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This document provides a step by step analysis of the CAPS and AEQ data using the Compensatory and 
Noncompensatory Multidimensional Randomized Item Response Models. The summarized output and 
description of the model is in Fox et al (2013, BJMSP). Here, a more detailed description is given of the 
function calls and the output. This document is not meant to serve as program manual, since it only 
provides information about the specific model analysis as described in the paper.  
 
REAL Data Study: The R-work directory with stored data objects is called “DataObjects.Rdata” 
load("DataObjects.Rdata") #load data set 
 
The response matrix Y is defined to be N (793) times K (17) where the response options are integers  

from 1-5. The data object X contains a column with all ones (intercept), an indicator variable that equals 

zero when subject responded using the randomizing device (RRT = 0) and one when responded directly. 

The third column of X is an indicator that equals one when subject is female and zero when  male. When 

there are no explanatory variables, an intercept still needs to be defined through a column of ones.   

An RR object is made that specifies which response is answered via the randomized response procedure 

(RR=1) and which one via direct questioning (RR=0). 

RR <- matrix(0,ncol=K, nrow=N) 

RR[which(X[,2]==0),1:K] <- 1   

The program is loaded via 

## load MIRT-RR script 

source("MIRT-RR.REAL.R") 

The two-factor (Q=2) model is estimated through the following call making XG=50,000 iterations: 

outq2  <- MIRTRR(Y,X,Q=2,XG=50000,RR)   

Object outq2 will contain the sampled values from the posterior distributions. We can summarize results 

by computing means and variances.   

To estimate the factor loadings, we use a burn-in of 5,000 iterations: 

aa <- matrix(apply(outq2$MA[5000:50000,],2,mean), ncol=2, nrow=K) 

The factor loadings can be standardized as follows 

aa <- aa/sqrt(apply(aa**2,1,sum)) 

The factor loadings are defined to be positive for their main dimension, depending on the solution 

found. (When rescaling multiply theta with -1 and regression effects with -1).   



aanames <- c("Item  1 ","Item  2 ","Item  3 ","Item  4 ","Item  5 ","Item  6 ","Item  7 ","Item  8 ","Item  9","Item  10 ","Item  11 

","Item  12 ","Item  13 ","Item  14 ","Item  15 ","Item  16 ","Item  17 ") 

names(aa) <- NULL 

rownames(aa) <- aanames 

plot(aa[,2]/mdisc2,aa[,1]/mdisc2,xlab="Sexual Enhancement Expectancy ",ylab="Socio-Emotional/Community Problems", 

main="Estimated Standardized Factor Loadings",xlim=c(-0.25,1.1), ylim=c(.25,1.1)), text(aa[,2]/mdisc2, aa[,1]/mdisc2, 

row.names(aa), cex=0.8, pos=4, col="black")  

abline(a=0,b=0,lwd=.75,lty=3) 

This plot corresponds with Figure 2, which displays the estimated factor loadings. 

Other estimates can be retrieved as follows and are given in Table 3 under column “Two- Factor”: 

# Covariance matrix Person parameters 
matrix(apply((outq2$MSigmaP[10000:50000,]),2,mean),ncol=2) # posterior mean 

       [,1]       [,2] 

[1,]  0.98  0.65 

[2,]  0.65  0.98 

sqrt(matrix(apply((outq2$MSigmaP[10000:50000,]),2,var),ncol=2)) #posterior standard deviation 

sqrt(matrix(apply((outq2n$MSigmaP[10000:50000,]),2,var),ncol=2)) 

           [,1]       [,2] 

[1,] 0.05 0.07 

[2,] 0.07 0.05 

#Covariate Effects Factor One 
apply(outq2$MBReg[10000:50000,,1],2,mean)  # posterior mean effects 

0.00 (Intercept) -0.20 (Direct questioning) -0.00 (Female) 

sqrt(apply(outq2$MBReg[10000:50000,,1],2,var))  # posterior variances 

0.00 (Intercept) 0.09 (Direct-questioning) 0.06 (Female) 

#Covariate Effects Factor Two 
apply(outq2$MBReg[10000:50000,,2],2,mean)  # posterior mean effects 

0.00 (Intercept)  -.22 (Direct questioning)  .03 (Female) 

sqrt(apply(outq2$MBReg[10000:50000,,2],2,var))  # posterior variances 

0.00 (Intercept) .06 (Direct questioning) .04 (Female) 

#-2log-likelihood  
mean(outq2$Mloglik[10000:50000])*(-2) 

#Item thresholds 
matrix(apply(outq2$Mbeta[10000:50000,],2,mean),nrow=K,ncol=4) 

 

 

 



The three-factor (Q=3) model is estimated through the following call making XG=50,000 iterations: 

outq3n <- MIRTRR(Y,X,Q=3,XG=50000,RR)   

aa <- matrix(apply(outq3n$MA[10000:50000,],2,mean),ncol=3,nrow=K) 

aa <- aa/sqrt(apply(aa**2,1,sum)) 

These factor loadings are given in Table 2, where they are scaled to be positive for the main dimension 

they relate to.   

Without giving again all results, the parameter estimates in Table 3 under the label Three Factor follow 

from the following commands:  

## Covariance matrix Person parameters 
matrix(apply((outq3n$MSigmaP[10000:50000,]),2,mean),ncol=3) # posterior means 

sqrt(matrix(apply((outq3n$MSigmaP[10000:50000,]),2,var),ncol=3)) #posterior variances 

#Covariate Effects and Variances Related to Factor One 
apply(outq3n$MBReg[10000:50000,,1],2,mean) 

sqrt(apply(outq3n$MBReg[10000:50000,,1],2,var)) 

#Covariate Effects and Variances Related to Factor Two 
 apply(outq3n$MBReg[10000:50000,,2],2,mean) 

 sqrt(apply(outq3n$MBReg[10000:50000,,2],2,var)) 

#Covariate Effects and Variances Related to Factor Three 
apply(outq3n$MBReg[10000:50000,,3],2,mean)  

sqrt(apply(outq3n$MBReg[10000:50000,,3],2,var)) 

#-2log-likelihood  
mean(outq3n$Mloglik[10000:50000])*(-2) 

## Define variable using effects-coding for clustering of students in universities 

X3 <- matrix(0,ncol=3,nrow=N) 

X3[which(data$SCHOOL==1),1] <- 1  #Elon 

X3[which(data$SCHOOL==2),2] <- 1  #GTCC 

X3[which(data$SCHOOL==3),3] <- 1  #Wake Forest 

X3[which(data$SCHOOL==4),1:3] <- -1  #UNCG 

X31 <- matrix(c(X[,-3],X3),ncol=5,nrow=N) 

To obtain the results in Table 4. 

outq2sch <- MIRTRR(Y,X31,Q=2,XG=50000,RR) #Two-factor model 

The results are summarized in the same way as above. 

outq3sch  <- MIRTRR(Y,X31,Q=3,XG=50000,RR) #Three-factor model 

The results are summarized in the same way as above. 



Explanation R-Code and additional results. Compensatory and non-compensatory 

Multidimensional Randomized Item Response Models. 

 

This following describes the steps to arrive at the results presented in the section “Simulation Study” in 

the paper Fox, Klein Entink and Avetisyan (BJMSP, 2013). Furthermore, it provides some additional 

results that were not presented in the paper.  

 

Step 1. Loading the R scripts 

The following R-scripts are required: 

1. Simdata.R. Contains the function to simulate data corresponding with the multidimensional 

randomized response model. Source this file in R via source(‘simdata.R’).  

2. MIRT-RR.Simu.R Contains an adapted version to estimate the presented model that complies 

with the identification restrictions used to simulate the data. Source this file in R via 

source('MIRT-RR.Simu.R'). 

3. Simulation study.R This file contains the specific R calls (and instructive comments) to run 

generate data, run the model and obtain the results.  

 

Step 2. Simulate data 

First, the number of desired items, persons, dimensions, response categories and covariates have to be 

initialised. In R, run:  

N <- 750 ## number of test takers 

K <- 20 ## number of items 

C <- 4 ## number of response categories 

Q <- 2 ## number of latent dimensions 

P <- 3 ## number of covariates (including 1s for the intercept) 

 

Then generate data with a call to the simdata() function as follows: 

# generate data 

sim <- simdata(N,K,C,Q=2,P) 

## check the simulated data 

sim$A # presents the loadings 

sim$B # presents the simulated regression coefficients 

sim$SigmaP # simulated covariance matrix person parameters.  



Step3. Running the model 

The model was ran twice to be able to obtain certain MCMC convergence diagnostics with a call to the 

MIRTRR() function. The output was stored in the list objects out1 and out2. In R run: 

## run the model twice 

out1 <- MIRTRR(Y=sim$Y,X= sim$X,Q=2,XG=10000) 

out2 <- MIRTRR(Y=sim$Y,X= sim$X,Q=2,XG=10000) 

 

Step 4. Analyzing the output 

 All the steps below can also be found in the simulation study.R script. The following commands were 

used to obtain the results presented in the tables: 

 

The estimates for the covariance parameters: 

## EAP estimates of the residual covariance matrices 

colMeans(out1$MSigmaP) 

 

## obtain SDs of covariance parameters 

apply(out1$MSigmaP,2,sd) 

 

## You can make some traceplots of specifc covariance parameters as follows:  

plot(out1$MSigmaP[,1]) 

plot(out1$MSigmaP[,4]) 

 

## Obtain covariate regression parameter estimates and compare with simulated values 

colMeans(out1$MBReg) # EAPs 

apply(out1$MBReg,2,sd) # SDs 

sim$B ## simulated values 

## Making the traceplots as shown in the paper, with horizontal line depicting the true, simulated value. 

Run the code below as follows and the figures will appear (also presented in Figure 1 below.)  



trueB <- c(sim$B)[c(2,3,5,6)] ## the simulated values 

BB <- out1$MBReg[5001:10000,,] ## obtain the last 5000 samples from the MCMC chain.  

BB1 <- cbind(BB[,2:3,1],BB[,2:3,2]) ## restructure data matrix for ease of plotting.  

#BB1 <- cbind(matrix(BB,ncol=1),sort(rep(1:4,1000))) 

BB <- out2$MBReg[5001:10000,,] 

BB2 <- cbind(BB[,2:3,1],BB[,2:3,2]) 

#BB2 <- cbind(matrix(BB,ncol=1),sort(rep(1:4,1000))) 

 

#cbind(rep(1:1000,4),BB) 

#BB <- data.frame(BB) 

#p <- ggplot(BB, aes(x=BB[,1],y=BB[,2])) 

 

y.name <- expression(gamma[11]) 

par(mfrow=c(2,2)) ## 2-by-2 layout.  

plot(BB1[,1], type ="l", col = "red", xlab = "Iteration", ylab = y.name) 

lines(BB2[,1],col = " blue")             

abline(trueB[1],0, cex = 3) 

y.name <- expression(gamma[12]) 

plot(BB1[,2], type ="l", col = "red", xlab = "Iteration", ylab = y.name) 

lines(BB2[,2],col = " blue")             

abline(trueB[2],0) 

y.name <- expression(gamma[21]) 

plot(BB1[,3], type ="l", col = "red", xlab = "Iteration", ylab = y.name) 

lines(BB2[,3],col = " blue")             

abline(trueB[3],0) 

y.name <- expression(gamma[22]) 

plot(BB1[,4], type ="l", col = "red", xlab = "Iteration", ylab = y.name) 

lines(BB2[,4],col = " blue")             

abline(trueB[4],0) 

 



 

Figure 1: Traceplots for the regression coefficients 

 

With the coda R package, convergence diagnostics can be obtained. We do this for the MCMC chains of 

the regression coefficients for illustration. The results are presented in Table 1 below.  

## Some convergence checks using the coda package.  

library("coda") 

BB1 <- as.mcmc(BB1) 

BB2 <- as.mcmc(BB2) 

gelman.diag(list(BB1,BB2)) 

 

 

 

 



Table 1: Gelman’s diagnostics for the traceplots of the regression coefficients 

       Point est. Upper C.I. 

Gamma_11       1.01       1.03 

Gamma_12       1.01       1.02 

Gamma_21       1.01       1.04 

Gamma_22       1.01       1.05 

 

Multivariate psrf 

1.02 

 

 

To look at the  estimated versus the simulated values of the person parameters, we generated Figure 2 

below as follows:  

 

### Make plots of simulated versus re-estimated ability parameters.  

par(mfrow= c(1,2)) 

x.name <- expression(theta[1]*-simulated) 

y.name <- expression(theta[1]*-EAP) 

plot(sim$theta[,1],out1$EAPtheta[,1], xlab = x.name, ylab = y.name) 

abline(a=0,b=1,col="red") 

x.name <- expression(theta[2]*-simulated) 

y.name <- expression(theta[2]*-EAP) 

plot(sim$theta[,2],out1$EAPtheta[,2], xlab = x.name, ylab = y.name) 



abline(a=0,b=1,col="red") abline(a=0,b=1,col="red") 

 

Figure 2: Simulated and re-estimated (EAP) ability parameters for the 750 persons. Red line is the 

identity line.  

 

Similarly, a plot of the simulated versus the re-estimated  factor loadings was made, as shown in Figure 

3 below.  

## Plots of simulated versus re-estimated loadings.  

plot(sim$A[2:20,1],colMeans(out1$MA)[2:20], xlab="simulated loadings dim 1", ylab="EAP loadings dim 

1") 

abline(0,1) 

 

plot(sim$A[2:20,2],colMeans(out1$MA)[22:40], xlab="simulated loadings dim 2", ylab="EAP loadings 

dim 2") 

abline(0,1) 



 

Figure 3: Simulated and re-estimated loadings for the two dimensions.  

 

 

 


