Longitudinal Multiple-Group IRT Modeling:
Covariance pattern selection using MCMC and
RIMCMC

CaioL. N. Azevedo

Department of Statistics,

State University of Campinas,

Campinas, SP, Brazil

Fax: +55 19 3521-5921. E-mail: cnaber@ime.unicamp.br

Jean-Paul Fox

Department of Research Methodology, Measurement and Drabysis,
University of Twente,
Enschede, Netherlands

Dalton F. Andrade

Department of Informatic and Statistics, Federal Unixgrsf Santa
Catarina, Florianépolis, Brazil

Abstract: Longitudinal studies in Psychometric assessment are often focused on
latent traits of subjects, who are clustered in different groups (egdey, grade,
social level). The corresponding type of data can be characterizedgitidinal
multiple-group item responses. For this type of data, a longitudinal multiple-
group IRT (LMGIRT) model is proposed, where group-specificatefencies
between latent traits can be modeled using the appropriate covariantergtru
The multiple-group specification together with the developed MCMC-based
algorithms make it possible to handle the scaling process simultaneously with
the estimation of latent traits, item and population parameters. Also, aitdeers
jump MCMC (RIMCMC) algorithm is proposed for joint parameter estimation
and covariance matrix selection for a single-group longitudinal IRT rinddie
MCMC-based algorithms can handle identification rules, scaling issues and
selection between restricted covariance structures. Simulation studéed tiest

not only all parameters are accurately recovered, but also thectanderlying
covariance pattern model is selected. Two real data sets are used tat#uke
longitudinal IRT models and the MCMC algorithms for estimation and model
fit assessment. One study concerns the health condition of Dutch stfidents
AGHLS (Amsterdam Growth and Health Longitudinal Study) and the othdgystu

a longitudinal research program of the Brazilian federal government.

Keywords: Longitudinal data, multiple group, item response theory, Bayesian
inference, MCMC algorithm, RIMCMC algorithm

Copyright © 2009 Inderscience Enterprises Ltd.



2

1 Introduction

Longitudinal studies in Psychometric assessment are défieused on measuring traits
of subjects who are clustered in different groups (e.g.dgengrade, social level). The
corresponding type of response data can be characterifmuétsidinal multiple group item
responses. For analyzing multiple group response data titgpfa group model (MGM)
proposed by Bock and Zimowski (1997) offers a unified appneabandle different aspects
of interest. A fully Bayesian framework, including paraeregestimation and model fit
assessment of the MGM, was recently developed by Azevedo @042). Furthermore,
Azevedo et al. (2014) developed a longitudinal (singled@)dRT (LIRT) model, which
extends in several directions the longitudinal IRT modélamdrade and Tavares (2005)
and Tavares and Andrade (2006), for a homogeneous grouppimdents.

Alongitudinal multiple-group IRT (LMGIRT) model is proped, to model longitudinal
item response data of respondents who are clustered inrHeyhet units. The LMGIRT
model and MCMC estimation method make it possible to hanlée Scaling process
simultaneously with the estimation of latent traits, itemd @opulation parameters, allowing
different dependency structures for the different groupsespondents. The modeling
framework was motivated by combining the modeling appreadf Azevedo et al. (2014)
and Azevedo et al. (2012). The LMGIRT model ensures thatstuperformances across
groups are measured on the same scale, while the depersleneéeh group are modeled
using the appropriate covariance structure. The entirmagon process can be carried out
by an efficient MCMC algorithm.

For the LIRT model, the selection of the appropriate covengastructure would
require fitting several competing models with differentadance structures. Subsequently,
a model-comparison method is required to identify the oalitrigher-level covariance
structure among the competing models. This complex twgegteocedure can be optimized
by including the selection of the optimal covariance pattandel in the MCMC algorithm.
Therefore, areversible-jump MCMC (RIMCMC) algorithm hash developed to estimate
simultaneously all LIRT model parameters including thestbn of the covariance matrix.

For both models, the LIRT and the LMGIRT models, simulatitrdges show that with
the developed MCMC-based algorithms all parameters caodwgately recovered and that
the correct underlying covariance model can be identifigd thie RIMCMC algorithm. In
addition, the studies show that the LMGIRT modeling apphcamids the use of the LIRT
model with a posterior equating approach to relate measemenof subjects from different
groups to each other.

This paper is outlined as follows. After introducing the Bayan LMGIRT model, the
MCMC algorithms are presented, which can handle group#peovariance structures
for the latent variable distribution. Then, a reversihlesp MCMC algorithm is presented,
which handles the selection of the appropriate covariamcetsre, together with the
estimation of the model parameters. Then, three simulattadies are given to show
the performance of the MCMC and RIMCMC algorithm for the LNREland LIRT
models, respectively, and to show the comparison of the LRIGhodel with the LIRT
model combined with a posterior equating approach. Sulesglyudata from the AGHLS
(Amsterdam Growth and Health Longitudinal Study) and a Bieazlongitudinal research
study are analyzed. In the last section, the results and smdel extensions are discussed.
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2 TheModd

One or more tests are administered to subjects clusteredlifiérent groups, which are
followed along several time-points. The subjects are ramgselected at the first time-
point from their respective groups. Subjects are measurdidferent time-points, which
can be related to different grades or different months ireagyear, for example. At each
measurement occasion, the groups of subjects can, for égamapresent different grades,
different genders and different geographic regions. Duégor inclusion of subjects during
the study are allowed (even though we will treat only the clmegdata case). At each
time-pointt, ¢t = 1, ..., T, a test ofZ, items, from a total off < >"," ZLIM items,
is administered to each grodp(k = 1, ..., K) of ny subjects. Here, a complete data case
is assumedy,; = ny, Vk. ACross measurement occasions common items are used, which
defines an incomplete test design, see Montgomery (2004 )ex@mple, for three tests,
each of 20 items, a configuration of an incomplete test des@nd be where test one and
two have five common items, and test two and three six comnaomsit

Let 0,1, denote the latent trait of subjegof groupk at time-pointz, by ¢; the vector
of parameters of iterh) by ng, the vector with the population parameters of grauf.e.,
the population means, variances and correlation paras)eterd byY; ;.. the response to
item i of examineg of groupk at time-pointt. Then, the general model for longitudinal
multiple group item response data is given by:

Yijke | (Ojne, Ci) ~ Bernoulli( Py, )
Pijit = P(Yijie = 1| 05, Ci) = P(aibjre — bi) 1)
03k|779k ~ NT(IJ/Qk, ‘1191‘-,)1 (2)
where®;;. = (0jk1, ..., 0;.7)", ©(.) stands for a cdf of the standard normal distribution,

¢i = (a;,b;)t and Nr(pe,,%e,),k=1,2,..,K, denotes a T-dimensional normal
distribution with mean vectoug, and covariance matriwg, , where

oy w(’m ¢0k12 cee w(’le
oo ¢9k12 Wk'z s wesz

I"I’Bk — . ) lIIGk = : . .. : 9 (3)
Hoyr w&le ka s 1/)01«7"

ne, = (g, ,v(Poe,)")",v(Vg,) = vecd ¥y, ) andvecd(.Jstands for the different elements
of Wy, . Note that a multivariate normal distribution with a flexdblariance-covariance
structure is considered to model the within-subject latesit dependencies. A total of
K @ parameters need to be estimated for the unstructured aacarimodel in each
group.

An important assumption is the measurement invariance eftdms. Measurement
invariant items will function in the same way over groups andasions (time-points), see
Millsap (2010). The LMGIRT model will assume that the comnit@ms are measurement
invariant. This assumption, within the IRT framework, idated to differential item
functioning (DIF) and item parameter drift, see Bock and @veki (1997). Here, it will be
assumed that the assumption of measurement invariancefloolithe common items. This
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aspect certainly deserves more investigation, but is eytoa scope of the present paper.
The LMGIRT model extends the multiple-group model of BocK @mmowski (1997), and

it offers, in the context of longitudinal response data, dieah approach to handle different
aspects of interest (differential item functioning, gramecific latent trait distribution, item
parameter drift, nonequivalent groups equating amongs®the

2.1 Unstructured covariance matrix with identificationtrésions

To identify the latent scale, a reference group is requiféérefore, the mean and variance
of the latent variable distribution at the first time-poifitiee reference group (i.e., the first
group measured at the first occasion) will be fixed to zero asdre@spectively. Furthermore,
an incomplete test design is used such that common itemsdaniatered to different
groups at different measurement occasions. The incomgstelesign defines a common
latent scale across measurement occasions and groups.

The restrictions on the parameters of the latent trait ibisfion complicates the
specification of priors. In the proposed latent variablemieavork, the prior modeling
approach developed by Azevedo et al. (2014), based on thk @fdvicCulloch et al.
(2000), to account for a restricted covariance structurd, ve extended in order to
accommodate multiple groups. Besides the identifiabil@gtnictions for the reference
group, the reparameterization presented in the Appengjwhich also includes the details
of this approach, will be useful to handle restricted cauace matrices for all groups.

2.2 Restricted Covariance Pattern Structures

By correctly modeling the correlation among the latent$racross measurement occasions,
more accurate statistical inferences can be made. A tinerderedastic covariance
structure can be considered to describe more complex pattger time, where population
variances of measurements can differ over time-points. Aenparsimonious modeling
of the group-specific covariance structures will decredigentumber of parameters to
be estimated, which can be estimated more accurately, iafpeia the presence of
the multiple groups. In the simulation and real data stydims of the most important
covariance structures used in longitudinal data modeliegansidered: the heteroscedastic
uniform model (HU), the heteroscedastic toeplitz model) e first-order heteroscedastic
autoregressive model (ARH), and the first-order heterasstedautoregressive moving-
average model (ARMAH). The structures of the matrices ARRRMAH and UH are
presented in Appendix 7.1. A brief overview of other covacia structures can be found in
Azevedo et al. (2014) and Tavares and Andrade (2006).

3 Bayesian inference and MCM C estimation

First, an MCMC algorithm for the LMGIRT (longitudinal mutie group) model is
presented, where the covariance matrix for each group ieetkin advance. Second, an
RJIJMCMC algorithm for selecting the covariance matrix of thBRT model is presented.
More technical details are given in the Appendix (subsesti.2, 7.3 and 7.4).
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3.1 LMGIRT model: MCMC Algorithm

A full Gibbs sampling (FGS) algorithm is developed to estienaimultaneously all
parameters. The MCMC algorithm can be used to obtain vataasthe marginal posteriors
of the model parameters. Subsequently, inferences candefneen the sampled parameter
values, see Gamerman and Lopes (2006).

This approach is an extension of the algorithm discusseddeyédo et al. (2014) who
considered one group of respondents. A review on MCMC metliodiongitudinal and
multivariate probit models is given by Azevedo et al. (20I®)e idea is to define sets
of augmented data”), following the data augmentation procedure of Albert (2)9&nd
Azevedo et al. (2014), and to define indicator variab3 &nd (I) which handle the not-
selective missing responses due to uncontrolled eventsheniicomplete block design,
respectively. For a more thorough discussion the readefaésred to Azevedo et al. (2014)
and for technical details see subsections 7.2 and 7.3. Hereequence of steps related to
the MCMC algorithm are given below. Let (.) denote the setlbf@cessary parameters.
Then, the full Gibbs sampling algorithm is defined as follows

1. Start the algorithm by choosing suitable initial values.
Repeat steps 2-10.

2. SimulateZ; i, from Zjp | (), t =1,..,T,i=1,.... Tk, j = 1,...,ni, WhereZy, is
the set of items that compose the test applied to gfoapthe time-point.

. Simulated;;, from @, | (.),j=1,....,np,k=1,.. K.
. Simulate¢; from¢; | (.),i=1,...,l.

. Simulateug, from pe, |(.),k=1,..., K.

. Simulateyy,, fromy,, | (), k=1,..., K.

. Simulatey; from ;. | (1), k=1,..., K.

. Simulate®; from¥; | (), k=1,..., K.

© 00 N oo o b~ W

. Compute, for each group, the unstructured covarianceixmasing the sampled
covariance components from Steps 6-8 and Equations (8n(9}13)

10. Through a parameter transformation method using samyistructured covariance
parameters, compute restricted covariance componentgeoést, for each group. The
sampled restricted covariance structudes, , k£ = 1,..., K are used when repeating
steps 2-8.

Appendix 7.2 shows how to handle the restrictipng = 0 andiy,, = 1. Specifically,
the expression in Equation (10) is used to simulptg , . Therefore, to simulate
(1o, , e, )t the following decomposition is used (In Appendix 7.3, Bipa(25)),

p(051.1m6,) = p(0;1(1)IM6,,0511)p(0j11]m80,, ),

whereng,, = (110,,,%0,,)t. To identify the model, the scale of the latent variable far t
reference group (in this case, the first time-point of thefitst group) is transformed to
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mean zero and variance one. It is also possible to restecpéinametersyg,, , Vg, )" to
other values.

In Step 9, MCMC samples oF; are drawn from an inverse-Wishart distribution, and
each sampled covariance matrix is restricted to be pogitfimite. When considering the
following relationship,

det(Wo,) = det(va,, )det (o, = U5} Yo, %o, ) ) = Vo, det(¥),

k=1,..., K, using Equations (8) and (11), it can be seen that positifinitesamples of
Wy, are obtained. When using a property of the determinant okbieatrices, it follows
that the determinant oF ¢, is greater than zero, since both the determinast paindy, ,
are greater than zero.

In each MCMC iteration, parameters of a specific covariarateem (for each group)
are computed using sampled unstructured covariance pteamEach covariance pattern
is nested in the most general unstructured pattern. ThesefoVICMC Step 10, parameters
of a specific covariance structure are computed. Each sietutmvariance matrix will be
positive definite, since itis based on a positive definitdnuictured covariance matrix. This
whole process is carried out for each group.

3.2 RIMCMC for covariance matrix selection

One of the most important issues concerning longituding daalysis is the choice of
the most appropriate covariance matrix. For IRT models M@MC algorithms require
a large amount of computational time. Therefore, it is intg@ior to consider an efficient
mechanism of covariance structure selection. It is contjoually cumbersome to estimate
different models, considering different types of covacmatrices for each group, and
choose the best one by using information criteria such aBtB@eand DIC, see Azevedo
et al. (2014). Also, as pointed out by these authors, thedistats did not provide good
results. Instead, it would be preferable to select the muystagoriate covariance structures
while estimating the model parameters. The RIMCMC algorigiows selecting optimal
covariance structures, while sampling the model paramdtem the marginal posterior
distributions, see Green (1995).

To ease the notation, we will consider two possible covaganatrices, the ARH and
the ARMAH and one group of respondents. In fact, we have impleted only these two
covariance matrices, for the RIMCMC algorithm. Howeves pinocedure can be extended
to more covariance pattern models. The idea is to includelditianal step in the MCMC
algorithm presented in subsection 3.1, which performsdvargance pattern selection. Let
(.) denote the set of all necessary parameters. Then, th&€RIW/algorithm is defined as
follows:

1. Start the algorithm by choosing suitable initial values.
Repeat steps 2—-11.

2. SimulateZ;;; from Z;;, | (\),t=1,..,T,i=1,...,7;,j = 1,...,n, whereZ, is the set
of items that compose the test applied at the time-point

3. Simulated; from@; | (.),j =1,...,n.
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. Simulate¢; from¢; | (1), i=1,...,I.
. Simulateug from pg|(.).
. Simulateyy, from vy, | (.).
. Simulatey* from 4™ | (.).
. Simulate®* from ¥* | (.).

© 00 N o O b

. Compute the unstructured covariance matrix using th@ksheovariance components
from Steps 6-8 and Equations (8), (9) and (13) (consideririg @ne group).

10. Through a parameter transformation method using samyplstructured covariance
parameters, compute the current restricted covarianaéx(etlected in the previous
MCMC iteration.)

11. Select the covariance matrix using the steps presemsdsection 7.4.

4 Simulation studies

The parameter recovery and model selection procedure welgz&d using simulated
data. In the first study, we explore a longitudinal multiptewgp structure with predefined
covariance matrices for each group. In the second study, omsiader a single group
longitudinal study where the covariance matrix will be stdel using the RIMCMC
algorithm. In the third study, we compare the LMGIRT modethwihe LIRT model
combined with a posterior equating technique.

The usual tools (traceplots, Geweke and Gelman-Rubinssta) for monitoring
MCMC convergence are used. A burn-in of 16,000 iteratioescansidered, a thin of 30
iterations and a total of 46,000 iterations are simulatdugclvproduce a valid sample of
size 1,000. For RIMCMC, the total number of iterations wasasel7,000 in order to
obtain a valid sample of approximately 1,000 iterationdfddént statistics were used to
compare the results: mean of the estimates (M. Est.), etiwal (Corr), the absolute bias
(ABias), variance (Var), and the root mean squared error $EM Let}; be an element
of (0jkt, ai, bi, ne,, )", wherel is a convenient index or a combination of theimtjt, kt,

jkt) andﬁlr its respective estimate obtained in the reptica= 1, ..., R. Define alsa); =
% Zf’:l ﬁlr. The aforementioned statistics are, Corr: correlatiowbetd; andd;, Bias:

= ~ ~\2 —~ 2
(191 - 191)  Var: 21 S (ﬁlr - 19;) , RMSE:\/}? > (ﬁlr - 19;> . To evaluate the
accuracy of the MCMC estimates, a total of ten replicated dats were generated, based
on Azevedo and Andrade (2010) and De Ayala and Bolesta (1889}he item and latent

trait parameters, average statistics were computed bygivey across data sets, items and
persons.

4.1 Parameter recovery of the longitudinal multiple-graipdy

In this study, two groups were assessed at three occasionthé-first group (for which
the first time-point corresponds to the reference groum,ldtent means wergg, =
(0.0, 1.0,2.0)%, whichimply growth in mean latent averages. Furthermohetaroscedastic
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Toeplitz matrix withape, = (1.00,0.90,0.95)" was assumed, which imply a decrease and
then an increase in the variability, wily, = 0.6, which implies a moderate magnitude
for the between-time correlations. For the second group,ldtent means were set to
o, = (0.2,1.3,2.5)" and an ARMAH matrix was assumed wigly, = (0.90, 0.80,0.85)¢,
with pg = 0.80 and vy = 0.88. These values induce similar behavior for the second
group compared with the first group. Furthermarg,= 1,000; k = 1, 2, latent traits were
simulated according to appropriate three-variate norristibutions. Following DeMars
(2003), the sampled latent traits were transformed to thkesif the simulated latent traits
using,

= Chol (g,) Chol (Se,) ™" (83, — 0x) + e, ,

where B;k_ are the simulated latent trait§, and S, the sampled mean vector and
covariance matrix of group, respectively, an@holrepresents the Cholesky decomposition.
Finally, Table 1 represents the values of the item paramatet the structure of the adopted
incomplete test design. For example, item 1 appears in featsl 4, and so forth. Tests

1, 2 and 3 were administered to the first group at time-poimtsagurement occasions) 1,
2 and 3, respectively. Similarly, tests 4, 5 and 6 were adsténgd to the second group at
measurement occasions 1, 2 and 3, respectively.

Tablel Test structures (linked test design) and item parameter values for fiplengroup
longitudinal study

Item  Test(s) a b Item  Tests a b Item  Test() a b
1 1-4 0.8 -2.0 37 2-3 1.2 1.3 73 4-5 1.4 0.0
2 1 1.1 -1.8 38 2-3 1.3 1.4 74 4-5 0.8 0.2
3 1 1.4 -1.6 39 2-3 1.4 1.6 75 4-5 1.1 0.4
4 1 08 -14 40 2-3 08 1.8 76 4-5 1.4 06
5 1 1.1 -1.2 41 2-3 1.1 2.0 7 4-5 0.9 0.8
6 1-4 1.4 -1.0 42 2-3 1.4 2.1 78 4-5 1.2 1.0
7 1 0.8 -0.8 43 3-6 1.3 0.0 79 5 0.9 -0.6
8 1 11 -0.6 44 3 1.0 0.2 80 1.3 2.2
9 1 1.4 -04 45 3 11 04 81 5 1.0 24
10 1-4 08 -01 46 3 1.2 06 82 5 1.3 08
11 1-4 0.9 1.0 47 3 1.3 0.8 83 5 1.0 1.2
12 1 1.2 1.2 48 3-6 1.4 1.0 84 5 1.1 1.1
13 1 14 14 49 3-6 0.9 1.2 85 5-6 1.2 1.3
14 1 1.0 1.6 50 3 1.0 1.4 86 5-6 13 1.4
15 1 1.1 1.8 51 3-6 1.1 1.6 87 5-6 1.4 1.6
16 1-4 1.4 2.0 52 3 1.2 1.8 88 5-6 0.8 1.8
17 1 09 08 53 3 08 34 89 5-6 1.1 20
18 1-4 1.1 0.0 54 3 1.1 2.2 90 5-6 1.4 2.1
19 1-2 1.4 00 55 3-6 14 21 91 6 1.0 02
20 1-2 0.8 0.2 56 3 0.9 2.3 92 6 1.1 0.4
21 1-2 1.1 0.4 57 3 1.2 3.0 93 6 1.2 0.6
22 1-2 14 06 58 3 13 26 94 6 1.3 08
23 1-2 09 038 59 3 1.1 28 95 6 1.0 14
24 1-2 1.2 1.0 60 3-6 14 38 96 6 12 18
25 2-5 1.3 -0.8 61 4 1.1 -1.8 97 6 0.8 3.4
26 2 0.9 -0.6 62 4 1.4 -1.6 98 6 1.1 2.2
27 2-5 1.2 -0.4 63 4 0.8 -14 99 6 0.9 2.3
28 2-5 1.3 -02 64 4 11 -12 100 6 1.2 30
29 2-5 1.0 0.0 65 4 08 -0.8 101 6 13 26
30 2-5 1.2 2.0 66 4 1.1 -0.6 102 6 1.1 2.8
31 2 1.3 2.2 67 4 1.4 -04 - - - -
32 1.0 2.4 68 4 1.2 1.2 - - - -
33 2 1.3 08 69 4 14 14 - - - -
34 2-5 1.2 1.0 70 4 1.0 1.6 - - - -
35 2 1.0 1.2 71 4 1.1 1.8 - - - -
36 2 1.1 1.1 72 4 0.9 0.8 - - - -
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The following hyperparameter settings were used in thelsition study (see equations
(15)-(18)):

‘I’k = TkIT,1 (4)
Yy, = (e, —T+1) (Ir-1 — ¥y), )

where I_, stands for an identity matrix of ord&f — 1, vg, =5, 7, = 1/8,k = 1,2,
and the hyperparameters for the item parameters were sgkasip: = (1, 0)7, U, =
diag(0, 5, 3), por = (0,0, O)t' W, = diag(2, 2,2), andp(¢g,, ) < 10,00) (Vor, ),p(’l,[),?) X
1 pr—1 (¢Z), fork = 1,2.

The results presented in Table 2 indicate that the item patersiand the latent traits,
for all groups and time-points, were properly recoverethifair conclusions can be drawn
about the estimates of the latent trait population pararsetee Table 3.

Table2 Longitudinal multiple-group study: results for the estimated latent traits and ite

parameters.
Parameter Statistic
Corr  Abias Var RMSE
latent trait .994 121 .057 274
discrimination parameter .985 .036 .010 .105
difficulty parameter >.999 .029 .016 114

Table3 Longitudinal multiple-group study: results for the estimated latent trait jadipn

parameters.
Group Param. Truevalue M.est. Abias Var RM SE
1 16,5 1.00 974 .026 .001 .043
Hoys 2.00 1.939 .061 .009 112
Yoy, .90 .819 .081 .009 .123
Po,4 .95 916 .034 .017 .136
P01, .60 .608 .008 <.001 .019
2 H62, .20 .193 .007 .001 .026
sy 1.30 1.253 .047 .002 .066
Hoos 2.50 2.424 .076 .012 134
Yoy, .90 .891 .009 .004 .065
Yooy .80 .768 .032 .008 .097
Poos .85 .820 .030 .019 .142
P02 .80 .802 .002 <.001 .020
Yo, .88 .872 .008 <.001 .016

4.2 Parameter recovery and covariance selection for thgikoidinal single group
study

A second simulation study is presented concerning the pedoce of the RIMCMC
algorithm in recovering the parameters and matrix covagaselection of a longitudinal
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(single group) study. The set-up of this study correspoadié one in subsection 4.1, but
attention was restricted to the first group measured at threepoints. With respect to the
underlying covariance structure, three different sc@saniere studied:;

1. ARH covariance matrix Withg 4 gy = 0.80
2. ARMAH covariance matrix Withhg 4 rasamy = 0.80 and~yg = 0.80.

3. ARMAH covariance matrix Wity a garapy = 0.80 andvys = 0.88.

This setting of the covariance structure ensure that alhimdsubject latent trait
correlations are high. Note that the second scenario i/alguit to an ARH matrix with
PO(ARH) = Po(ARMAH)Ye, Since the ARH matrix is a particular case of the ARMAH
structure, whepg 4 raram) = - The structure of the incomplete test design and the values
ofthe item parameters can be foundin Table 1, considerag#is 1, 2 and 3. There were six
common items between test 1 and 2, and six between test 2 ahd Bem parameter values
varied in terms of discrimination and difficulty. Also, wevgaused the same specification
of hyperparameters, as presented in subsection 4.1, beside 1, =0, ¥, = ¢, =1
(see equations (28)-(30)).

Table 4 presents the average proportion of times that tieentedel was selected over
ten replications. It can be seen that the RIMCMC algorithmagé chose the true model
(i.e., the true model was visited at least 50% of the iterejpleading to high values for
the averaged proportions (higher than 73,9%). It showsttteaRIMCMC algorithm was
able to select the true model.

Table 5 shows the results for the latent traits and item perars estimates. Table 6
presents the results for the latent trait population patanestimates. The item parameters,
the latent traits and the population parameters, for allgsotime-points and scenarios, were
properly recovered. The results were less accurate thae tinothe previous subsection.
This was expected since, in this case, the true covarianttéxmas unknown and selected
concurrently with the estimation of the parameters. Notiw in scenario 3, where the
within-subject latent trait correlations are higher conggkto the others, the higher within-
subject latent trait correlations led to more accurateltgsu

Table4 Longitudinal single group study: averaged proportion of visits for eaobel

Scenario  True model Model

ARH ARMAH
1 ARH 977 .023
2 ARH .980 .020
3 ARMAH .261 .739

4.3 Implicit scaling (LMGIRT model) compared to posterior afjug (LIRT
model)

In the multiple-group model (MGM) of Bock and Zimowski (1998ubjects of different
groups are assessed using tests with a linked design, whemean (anchor) items are
used to link the scales of the different groups. In a joinhestion procedure, the estimates
of the latent traits are measured directly on the same seaig the linked design property.
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Table5 Longitudinal single group study: results for the estimated latent traits ancpéeameters.

Parameter Scenario Statistic
Corr Abias Var RMSE

Latent trait 1 .994 133  .052 274
2 .994 113 .058 271
3 .982 .028 .009 .094

Discrimination parameter 1 .993 135 .055 .280
2 .994 115 061 278
3 .999 .057 .019 135

Difficulty parameter 1 .967 .051 .009 .105
2 979 .030 .010 .099
3 .999 .044 016 .120

Table6 Longitudinal single group study: results for the estimated latent trait ptipala

parameters.
Scenario Time-point Truevalue M.Est. Abias Var RM SE
Ho
1 2 1.00 .956 .044 .001 .053
3 2.00 1.899 101 .003 114
2 2 1.00 974 .026 .001 .035
3 2.00 1.952 .048 .007 .095
3 2 1.00 971 .029 .002 .048
3 2.00 1.954 .046 .006 .089
Yo
1 2 .90 .825 .075 .006 105
3 .95 .850 .100 .004 119
2 2 .90 .881 .019 .003 .061
3 .95 973 .023 .013 .118
3 2 .90 .879 .021 .003 .061
3 .95 .937 .013 .012 .109
Po
1 .80 .804 .004 < .001 .006
2 .80 794 .006 < .001 .009
3 .80 .801 .001 < .001 .015
o
3 .88 .874 .006 < .001 .080

Furthermore, more accurate estimation results can benglataising the pooled information
from both groups compared to a single-group estimation apdsierior test equating
approach to get all parameter estimates on the same saalépkn and Brennan (2004).

Here, subjects from different groups were assessed ateafitf@ccasions. Each group
at each occasion was considered to be a single group. Tim {ed& estimates under the
LMGIRT model, using the linked design property, were alirested on the same scale.
In the single-group approach, the LIRT model was used fohn gagup, see Azevedo et al.
(2014), and all parameters were estimated for each grougcat@casion. Then, through
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the common item structure, the latent trait and item paranmestimates were transformed
to the same scale using the Mean-Sigma procedure as theérgpuomthod, see Kolen and
Brennan (2004).

The results of both procedures are compared to each otheédtbod 1 refer to a joint
estimation of all parameters on a common scale under the EMiGhodel, and Method
2 to the two-step approach, where first the traits and iterampaters are estimated under
the LIRT model, and second common scale estimates are elitasing the Mean-Sigma
procedure. Data were generated according to the setupilieddn subsection 4.1. The
sum of the absolute bias (Abias), and the relative absoliat (Rabias) were computed.
The results are given in Table 7 and Figure 1. It can be coedtdat the gain in accuracy
is substantial, mainly in the estimation of the traits, whising the pooled information
over groups. The split-up pattern, observed in the uppgatfigure (Figure 1) is, probably,
due to items, with no high item difficulties (see Table 1) samted to the subjects with the
highest latent trait values.

Table7 Sum of the absolute bias and the absolute relative bias for the parantetetes for the
two methods of scaling process (equating): Method 1 - joint estimation paedimeters
on a common scale under the LMGIRT model; Method 2 - first the parasmate
estimated under the LIRT model, and second common scale estimatdgained using
the Mean-Sigma procedure.

Parameter Abias Rabias
Method1 Method2 Method1l Method 2
discrimination parameter 6.62 12.10 5.97 10.85
difficulty parameter 5.50 13.38 42.14 75.66
latent trait 1289.87 3982.28 5605.28 10695.73

5 Real data analysis

5.1 Amsterdam Growth and Health Longitudinal Study

Data were analyzed from the AGHLS (Amsterdam Growth andtéangitudinal Study),
which is a multidisciplinary longitudinal cohort study,iginally set up to examine growth
and health among teenagers (Kemper et al., 1978). The AGHIlf{&cused on research
guestions related to relationships between anthropondtigkstra et al., 2011), physical
activity (Douw et al., 2014), cardiovascular disease rigkjristok et al., 2012, 2013),
lifestyle (Twisk et al., 1997, 1998), musculoskeletal tiggbsychological health (Hoekstra
et al., 2013) and wellbeing. The presented sample condigtd3participants who were
followed over the period 1993-2006 with a maximum of threasugement points for each
individual. A subscale of the STAI-DY questionnaire wasdigemeasure the latent variable
“state anxiety”, using a total of thirteen items.

Data from three years were used in the analysis; 1993, 200206, referred to,
respectively, as years 1, 2 and 3. Two groups were consideadd students (group 1) and
female students (group 2). Therefore, two groups were ssdexd three occasions (similar
to the design of the first simulation study). A total of 59 netledents and 72 female students
were assessed at each measurement occasion, providingsg@dses per item.
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Figure1l Posterior mean for the latent traits, discrimination and difficulty parametagu
scaling/equating methods 1 and 2.

In an explanatory analysis, the multiple-group model (MG@Wzevedo et al., 2012),
was used to estimate the latent traits given the responaedebrding to a cross-sectional
design. A total of six groups were considered (the male aademale groups measured
at each of the three occasions). The MGM for cross-sectidai@ assumed that students
were nested in groups and latent traits were assumed to bpaendently distributed over
occasions given the mean level of the group. SubsequerglrsBn’s correlations were
estimated for the pairs of estimated latent traits corredjpmy to years one to three. The
results are presented in Table 8. It can be seen that theions&d covariance pattern model
can describe the relation between traits over occasions.

Therefore, a longitudinal multiple group model (LMGM) witan unstructured
covariance matrix for males and females was considered 9%%e HPD intervals of the
correlation parameters showed that they were not signtficdifferent from each other over
occasions. Hence, an LMGM with common correlations oveasiomns for the latent traits
was assumed for the male and female group (i.e., an hetelastoe uniform covariance
structure for each group).

Furthermore, model-assessment tools developed by Azeeédm. (2014) were
considered to evaluate the fit of the model. The Pearsonqetdred discrepancy measure
(CHDM) and the predicted distribution for the scores, wesedito evaluate the fit of the
model. The overall Bayesian p-value (related to the CHDMp &f .3922 indicated that
the model fitted well. Figure 2 presents the observed, ptedliand the 95% credibility
intervals related to the score distributions. It can be skeaialmost all observed scores fall
within the credibility intervals, for each gender and yeejch confirmed that the model
fitted well. The results of the item-fit analysis are showniguiFe 3. When looking at the
chi-square statistics, it can be seen that all items weealfittell by the model.
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Figure 4 represents the population parameter estimate358a¢HPD credible intervals
of the population parameters for males and females. For dpathips, a slight growth in
the means from the first to the second year and a slight decfeas the second to the
third year were detected. Most likely due to the small sanspte, the estimated mean
differences were not significant. The measurement-ocoagpecific variances appeared
to be common over years for males and females. Furthernfeearrelations among the
latent traits appear to be equal for males and females. Idusion, the covariance matrix
of the latent traits for the males and for the females has-tioTeogenous variances and
correlations.

Finally, Figures 5 and 6 represent the posterior means aftl @&dible intervals
of the discrimination and difficulty parameter estimatespectively. The discrimination
parameter estimates indicate that, in general, the itemsadequate since 75% of them had
sufficient discriminating powerX .60). In addition, by comparing the difficulty parameter
estimates with the population mean estimates, it folloves the symptoms measured by
the items were likely to be observed for high latent traitesl, since all difficulty values
were significantly positive.

Table8 Pearson’s between-year correlations of the latent trait scores o mnatefemales.

Male Female
Year 2 Year 3 Year 2 Year 3
Yearl 0.616 0.499| 0.596 0.635
Year 2 - 0.709 - 0.748
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Figure2 Observed and predicted score distribution and 95% central credibledfger
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Figure6 Posterior means and HPD intervals for the difficulty parameters.

5.2 The Brazilian longitudinal educational study

This study was conducted from 1999 to 2003. At the start, 188li@ schools were
monitored, where 55 schools were selected for the progrdma.sempled schools were
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located over six Brazilian states with two states in eaclhige Brazilian regions (North,
Northeast, and Center West). The schools had at least 2@€rgtienrolled for the daytime
educational programs, were located at urban zones anedféar educational program to
the eighth grade. At baseline, a total of 12,580 studente s@mpled. From 2000 to 2003,
the cohort consisted of students from the baseline samptewene approved to the fifth
grade and did not switch schools. Students enrolled in tlie gifade but coming from
another school, and students not assessed in former gradsstated a second cohort,
which was followed the four subsequent years. Other coln@te defined in the same way.
The longitudinal test design allowed dropouts and inclusi@long the time-points. Besides
achievements, social-cultural information was collectéte selected students were tested
each year. The data has been analyzed by Azevedo et al. (86i4) the longitudinal
single-group IRT model, and they provide more details atiuatstudy.

Here, the mathematic performance of 1,500 randomly selestiedents, who were
assessed in the fourth, fifth, and sixth grade, were coresidéy total of 72 test items was
used, where 23, 26, and 31 items were used in the tests in fnaglgrade five, and grade
siX, respectively. Five anchor items were used in all thestst Another common set of five
items was used in the test in grade four and five. Furthernfioue,common items were
used in the tests in grade five and six.

To investigate the time-heterogeneous covariance stejdtio competing covariance
models were considered, the ARH and ARMAH, which have begriamented in the
MCMC-based algorithms. The RIMCMC algorithm results stobthiat the ARMAH model
was visited 80.1% of the iterations and, thus, this covaggrattern model was selected. To
have a valid sample size for the selected model of approeima000 iterations, a burn-in
of 16,000 iterations was used, a thin of 30 iterations, awtsh of 53,500 MCMC iterations
was considered.

The model assessmenttools developed by Azevedo et al.\@@td used to evaluate the
fit of the model. The overall Bayesian p-value (related toGHDM) of p = .36, indicated
a well-fitting model. Figure 7 represents the observed,ipted and the 95% credibility
intervals, related to the score distributions. It can bedkat most of the observed scores
fall within the credibility intervals, for each grade. Thesults of the item-fit analysis are
shown in Figure 8. When looking at the chi-square statistican be seen that almost all of
the items were well fitted by the model (57 of 72). Further gtigation could be considered
to look for a more appropriate item response function fordtieer 15 items, for example,
using an asymmetric function as presented in Bazan et ab§200

Table 9 represents the population parameter estimatess&adH® D credible intervals
of the three grade levels while accounting for a time-hegfenous correlation structure
among latent traits. A significant growth in latent trait meavas detected given the
non-overlapping credible intervals. As expected, the ngrawth of math achievement
over grade years was significant. The within-grade vaiighbivas relatively small, but
the between-grade correlations were significant. Eachinvékaminee latent growth was
computed, while accounting for the complex dependenciégwshowed a comparable
pattern compared to the mean latent growth over grade years.

Figures 9 and 10 represent the posterior means and posstaiodard deviations
of the item discrimination and difficulty parameters, regpely. The discrimination
parameter estimates are relatively low, where approxima@8s of the items have sufficient
discrimination powerX .60). In addition, by comparing the difficulty parametelirastes
with the population mean estimates, it follows that thestesdre relatively easy, since most
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of the difficulty values are below zero, which correspondghlowest value among all
latent trait population averages.

In Figure 11, the parameter estimates obtained using MCM@ the ARMAH
covariance matrix) were compared to the estimates obtaisied the RIMCMC algorithm
(which includes the selection of the covariance matrix téfatraits). It can be seen that
both posterior means and posterior standard deviations gugte similar. Therefore, the
model uncertainty related to the selection of the apprépiavariance structure did not
seem to affect the accuracy of the estimates (provided ¢hdioith cases the valid MCMC
samples had comparable sizes).

Table9 Population parameter estimates and 95% HPD intervals.

M ean
Grade Mean SD HPD 95%
four (reference) - - -
five 0.212 0.036 [0.137;0.291]
SiX 0.683 0.046 [0.594;0.776]
Variance
Grade Mean SD HPD 95%
Grade - - -
four (reference) 0.856 0.064 [0.732;0.990]
five 0.739 0.067 [0.617;873]

Corrélation (pg)
Grades Mean  SD HPD 95%
- 0.932 0.016 [0.899; 0.963]
Correlation (vy)
Grades Mean SD HPD 95%
- 0.855 0.013 [0.834;0.884]
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Figure1l Posterior means (mean) and posterior standard deviations (sd) fatehetraits,
discrimination and difficulty parameters using RIMCMC and MCMC algorithm.

6 Conclusionsand Comments

Alongitudinal multiple-group IRT model with group-specifime-heterogenous covariance
structures for the latent trait distribution has been psego The developed MCMC
algorithm can handle identification issues, the scalinggss and the selection of restricted
covariance patterns of latent traits across groups. Fumitve, an RIMCMC algorithm for
the joint parameter estimation and covariance pattermtetehave been proposed for the
single-group longitudinal IRT model.

The simulation studies showed a good recovery of the modeahpeters using MCMC-
based algorithms, and also showed that the correct undgitypivariance pattern model can
be selected using the RIMCMC method. In addition, it was sttbat the use of a posterior
equating method can be avoided, as expected, similar teethats obtained by Andrade
(2001) (who compared the multiple group model in combimatioth posterior equating
methods for cross-sectional data). Therefore, the prapaseleling approach will be very
useful for analyzing longitudinal multiple-group IRT dafdne proposed explicit modeling
of covariance patterns of latent variables could also beiliserelated works, for example,
in the longitudinal IRT models of Entink al. (2011) and vamddout et al. (2011), and in
the longitudinal single-group IRT models of von Davier and (2011), te Marveld et al.
(2006) and Embretson (1991).

Other model extensions of the LMGIRT model can be considéveabtain a more
realistic description of the longitudinal response datae ssumed multivariate normal
latent variable distribution can be adjusted to accountst®wness. For example, by
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using a multivariate skewed latent variable distributiormtodel asymmetric latent trait
distributions. The skewed latent variable approach of &dewet al. (2011) could be used.
The extension to nominal and ordinal response data can be nyatkfining a more flexible
item response model. Dropout and inclusion of examinees wet allowed in the current
data analysis. A multiple imputation method could be dgvettto support this situation, see
for example, Azevedo (2008). In general, the LIRT model caadapted to accommodate
incomplete designs, latent growth curves, collaterakimfation for latent traits, informative
mechanisms of non-response, mixture structures on latets and/or item and population
parameters, and flexible latent trait distributions, amathgr things. This requires defining
a general IRT model for the response data using flexiblegptiwt can include the different
extensions. The RIMCMC algorithm can be adapted to allowratbvariance structures
(as discussed in Azevedo et al. (2014)).

7 Appendix

7.1 ARH, ARMAH and UH matrices

The strutcture of the ARMAH is given by

Vo, V V011 V021, Y04 Y Vo, dj@kT’yekpé;:i
V 11}9&1 w9k279k "/)9k2 BRIV ¢9k2w9kT79kp9 B

V wekl Q/JGkT’VHkPaTk_Z V Tbekﬂ/’ow’wk PeTk,_S cee Ww

Wy, = . (6)

The ARH matrix is obtained by doing, = g, , V k in Equation (6). On the other hand,
the structure of the UH matrix is given by:

¢0k1 V 7/)9k1 V kazpak Y/ wem V kaTpak
V wekl V ¢0k2p6k sz s/ sz V wekTpek

\/wekl \/wng PO, \/Wm \/wng POy - - - kaT

Wy, =

k

(7)

7.2 Restricted Unstructured Covariance Structure

Following Azevedo et al. (2014) and McCulloch et al. (20@Q)arametrization of the latent
trait's covariance structure is considered. Therefore,fthlowing partition of the latent
traits structure is defined,

;1. = (0511, 05k2, -, Ojkr)" = (051, Oj1(1))"
He, = (u9k17M0k27 s 7lu’9kT)t = (/’I’ekl7l“l’9k(1))t7
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where, 0.1y = (Ojk2,---,0k7)"s Mo, = (H04ns-- - Mo,r)'-  Furthermore, the
covariance structure is partitioned as,

wo, = [ g Yo ], ®)
Yora) Yora
whereyg, = (Vo155 - - Vo,,.)" @nd
w9k2 o Yoy
\I’9k<1) = ©)
Vorar - -+ Vour

From properties of the multivariate normal distributioeekencher (2002), it follows
that

0ik1)|0jk1 ~ Nir—1) (17, ®r) (10)

Where’/'l'z = /""Bk(l) + d)@_kll’ltb@k(l) (6jk’1 - :u’@m) '
and

vy = Yo, — ’(/JéTkll,djek(l)’lpgk(l). (11)

This is equivalent to

*

Ok1) | Ojk1 = Moy, + \/ﬁk— (051 — 116,,) + Ejks (12)
Or1

whereg;, ~ Nip_1) (0, ¥}) andyp; is given by (13). Thatis, thé;(, are conditionally

multivariate normally distributed given the first compohér,;, with an unrestricted
covariance matrix. Equation (12) defines a linear multatariregression model with
independent variabl@ ;1 — wug,, ), interceptug,,, and regression parameters

Y = Yo,/ V Vo, (13)

The reparameterization in Equation (13) is considereditidlegthe restrictiony,, = 1,
in the MCMC and RIMCMC algorithms. In addition, the mat#) is an unstructured
covariance matrix without any identifiability restrict@rnsee Singer and Andrade (2000).
As a result, the common modeling (e.g., using an Inversdalvisprior) and estimation
approaches can be applied for Bayesian inference, see Gelnad (2004).

Therefore, the parameters,

CTH L (14)

define a one-to-one relation with the free parameters ofriggal covariance matrix¢g, .
As a result, the estimates of the population parametersaft group (combination of the
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original group with time-point) can be obtained from theirastes of the parameters in
Equation (14). The latent variable distribution of the refece group (the combination of
the original group with time-point) will be restricted toedtify the model. That is, the
mean and the variance of the latent trait distribution aredfito arbitrary values. In our
case, without loss of generality, the reference group iditkegroup measured at the first
occasion. This is done by re-scaling the respective vedtdaitent variable values to a
pre-specified scale in each MCMC (RIMCMC) iteration. Theratvariable population
distribution of subsequent measurement occasions fogtbigo are conditionally specified
according to Equation (12), given the restricted poputediistribution parameters of the first
measurement occasion. Subsequently, the covariance g@i@ranof the latent multivariate
model are not restricted for identification purposes, whidhfacilitate a straightforward
specification of the prior distributions.

7.3 MCMC estimation for the longitudinal MGM

Following Azevedo et al. (2014) and McCulloch et al. (20@@nditional conjugate prior
distributions are considered, see Gelman et al. (2004) atch&h (2006). Remembering
that the parameters of interest au%k,i/)(;m,'l,b;t) and¥;,k =1,..., K and conditional
conjugate priors are specified as,

te, ~ Nr(pok, Por) (15)
wem ~ IG(VOk,/iok) ) (16)
Y ~ Nr1 (B, Uy 7
R NIWT_l(l/\pk,\I’\pk), (18)

where IG (v, kox) stands for the inverse-gamma distribution with shape petamy;,
and scale parametep, and/Wr_1 (v, , P, ) for the inverse-Wishart distribution with
degrees of freedomy, and dispersion matri¥ g, .

For the item parameters, the prior is specified as

p (G | pe, ¥e) o< exp (—05 (G —me) ot

X (G — pme) ) 14,50y Wb, €(—00,00))5 (19)

where e and ¥ are the hyperparameters, aiidis the usual indicator function. The
hyperparameters are fixed and often set in such a way thatapegsent reasonable values
for the prior parameters.

As in Azevedo et al. (2014), to facilitate the FGS impleméatg and to account
for missing response data, an augmented data scheme wilhtbediced, see also
Albert (1992). It corresponds to sample normally distrdzltatent response dafa . =
(Z11115 s Z1repnr k)5 Qiven the discrete observed response data; that is,

Zijit| Ok, Civ Yijie) ~ N(aibjie — b, 1), (20)
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whereY;;, is the indicator ofZ; ., being greater than zero.

To handle incomplete block designs, an indicator variablE =
(I111, <oy Izepnpe icr)t 1S defined that defines the set of administered items for each
occasion and subject. This indicator variable is definedkais,

1, items administered for examineg belonging to the group
Lijit = at time-pointt (22)
0, missing by design

The not-selective missing responses due to uncontrolledtg\as dropouts, inclusion
of examinees, non-response, or errors in recoding data arkech by another indicator,
which is defined as,

1, observed response of examingédelonging to the group
Vijkt = at time-pointt on itemi (22)
0, otherwise

It is assumed that the missing data are missing at random (MAaRh that the
distribution of patterns of missing data does not dependhemuhobserved data. When the
MAR assumption does not hold and the missing data are narafpe, a missing data
model can be defined to model explicitly the pattern of mips@ss. In case of MAR, the
observed data can be used to make valid inferences aboubithel parameters.

For the sake of simplicity, let indicator matrlx . represent both cases of missing data.
Then, under the above assumptions, the distribution of ang¢ed dataZ . (conditioned
on all other quantities) is given by

K T ng

pz. 1y 1.6 . ¢ne) o [TTTTT 11 {eXp {—0-5 (zijit — aifjre + bi)z}

k=11=1j=14[T;j}=1
X]l(zijkhyijkt)}’ (23)

wherez_ andy. . arethe vectors with allaugmented data and observed respawailabe,
respectively, andl .., 4.,..) represents the restriction thaty, is greater (lesser) than
zero whery;;.; equals one (zero), according to Equation (20).

Given the augmented data likelihood in Equation (23) andpifier distributions in
Equations (19), (15), (16), (17), (18) and (2), the jointteasr distribution is given by:

(0., ¢ pe, ",z Ly )oxp(z. |y .., 1..,0.,¢n9)p6. |ne)
x p(Clue, ¥e)p(ne), (24)

where

K ng

p(0..1ne) = [ T1 »(6;x.Im6,), (25)

k=1j=1
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I
p(Clue, o) = [ p(Gilie, ®o),

i=1

k K
p(ne) = [[ p(me,) = T (ke )p(ta,, )p(v)p(¥}),
k=1

k=1

and 0. = (0111, . Onse )’y Mo = (M, V' % = (.. b )t and @* =
(®q,..., ). The posterior distribution, given by equation (24), hasrdractable form
but, the full conditionals are known and easy to sample fidiore specifically, we have:

* Step 1: Simulate the augmented data usifigs.|(.), according to Equation (20).

» Step 2: Simulate the latent traits using

01.1(.) ~ Nr(Pg,, 0,1, o,,)

where
~ -1
0= ablr+ Y azij+ %y pe,,
il Lijre=1 illijre=1
-1
~ 2 —1
o, = Y. ailr+¥, :
i|Lijre=1
Zijk. = (2ijk1, -+, zijer)t, 1 is @ unit vector of sizd” and I is a identity matrix of
orderT'.

« Step 3 : Simulate the item parameters by usiog(.) ~ N (¥, ¢;, ®¢,), mutually
indepedently, where

Ci=H! z + Yo,
- ~1
Ve, = (Hsz + ‘I’El) )
H; =[0. —1]el;, (26)

wherez; . = (z1.,...,z1..)% 1, is the indicator vector of item, which indicates the

subjects responding to itefrand “e" is the Hadamard product.
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» Step 4 : Simulate the population mean vectors, foe 1, ..., K, by using

H611 |() ~ N(/ijuwuk) 5
l'l’ek(l)|</’69k17 ()) ~ NT(ﬁek(T_1)7q’[.Lk(T_1)) )

where
- (T—-1
ﬁek = \Il;kl Z Ojk + ‘I’akllmk = (ﬁ@kuﬁekz, ey ﬁ@kT)t (,Uekpﬁgk )) )
j=1
~ (T—1)
= -1 —1\—1 Yuy, Yy,
U, = (g + %) l'lli:,:kl) \I,(IEF 1) ]
= ~ ~ ~ ~ ~(T—-1
=Wy, 1o, = (F6y1 5 Hys - - - a,u'9kT) (.u9k1a/1'(0k )) )
T—1 ~
l'l'ek(T n (Bk ) er uj;: 1)(/’L9k1 — Hoy) »
T AL A

* Step 5 : Simulate the first time-point variance, fér=1, ..., K, using g, |(.) ~
IG Ty, Rox ), Where

~ ng + Yok

Vg1 = 5

2t (O5kr — po,)* + Kok
Rk1 = .

2

» Step 6 : Simulate the vector of covariances, fdr=1,..., K, using ¥} ~
N1 (W, Py, , ¥y, ), Where

1/2 _
¢ ¢9k1/ Z l'l'ek(l)) (ejkl - M9k1) + ‘Ilqpi“d’k)

-1
N

$ -1
Uy, = | Yo (T5)” Z ik — o). + W

* Step 7 : Simulate the covariance matrix, fok =1,..., K, using ¥; ~
IWT—l(/V\‘I’k7‘II‘I’k>1 where

Vg, =Nng + Vg, ,

~

n
Ty, =g, + > (05k0) — Ho) (k) — Bo,))
j=1

t
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e Step 8 : Calculate thte original covariance matrix, for= 1, ..., K, using (8) and
\Ilok(l) =W+ ¢Z¢Z :
» Step 9: Calculate the population variances, fér= 1, ..., K), using

(kaza B kaT)t = 1/’;k(1) = Dzag( Z + 1/)Z¢Zt) ’ (27)
whereDiag extracts the main diagonal of a square matrix.

* Step 10 : For (k =1,...,K), depending on the restricted covariance structure of
interest, transformations are defined for unrestrictedmaters to facilitate draws of
restricted model parameters. These details can be foundeuetlo et al. (2014).

7.4 RJIMCMC algorithm for the longitudinal one-group model

The Steps 1 - 10 of the RIMCMC algorithm are easily obtainethfthe developments
presented in subsection 7.3 considering K=1. To implemensStep 11 of the RIMCMC
algorithm we need to define prior distributions for each peater of the covariance structure
corresponding to the competing models (i.e., the ARH and ARIMhodels). We consider:

pocArm) ~ N=1,1)(1hp, ¥p) (28)
poarMAH) ~ N—1,1) (10, Vp) (29)
Yo ~ N(—l,l)(ﬂ'yv '(/J'y)v (30)

whereN(, (1, v) stands for a normal distribution truncated to the intefwab), 1 and
1 are, respectively, the mean and the variance of the origorahal distribution, ang, )
the correlation parameter of the covariance structure (.).

For the RIMCMC algorithm presented in subsection 3.2, whamsidering two
covariance matrices as the possible states of the chairuticase ARH and ARMAH
matrices), and given the prior distributions (28), (29) é31@), the Step 11 of the RIMCMC
algorithm is given by:

1. If the current model is ARH

* Step 1 Simulateyy, = u ~ U(0, 1) and calculat@gaparamy = poarmto

2
* Step 2 Generate the matri® g 4 garamy bY USING(pg(arr am), 70)" @ndepg (the
vector with current simulated values for the populatioriaraces).

 Step 3 Calculate the acceptance rate:

B exXp {70-5 Z?:l (6. — “O)t ‘1’5(1,431\4,41{) (6. — HB)}
y = X
(ARH,ARM AH) 055" (o P— P
exp 52 25-1 (05— pe) O(ARH) (6. — 1o)

2
exp { =92 (pocanniam — 1p)” pexp {22 (0 = 1,)* }

exXp {*% (P@(ARH) - Hp)2}

1 [Woanramam| ">

| Po(arm)|/?
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Accept the model ARMAH with probability mary ArMAH) =
min { R aru, armam), 1}, otherwise, continue with ARH.

2. If the current model is ARMAH

* Step 1 Calculateu = vp andpgarm) = 2pg(ARMAH) — Vo

* Step 2 Generate the matriW g 4 gy DY USINGpg (4 rE) @ndipe (the vector with
current simulated values for the population variances).

 Step 3 Calculate the acceptance rate :

exp {—0~5 31 (05 — 1) Wolipm (65 — Ne)}
exp {70-5 Z?:l (6. — He)t ‘1’5(1,431\4,41{) (8;. — HB)}

€xXp {—% (Pe(ARH) - Mp)2}

X

RarvAm ARH) =

5 2 .
eXp {—?Tp (Pe(ARMAH) - #p) } eXp {—275 (7o — /iw)z}

—— | Woarm| "/
X 7T¢fy )‘—n/2

|WoarNAH

Accept the model ARH with probability maryam arH) =
min { R araam, arm), 1}, otherwise, continue with the ARMAH.
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