗
k
t) , (27)

whereDiag extracts the main diagonal of a square matrix.

• Step 10 : For (k = 1, ...,K), depending on the restricted covariance structure of
interest, transformations are defined for unrestricted parameters to facilitate draws of
restricted model parameters. These details can be found in Azevedo et al. (2014).

7.4 RJMCMC algorithm for the longitudinal one-group model

The Steps 1 - 10 of the RJMCMC algorithm are easily obtained from the developments
presented in subsection 7.3 considering K=1. To implement the Step 11 of the RJMCMC
algorithm we need to define prior distributions for each parameter of the covariance structure
corresponding to the competing models (i.e., the ARH and ARMAH models). We consider:

ρθ(ARH) ∼ N(−1,1)(µρ, ψρ) (28)

ρθ(ARMAH) ∼ N(−1,1)(µρ, ψρ) (29)

γθ ∼ N(−1,1)(µγ , ψγ), (30)

whereN(a,b)(µ, ψ) stands for a normal distribution truncated to the interval(a, b), µ and
ψ are, respectively, the mean and the variance of the originalnormal distribution, andρθ(.)
the correlation parameter of the covariance structure (.).

For the RJMCMC algorithm presented in subsection 3.2, when considering two
covariance matrices as the possible states of the chain (in our case ARH and ARMAH
matrices), and given the prior distributions (28), (29) and(30), the Step 11 of the RJMCMC
algorithm is given by:

1. If the current model is ARH

• Step 1 Simulateγθ = u ∼ U(0, 1) and calculateρθ(ARMAH) =
ρθ(ARH)+γθ

2 .

• Step 2 Generate the matrixΨθ(ARMAH) by using(ρθ(ARMAH), γθ)
t andψθ (the

vector with current simulated values for the population variances).

• Step 3 Calculate the acceptance rate:

R(ARH,ARMAH) =
exp

{
−0.5

∑n
j=1 (θj. − µθ)

t
Ψ

−1
θ(ARMAH) (θj. − µθ)

}

exp
{
−0.5

∑n
j=1 (θj. − µθ)

t
Ψ

−1
θ(ARH) (θj. − µθ)

} ×

exp
{
− 0.5
ψρ

(
ρθ(ARMAH) − µρ

)2}
exp

{
− 0.5
ψγ

(γθ − µγ)
2
}

exp
{
− 0.5
ψρ

(
ρθ(ARH) − µρ

)2}

×
1√
πψγ

|Ψθ(ARMAH)|
−n/2

|Ψθ(ARH)|−n/2
.
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Accept the model ARMAH with probability π(ARH,ARMAH) =

min
{
R(ARH,ARMAH), 1

}
, otherwise, continue with ARH.

2. If the current model is ARMAH

• Step 1 Calculateu = γθ andρθ(ARH) = 2ρθ(ARMAH) − γθ.

• Step 2 Generate the matrixΨθ(ARH) by usingρθ(ARH) andψθ (the vector with
current simulated values for the population variances).

• Step 3 Calculate the acceptance rate :

R(ARMAH,ARH) =
exp

{
−0.5

∑n
j=1 (θj. − µθ)

t
Ψ

−1
θ(ARH) (θj. − µθ)

}

exp
{
−0.5

∑n
j=1 (θj. − µθ)

t
Ψ

−1
θ(ARMAH) (θj. − µθ)

} ×

exp
{
− 0.5
ψρ

(
ρθ(ARH) − µρ

)2}

exp
{
− 0.5
ψρ

(
ρθ(ARMAH) − µρ

)2}
exp

{
− 0.5
ψγ

(γθ − µγ)
2
}

×
√
πψγ

|Ψθ(ARH)|
−n/2

|Ψθ(ARMAH)|−n/2

Accept the model ARH with probability π(ARMAH,ARH) =

min
{
R(ARMAH,ARH), 1

}
, otherwise, continue with the ARMAH.
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