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Abstract 
In educational and psychological studies, psychometric methods are involved in the measurement of 

constructs, and in constructing and validating measurement instruments. Assessment results are 

typically used to measure student proficiency levels and test characteristics. Recently, Bayesian item 

response models received considerable attention to analyze test data and to measure latent variables. 

Bayesian psychometric modeling allows to include prior information about the assessment in addition to 

information available in the observed response data. An introduction is given to Bayesian psychometric 

modeling, and it is shown that this approach is very flexible, provides direct estimates of student 

proficiencies, and depends less on asymptotic results. Various Bayesian item response models are 

discussed to provide insight in Bayesian psychometric scaling and the Bayesian way of making 

psychometric inferences. This is done according to a general multilevel modeling approach, where 

observations are nested in students and items, and students are nested in schools. Different examples 

are given to illustrate the influence of prior information, the effects of clustered response data following 

a PISA study, and Bayesian methods for scale construction.  

Keywords 
Bayesian, Bayesian psychometric scaling, Bayesian scale construction, IRT, multilevel IRT, item selection, 

plausible values.  
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Introduction 
 

Within the scope of psychometrics, measurement models are used to assess student proficiency levels 

and test characteristics given assessment results. The assessment results are most often response data, 

which are usually categorical observations. Therefore, a non-linear or a generalized linear modeling 

approach is necessary to define a relation between the item-response observations and the test and 

student characteristics.  

Such item–based response models received much attention, where student proficiency is considered to 

be a latent variable. Multiple items are used to measure the latent variable, and a scale measurement is 

done using an item response (measurement) model. Within the framework of item response theory, 

response models are defined that describe the probabilistic relationship between a student’s response 

and the student’s latent variable level being measured. 

Recently, Bayesian item response models have been developed to analyze test data and to measure 

latent variables. In Bayesian psychometric modeling, it is possible to include genuine prior information 

about the assessment in addition to information available in the observed response data. Inferences can 

be made based on the observed data and additional information, which can be important in non-

standardized settings, complex experimental designs, or complex surveys, where common modeling 

assumptions do not hold. As prior information, uncertainties can be explicitly quantified which might 

relate to different models, parameters, or hypotheses.    

The Bayesian modeling approach is very flexible and provides direct estimates of student proficiencies. In 

addition, by modeling the raw observations, a direct interpretation can be given of the model 

parameters and their priors. Furthermore, for small sample sizes, the flexible Bayesian approach 

depends less on asymptotic results and is therefore very useful for small samples (e.g., Lee and Song, 

2004).  

In this chapter, Bayesian psychometric modeling is introduced. It is shown that an item response 

modeling framework can be defined that can adapt to real case scenarios. Prior information can be 

incorporated in the analysis, which adds to the data information, and Bayesian inferences are based on 

the total information available. The Bayesian response modeling framework comes with powerful 

simulation-based estimation methods, which supports the joint estimation of all model parameters given 

the observed data. The work of Albert (1992), Albert and Chib (1993), Bradlow et al. (1999), Fox (2010), 

Fox and Glas (2001), Patz and Junker (1999a, 1999b), and Patz et al., (2002), among others, advocated 

simulation-based estimation methods for psychometric models and stimulated their use. 

In this introduction, Bayesian item response models are discussed to provide insight in the various 

measurement models and the Bayesian way of making psychometric inferences. A hierarchical item 

response modeling approach is discussed, where observations are nested in subjects and items (e.g., 

Johnson et al., 2007). Priors are used to define the nested structure of the data by modeling item and 

student parameters in a hierarchical way. Dependencies between observations within the same cluster 

are taken into account by modeling the nested structure of the response data. The development of 
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Bayesian item response models started with the work of Mislevy (1986), Novick (1973), Swaminathan 

(1982, 1985), Tsutakawa (1986). In the 1990s, this approach was further developed by Kim et al., (1994) 

and Bradlow et al., (1999), among others.  

After introducing  unidimensional item response models for dichotomous responses, it is shown how to 

make inferences from posterior distributions. Then, specific attention will be given to the influence of 

priors on the statistical inferences. It is shown that informative priors will influence the posterior results 

more than uninformative priors, where the influence is estimated by considering the amount of 

shrinkage of the posterior estimate to the prior estimate. In estimating student proficiencies, different 

simulation studies are done to illustrate the prior influence.    

Then, an additional clustering of students is discussed, where performances from students in the same 

cluster are more alike than from different clusters. This leads to an extension of the Bayesian item 

response model to more than two levels (i.e., item response defines level 1, and student level 2) is 

considered a multilevel IRT model. A classic example is educational survey data collected through 

multistage sampling, where the primary sampling units are schools, and students are sampled 

conditional on the school unit. Following Fox (2010), Fox and Glas (2001), and Aitkin and Aitkin (2011), 

among others, a complete hierarchical modeling framework is defined by integrating the item response 

model with the survey population distribution. Besides item-specific differences, this multilevel item 

response model takes the survey design into account, the backgrounds of the respondents, and clusters 

in which respondents are located.  

Finally, advantages of Bayesian item response models in computer based testing are discussed. The 

introduction of empirical prior information in item parameter estimation reduces the costs of item bank 

development. Besides, in Bayesian computerized (adaptive) testing, test length can be reduced 

considerably when prior information about the ability level of the candidates is available. Methods to 

elicit empirical priors are presented, and an overview of Bayesian item selection is given.  

Bayesian Item Response Models Using Latent Variables 
In educational measurement, student proficiency cannot be measured directly with one observed 

variable. More observations are necessary to measure the construct. Usually a range of items are 

required to assess the construct. In item response theory and structural equation modeling, constructs 

are represented by latent variables, which are defined by observations from multiple test items.   

Item response theory (IRT) models are very popular for modeling relationships among latent variables 

and observed variables. Basic IRT models can be found in van der Linden and Hambleton (2000), which 

provide a wide range of models for different standard test situations.   

In common assessments, students are assessed and their performances are observed using a test. Each 

response observation is considered to be an outcome of a random response variable, denoted as ikY , 

where index i refers to the student and k to the item. The observations are influenced by item k’s 

characteristics and student i’s proficiency level. The psychometric measurement of student proficiencies 
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is usually done using an item response theory model. This model is based on a probabilistic relationship 

between the performance and the proficiency. A probabilistic relationship is defined to reflect 

uncertainty about the observed responses.  

Several factors (e.g., subject, group, and item characteristics) influence the observed response. Student 

observations cannot be interpreted as fixed entities, since a high-proficiency student can make a mistake 

once in a while and a low-proficiency student may guess an item correctly. Furthermore, the limited 

number of assessment items can be used to measure students proficiencies up to some level of 

accuracy. And the uncertainty due to the limited number of items will be captured by the stochastic 

modeling of the item responses. The limited number of students in the assessment will provide 

information about the test characteristics but up to some level of accuracy.  

The uncertainty induced by the sampling of students is modeled through a population distribution. This 

population distribution characterizes the distribution of students in the population from which students 

are sampled. In a straightforward way, students are sampled through simple random sampling, such 

students are assumed to be independently selected, where each member of the population has equal 

probability of being selected.      

Although students are commonly assumed to be sampled through simple random sampling,  

observations are said to be nested within students. In practice, observations from one student are more 

alike than observations from different students. The response observations of each student are 

correlated but given the proficiency level, they are assumed to be conditionally independently 

distributed. The proficiency is explicitly modeled as a latent variable since it is the primary object of 

measurement and/or to model the within-student dependencies. The latent variable representing 

student performance is measured using multiple items.       

Let i define the proficiency level of student i. When considering items with two response options, each 

item has specific item characteristics, for item k denoted as ak and bk, representing the level of 

discrimination and difficulty. Then, the success probability of student i  for item k, or the probability of 

endorsing item k, according to the two-parameter IRT model is given by, 
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  
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 (1.1) 

The observed value for random variable ikY is one and coded a success. A zero observed value would 

indicate a failure, which is modeled by one minus the success probability. The function (.) denotes the 

cumulative normal distribution function. For the logistic model, when D=1.7, a metric close to the 

normal-ogive (Probit) model is specified. A typical special case is the Rasch model or one-parameter 

model, where al item discriminations are equal to one.   
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Prior Specification of Bayesian IRT Models 
The observed responses are modeled at the lowest level (i.e., observational level, level 1). At this level, a  

likelihood function can quantify how well the model fits the data, given values for the student and item 

parameters. This likelihood component describes the distribution of the data given the lower level model 

parameters. In Bayesian modeling, the lower level model parameters are modeled using so-called prior 

distributions.  

The prior distributions are used to specify information about the student and item parameters. This 

information is not based on the data modeled at level one, but typically include information about the 

parameter region, the survey design, relationships with other model parameters, and so forth. Any 

information about the assessment can be included and it can lead to more accurate inferences since the 

prior information simply adds to the data information.    

Assume a simple random sampling design for the students, and let students be sampled from a normal 

distribution such that  

  2~ ,i N     , (1.2) 

where the population mean represents the average level and the population variance the variability 

between students. The normal distribution is a symmetric distribution, which means that students of 

above and below-average performance are expected to be selected with equal probability. The normal 

distribution does not have wide tails, which means that students with extreme proficiency levels are rare 

and unlikely to be sampled.  

The test items are assumed to measure a single construct. A variety in item difficulties are necessary to 

measure accurately construct levels at different positions of the latent scale. The items are nested in the 

test and they reflect the subject matter of the test. Depending on the content of the test, items can show 

strong inter-item correlations. The test is supposed to cover the content of the domain to be assessed. 

Subsequently, test scores are generalized to the test domain by assuming that test items are a random 

sample from an item bank. The item bank is supposed to contain many items which cover a specific test 

domain. Therefore, a prior for the item parameters can be interpreted from a sampling perspective, 

where items are sampled from an item population. The correlation among items in the test can be 

modeled by a hierarchical prior, where the item characteristics are assumed to vary from the general 

test characteristics. In that case, item difficulty parameters are assumed to be normally distributed,         

  2~ ,k b bb N   , (1.3) 

where b and 2

b are the average test difficulty and the variability in item difficulties in the test. A 

comparable prior can be defined for discrimination parameters, except that they are assumed to be 

positive such that a log-normal prior distribution is defined,  

    2log ~ ,k a aa N   . (1.4) 
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On the logarithmic scale, the average level of discrimination and the between-item variability in test 

discrimination is given by a  and 2

a , respectively.   

The prior distributions in Equation (1.3) and (1.4) define random item parameters. The item parameters 

are no longer assumed to be fixed as in traditional (frequentist) IRT modeling. However, this sampling 

interpretation does not always hold, since it may not always be possible to sample items that cover a 

specific test domain. Only when the test domain is specifically defined a representative sample can be 

drawn. For example, to design a spelling test, a dictionary would cover the domain to sample from. The 

sampling perspective can be generalized to include item generation or item cloning, where each item 

generated is a draw (e.g., Geerlings, van der Linden, and Glas, 2011). In this case, each item can be 

generated or cloned and will show some variation in characteristics compared to the original test item. 

Besides the sampling argument, random item parameters can also be defined from an uncertainty 

perspective, since the prior expresses the uncertainty in item characteristics before seeing the data. 

Variation in item difficulties is expected with respect to the general test difficulty, and this variation in 

item difficulties is specified through the variance term. Furthermore, the prior mean and variance 

parameter can be modeled themselves to express uncertainty about the specific test difficulty and the 

between-item variability. The modeling of prior parameters is done using hyper priors. More thorough 

discussion about random item parameters can be found in Glas and van der Linden (2003), Fox (2010), 

and De Boeck (2008).   

Bayesian Parameter Estimation 
Inferences are based on posterior distributions, which are constructed from the data (i.e., sampling 

distribution) and prior information (i.e., prior distribution). The posterior distribution contains all 

relevant information. To introduce this approach consider the latent variable i , representing the 

proficiency level of student i. Assume that the item characteristics are known. The posterior distribution 

is derived from the data information according to an IRT model M, denoted as  ,i ip MY , and the 

prior distribution, denoted as  2; ,ip     . According to Bayes’ theorem, it follows that      
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 (1.5) 

where the term  ip MY  does not depend on the proficiency variable and can be treated as a constant. 

The posterior is proportional to the likelihood function times the prior distribution. The semicolon 

notation in the prior distribution states that the remaining parameters are fixed and known, instead of 

treating them as random and conditioning on some specific values. It follows that the sample 

information enters the posterior information through the likelihood, which only depends on the sample 

size.  
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When increasing the number of assessed items, the sample information will dominate the prior 

information, and the prior information will play a less important role in the estimation of the student 

proficiency. When the number of assessed items is small or moderate, the prior distribution becomes 

more important, and the sample information will play a less important role. In this case, the posterior 

distribution depends less on asymptotic theory and given accurate prior information reliable results can 

be obtained given small samples. Informative priors are required for moderate to small sample sizes, 

while non-informative priors are often used when there is sufficient data information. In practical 

settings, good prior information might be available from experts, similar analyses, or past data samples.  

Posterior-based measurement of student proficiency 
To give a simple example, consider a test, where all items have equal difficulty and discrimination 

characteristics, which are zero and one respectively. Interest is focused on the ability measurement of a 

student.  

Let the probability of a correct response be specified by the Probit model for a student with ability 

parameter  ; that is, the success probability is modeled by   . When a response pattern of 10 items 

is observed with first six successes and then four failures, the posterior distribution of  is given by, 

          
4

PriorLikelihood

1p p   


  Y , (1.6) 

where  p  is the prior. The maximum likelihood estimate is the parameter value that maximizes the 

likelihood1, which is  ˆ ˆ6 /10, .25.     

Often a conjugate prior is used such that the posterior and prior distribution are of the same parametric 

form. In this example, consider the beta distribution, with hyperparameters  and ,  as a prior for the 

success rate. With hyperparameters  and  the number of successes and failures, respectively, in a 

sample of 2   independent Bernoulli trials can be specified. The posterior distribution in Equation  

(1.6) can be expressed as  

 
             

     

4 1 1

1 4 1

1 1

1
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 

 

    

 

  

   

    

  

Y
 (1.7) 

The posterior distribution of the success rate is also a beta distribution. When maximizing the posterior, 

it follows in the same way that   6 1ˆ
10 2




 

 
 

  
.   

                                                           
1
 When maximizing the log-likelihood,     Max 6log 4log 1



    , set the first derivative equal to zero,

   
6 4

0.
ˆ ˆ1 
 

 
It follows that  

6ˆ .
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The hyperparameters are assumed to be equal (  ) when there is no reason to assume that a priori 

successes are more likely than failures. Furthermore, assume that this prior believe is as strong as the 

total data information (i.e., 2 2 10   ). This means that the precision of the prior mode is equal to the 

precision of the maximum likelihood estimate. Then,  ˆ ˆ11/ 20,  and .13,    which is much lower 

than the maximum likelihood estimate. The prior mode of parameter   is zero, which corresponds with 

a prior success rate of .50. As a  result, the posterior mode is shrunk towards the prior mode of zero. 

Since the amount of prior information is equal to the amount of data information, the posterior mode is 

located almost exactly between the prior mode of zero and the maximum likelihood estimate of .25. The 

posterior mode is simply the weighted average of two point estimates, and both estimates have equal 

precision.  

A less informative prior can still assume that successes and failures are equally likely, but its prior mode 

has simply a lower precision compared to the data precision. The minimum informative beta prior 

consists of one success and one failure out of two independent Bernoulli trials such 2,   which is 

one fifth of the total amount of data. Subsequently, the posterior mode is  ˆ ˆ7 /12,  .21,    and this 

posterior mode is shrunk towards zero with almost one fifth of the maximum likelihood estimate.  

In most situations, the posterior distribution is not easily maximized and more parameters are involved. 

Integration is required to compute the posterior mode, but the integration does not have a closed form. 

When it is possible to draw samples from the posterior distribution, the posterior mean and variance can 

be approximated using the simulated values.  

In simulation-based methods, latent variables are handled as missing data. By drawing values for the 

latent variables a complete data set is constructed, which is used to draw samples from the other 

posterior distributions. In particularly, Markov chain Monte Carlo (MCMC) methods can be used to 

obtain samples from the posterior distributions by drawing samples in iterative way from the full 

conditional posterior distributions.    

For most Bayesian IRT models, directly simulating observations from the posterior distributions is 

difficult. The posterior distributions of the model parameters have an unknown complicated form and/or 

it is difficult to simulate from them. Tanner and Wong (1987) introduced the idea of data augmentation 

method, which greatly stimulated the use of posterior simulation methods.  

This idea is illustrated using the example above. Assume that the student is sampled from a standard 

normal population distribution. This normal prior for the student’s proficiency level is a non-conjugate 

prior, given the likelihood specified in Equation (1.6). Simulating directly from the posterior distribution 

is difficult, since this distribution has an unknown form. However, augmented data can be defined, which 

are assumed to be underlying normally distributed latent responses with a mean of and a variance of 

one, and restricted to be positive (negative) when the response is correct (incorrect).  

The normal prior is a conjugate prior for the normally distributed latent responses, and subsequently, 

the posterior distribution of  is normal. The mean and variance of the posterior distribution can be 
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derived from properties of the normal distribution (e.g., Albert, 1992; Fox, 2010), and the posterior mean 

equals,  

  
10

,
11 11

Z
E Z Y    , (1.8) 

where Z is the average augmented latent response. In Appendix A, R-code is given to draw samples 

from the posterior distribution of the student proficiency parameter. The mean value of the sampled 

values will approximate the posterior mean of the posterior distribution, which can be used as an 

estimate of the student proficiency. The posterior mean in Equation (1.8) has a precision-weighted form, 

where the precision of the maximum likelihood estimate is 10 and the prior precision is 1. The posterior 

precision is the sum of the prior and the data precision.  

In Figure 1 the posterior distribution of the student proficiency is plotted using simulated draws 

according to the R code in Appendix A. It can be seen that the posterior is shrunk towards the prior mean 

of zero, but the amount of shrinkage is small since the data precision is ten times higher than the prior 

precision. The posterior is slightly higher peaked than the likelihood since the precision of the posterior 

mean is the sum of the data and the prior precision.     

 

 

Figure 1: Prior, likelihood, and posterior distribution of student proficiency. 
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A simulation study using WinBUGS 
For those who do not want to derive all full conditional posterior distributions and implement an MCMC 

method to sample from them, various statistical software programs facilitate simulation-based 

estimation techniques. A popular program is WinBUGS (Lunn et al., 2000), which supports the estimation 

of Bayesian models using MCMC techniques. The program can handle a wide variety of Bayesian IRT 

models. The program will generate simulated samples from the joint posterior, which can be used to 

estimate parameters, latent variables, and functions of them.  

When dealing with multiple students and items with different item difficulties and discriminations, a 

more complex MCMC method is needed to draw samples from all posteriors. In Appendix A, Listing 1 

gives the WinBUGS code for the Bayesian two-parameter IRT model as described in Equations (1.1) to 

(1.4).   

Responses were generated, for 1,000 students and 10 items, according to a two-parameter logistic IRT 

model. For prior specification I, the precision of the prior distributions were not a priori specified but 

modeled using hyperpriors. As discussed in the example above, the prior precision influenced the 

amount of shrinkage of the posterior mean to the prior mean. By modeling the precision parameters of 

the prior distributions, these parameters are estimated using the data. For prior specification II, the 

parameters of the prior distributions were a priori fixed.  

In Table 1: Posterior estimates of hyperparameters under different item priors, for Prior I, the estimated 

prior and hyperprior parameters are stated. It follows that the average discriminating level of the items 

is around .121 (on the logarithmic scale) and the between-item variability in discrimination is around 

.265. The average item difficulty is .200, and the variability in difficulty across items is estimated to be 

.438. For Prior II, the hyperprior parameters were fixed at specific values, as given in Table 1. As a result, 

the model with Prior II does not provide information about the posterior population item characteristics, 

since they are restricted by the prior to specific values.  

To compare the fit of both models, Akaike’s information criterion (AIC) and the Bayesian information 

criterion (BIC) were computed (Fox, 2010, pp. 57-61). The AIC and the BIC are given in Table 1. The 

model with Prior I fits the data better. Under Prior II, the discriminations parameters are shrunk towards 

the average discriminations and difficulty values due to their relatively high precision values. Prior II 

allows less variation in item characteristic across items. This leads to a less optimal fit of the model, since 

the AIC and BIC are both higher for the model with Prior II.  Note that the AIC and BIC model selection 

indices usually perform well when data were generated using the one-parameter or two-parameter 

model.   
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Table 1: Posterior estimates of hyperparameters under different item priors 

 Prior I  Prior II 
 Mean SD Mean 

Discrimination    

a  .121 .165 .50 

2

a  .265 .142 .10 

Difficulty    

b  .200 .206 .00 

2

b  .438 .228 .10 

Information Criterion     
BIC 9192 47 9283 
AIC 9094 47 9185 

 

 
The relevance of modeling the prior parameters becomes even more important when assuming that 
students might guess answers correctly. To account for randomly guessing, the three-parameter IRT 
model extends the two-parameter model by introducing a guessing or pseudo-chance parameter, which 
represents the probability  that a student guesses the item correctly.  
Let the three-parameter model be defined as 
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  

    

exp
1 Logistic Model

1 exp1 , , ,

1 Probit Model

k i k

k k

k i kik i k k k

k k k i k

Da b
c c

Da bP Y a b c

c c a b







 
 

   


   

 

where kc denotes the probability of guessing the item correctly.  

 
In the Bayesian modeling approach, a prior distribution is required to define the prior information about 
random guessing behavior in the test. For a multiple choice item, it is reasonable to assume that the 
probability of guessing an item correctly is one divided by the number of response categories. This will 
not control for educated guesses, when one or more incorrect response options are easily identified. 
Other response formats can lead to more discussion about the appropriateness of the prior, since it will 
influence the estimate of the guessing parameter and the student’s ability parameter. When 
overestimating the pseudo-chance parameter, student’s abilities are underestimated since they obtain 
less credit for correctly scored items. Chiu and Camilli (2013) showed that better performing students, 
opposed to less-performing students, obtain more credit according to the three-parameter scoring rule. 
This difference in scores become larger when the guessing probability increases.  
 
As for the other IRT parameters, the prior distribution for the guessing parameter influences the 
posterior estimates, where the prior parameters define the amount of shrinkage of the posterior mean 
to the prior mean. The amount of shrinkage can be severe, when the response data do not contain much 
information about the random guessing behavior. Consequently, student scores can be highly influenced 
by the prior information.     
 
To illustrate this consider an artificial data set, generated using the three-parameter logistic model (3PL), 
of 500 students responding to ten items. The uncommented code of the 3PL in Listing 1 was used to 
estimate the parameters of the 3PL, using the same priors for the discrimination and difficulty 
parameters. For the guessing parameter, a beta distribution was defined with parameters  and  (i.e., 
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b11 and b12 in Listing 1). The beta distribution restricts the guessing parameter to take values between 
zero and one. As in the example of modeling success rates, hyperparameters  and  define the number 

of successes (correctly guesses) and failures (incorrectly guesses), respectively, in a sample of 2  

independent Bernoulli trials. 
 
At a third level, the hyperparameters  and  were modeled according to a uniform distribution. 

Different boundary values of the uniform distribution were used to explore the effects of the hyperprior 
specification. For prior I, the hyperparameters were uniformly distributed between two and ten. The 
estimated average guessing probability was around .29 (3.30/(3.30+8.23)). The posterior mean estimates 
are given in Table 2. There was a moderate variation in guessing probability between items with a 
posterior standard deviation of .13. For Prior II, the hyperparameters were uniformly distributed 
between 2 and 500, which allowed the estimation of a much tighter prior for the guessing parameters 
compared to the restriction in Prior I. Using this prior, the average guessing probability was around .27 
(122.20/(122.20+336.30)), and the variability in guessing across items almost zero.  
 
It follows that the estimated beta prior parameters are very high under prior II. As a result the posterior 
information is highly peaked around .27. The more flexible uniform Prior II leads to much higher 
hyperparameter estimates. Under Prior II, the posterior information about guessing is much more 
centered than under Prior I. The data do not support between-item variability in guessing. The beta prior 
accumulates the evidence for guessing by shrinking all item guessing estimates to a general level of 
guessing. The AIC and BIC are based on the same likelihood and do not indicate that one model fits the 
data better.  
 
 
Table 2: Posterior mean estimates of the hyperparameters for different guessing priors 

 Prior I  Prior II  
 Mean SD Mean SD 

Discrimination     

a  .63  .26 .66 .23 

2

a  .39 .25 .33 .18 

Difficulty     

b  .17 .32 .19 .33 

2

b  1.07 .60 1.11 .65 

Guessing     
  3.30 .89 122.20 42.91 

  8.23 1.37 336.30 97.24 

Information 
Criterion  

    

BIC 5315 38 5317 37 
AIC 5231 38 5233 37 

 
 

Following the scoring rule of the 3PL model as stated in Chiu and Camilli (2013),  
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student ability-scores were estimated for the different priors. The sum of the logarithmic scores of 

students were computed under both prior specifications, since otherwise small sampled values of ik led 

to numerical problems. In Figure 2, the sum scores are plotted against the difference in scores for all 

students. It follows that score differences become larger for higher scoring students. This difference can 

be around four points when making just one item incorrect. The differences are most negative, which 

means that under the more flexible Prior II students obtained relatively lower scores. In that situation 

guessing seemed to be more prominent, which led to an underestimate of student’s performances. 

 

Figure 2: Differences between scores under different guessing priors versus the sum scores 

Multistage Sampling Design: Clustering Students 
In many data collection designs, individuals are sampled from different subgroups, for instance sampled 

from different schools. Such a multistage design leads to correlated observations, since students from 

the same school are more similar in their performances than students from different schools. A 

multilevel modeling approach is required to account for the (intraclass) correlation induced by the 

clustering of students in schools, where for example students from the same school have the same 

education program (Fox & Glas, 2001).  

The clustering of students can be modeled as an extension of Equation (1.2), where instead of a simple 

random sampling design, a multistage sampling design applies. Therefore, consider J schools randomly 

sampled from a population of schools, after which students are randomly sampled within each school. 

Let ij denote the latent variable of student i in school j, and ijkY the response observation of this student 

to item k. The two-parameter IRT model defines the relationship between the observation and the latent 

variable,  
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The population distribution of students is generalized by assuming that students are sampled at random 

given the school average, 

  2~ ,ij j jN   , (1.11) 

where    represents the school mean and   
  the school-specific variance of the latent variable. Schools 

are sampled at random from a population with    the overall expected proficiency in the population, 

and   
  the variability across school means; that is, 

  2~ ,j N     . (1.12) 

Equations (1.3) and (1.4) can be used as prior distributions for the item parameters. In order to identify 

the model parameters, it is sufficient to constrain    and   
  to 0 and 1, respectively. When assuming 

that the residual variance is the same for each school, thus   
     for all schools j, the intraclass 

correlation is given by   
     

     , which represents the proportion of variance in the latent variable 

explained by the clustering of students in schools. 

When the intraclass correlation is substantial, the question arises where this similarity comes from. Are 

teaching methods different across schools and can this explain the homogeneity in performances within 

a school? Or are certain background variables such as socio-economic status of the parents very similar 

within schools and can this explain the similarity? 

To study these questions, the above multilevel structure is extended to include predictor variables that 

might explain the similarity within schools. Two types of predictors can be recognized, a variable that 

says something about the individual i in school j, like for example the gross income of the parents or the 

sex of the student, or that says something about the school j, for example the number of students or the 

teaching methods. Assume that both types of predictors are available, where X contain student and Z 

school explanatory information. Then, the above population model for students and schools, Equation 

(1.11) and (1.12), can be extended with linear effects at the student and school level, respectively, such 

that,   
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 (1.13) 

where   is a vector with the regression coefficients at the individual level, and   is a vector of regression 

coefficients at the school level. Both vectors of regression coefficients can be given multivariate normal 

prior distributions, or alternatively, independent identical normal priors. 
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An additional clustering of schools in countries leads to a three-level model. Following the multistage 

sampling design of large international educational surveys; item data are nested in students, that are 

nested in schools, which are in turn nested in countries. Below, this will be illustrated in an example 

concerning an international comparison of reading performances. 

Plausible values 
In large-scale international educational surveys, three-level IRT models can be used to compare student 

proficiency across countries, where item data is clustered within individuals, individuals within schools 

and schools within countries. Such nonlinear multilevel models are difficult to estimate, given the large 

amount of data, the large number of model parameters, the often complicated design of the individual 

tests, where not all students are administered the exact same questions, and the non-random nature of 

sampling of schools and individuals. In that case, it is often more convenient to work with plausible 

values using multiple imputation, rather than working with the raw item data (Rubin, 1987).  

For example, for a large-scale PISA study (OECD, 2009) concerning reading proficiency, a multilevel 

model is specified with the latent reading proficiencies as outcomes. Plausible values for reading 

proficiency are defined as posterior samples, conditioning on the student’s observed item data and a 

large number of covariates. The general idea is to take at least three different plausible values for each 

student. The multilevel analysis can be carried out for each set of plausible values, and then results are 

summarized. The formulas for multiple imputation in Rubin (1987) can be used to summarize results.  

Multilevel IRT using plausible values  
For this example, a three-level IRT model was applied to the 2009 PISA data on reading proficiency taking 

plausible values as provided by PISA (http://pisa2009.acer.edu.au). The data set consists of 13 countries, 

with a varying number of schools for each country, and in turn a varying number of students for each 

school. The model of interest had two predictors at the country level (age of first selection and number 

of school types), two predictors at the school level (autonomy regarding resources and autonomy 

regarding curriculum), and one predictor at the individual level (socio-economic status). Consider one 

plausible value for reading proficiency, called PV1, it follows that  

   21 ~ 1 , ,ijc ijcPV N E PV   (1.14) 

with 
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where        is a standardized plausible value for individual i in school j in country c,    is the vector of 

standardized country covariates, multiplied by regression coefficients  ,     is the vector of standardized 

school covariates, multiplied by school level regression parameters  , and   is the regression coefficient 

http://pisa2009.acer.edu.au/
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for standardized socio-economic status (SES). Parameter cr  is the residual at the country level (i.e., a 

country effect that is not explained by covariates, be it at country, school or individual level) with 

variance             
 , and     the residual at the school level (i.e., a school effect not accounted for by 

the covariates in the model) with variance            
 . As priors for the individual, school and country 

level residual variances, inverse gamma priors can be specified, 

 

2

.

2

.

2

~ (.1,.1)

~ (.1,.1)

~ (.1,.1)

res country

res school

InvGamma

InvGamma

InvGamma







 

For the remaining regression parameters a normal prior was specified with mean zero and variance ten,  

which seems reasonable since most predictor variables are standardized. The model was run using the 

WinBUGS script in Listing 2. In Table  presents the means and standard deviations of the posterior 

distributions for each model parameter.  

Table 3: Posterior mean estimates of multilevel IRT model parameters using plausible values. 

 Mean SD 

m  0.09 0.03 

s 2
 0.52 0.00 

s
res.school

2
 0.43 0.01 

s
res.country

2  0.08 0.04 

  0.15 0.00 

b
1

 -0.07 0.09 

b
2

 0.02 0.05 

g
1
 -0.07 0.06 

g
2

 -0.03 0.03 

 

Given that the posterior mean for   is more than 2 standard deviations away from zero, it is concluded 

that there is a clear effect of socio-economic status on individual proficiency in reading. The regression 

parameters   are not clearly different from zero, it is concluded that autonomy in resources and 

curriculum do not explain variation in reading proficiency across schools. Also, the country level 

predictors do not explain much variance. Furthermore, school effects are clearly present within countries 

but there is a lot of unexplained variance at the individual level (PV1 was standardized, so 52% of the 

variance in individual differences is left unexplained).  Note however, that these conclusions are based 

on only one set of plausible values.  

Possible model extensions include the possibility of different regression coefficients across countries, for 

example different effects of SES across countries, and different school-level and individual-level 
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variances across countries, for example more variation in school quality within a particular country. Note 

that in all such models all students belong to only one school, and all schools belong to only one country.   

A further possible extension is to allow individuals to belong to multiple groups. For example, in genetic 

models, individuals can be correlated because they either share two parents (siblings) or only one parent 

(half-siblings): half-siblings are correlated because they belong to the same group of people that are the 

offspring of one particular parent (sharing on average 25% of the genetic variance, see Falconer & 

MacKay, 1996), and full siblings are correlated because they belong to two such separate groups (thus 

sharing on average 50% of the genetic variance). Such genetic IRT models for item data are available for 

twin data (Van den Berg, Glas & Boomsma, 2007) and for pedigree data (Van den Berg, Fikse, Arvelius, 

Glas & Strandberg, 2010).  

Bayesian Scale Construction 
In Bayesian Scale Construction (BSC), a Bayesian IRT model is applied in the process of constructing a 

scale, also referred to as a test.  The starting point in BSC is a collection of items that have been pre-

tested and for which posterior-based measurement has been applied to estimate the item parameters. 

All of these items and their item parameters are stored in an item bank. Especially in the area of 

educational measurement, large item banks have been developed. Item selection algorithms can be 

applied to construct a scale based on specifications like, for example, specifications related to 

measurement properties of the scale, to the content, or to the time available.  

In a typical BSC problem, the goal is to select those items that maximize measurement precision, while a 

list of constraints related to various specifications of the scale have to be met. Various classes of BSC 

problems can be distinguished based on the formats of the scales. The first class of BSC problems is 

related to the paper-and-pencil (P&P) scales. Scales in this class have a fixed format. All respondents 

answer the same set of questions. Nowadays, these scales could be administered on a computer as well, 

but the basic format is still comparable to a P&P scale.  

A second class, mainly used in the area of educational measurement, is related to multi-stage scales or 

tests. These tests consist of a number of stages. After completing a stage, the ability level of the 

respondent is estimated and the respondent is directed to an easier module, a more difficult module, or 

a module of comparable difficulty. Both the number of stages, and the number of modules might vary.  

The third class of BSC problems are related to Computerized Adaptive Tests (CATs). The general 

procedure of CAT is the following. After administering an item, the ability of the respondent is estimated 

and the subsequent item is selected that is most informative at the estimated ability level. Respondents 

with high ability estimates get more difficult items, while respondents with low ability estimates get 

easier ones. The CAT stops after a fixed number of items or when a certain level of measurement 

precision for the ability estimate has been obtained. The main advantage of BSC is that collateral 

information about the respondents can be taken into account during test assembly. This advantage holds 

for all classes of BSC problems, but is most prominent in CAT.  
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Item selection in BSC 
Van der Linden (2005) describes how BSC problems can be formulated as mathematical programming 

models. Mathematical programming models are general models for solving optimization problems. They 

have been applied in business and economics, but also for some engineering problems. Areas that use 

mathematical programming models include transportation, energy, telecommunications, and 

manufacturing. These models have  proved to be useful in modeling diverse types of problems in 

planning, routing, scheduling, assignment, and design.  

Theunissen (1985) was among the first to apply these models to scale construction (SC). Decision 

variables     can be introduced that denote whether an item is selected        or not         Test 

specifications can be modeled as either categorical, quantitative, or logical constraints, where categorical 

constraints are related to item attributes that classify items in various categories, quantitative 

constraints are about numerical attributes of items, and logical constraints are related to inter item 

relationships. A generic model for SC can be formulated as:  
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 (1.15) 

where       denotes the contribution of item          to the measurement precision of the test, c 

denotes a category,    the number of items for category c,    a numerical attribute of item i,    the 

bound of a numerical constraint q, l is an index for the various logical constraints, and n denotes the test 

length.  

Computer programs, like CPLEX or LPSolve, can be used to generate tests that perform optimal with 

respect to the objective function and meet all the constraints. For the classes of P&P and the multi-stage 

SC problems, a single SC model has to be solved. For CAT problems, the shadow test approach (van der 

Linden & Reese, 1998) can be applied. 

When Bayesian IRT is used to measure the ability parameters, the measurement precision is related to 

the posterior distribution of the ability parameter. In BSC, those items have to be selected that 

contribute most to the measurement precision. There are several ways to deal with the relationship 

between the posterior and the measurement precision.  

Therefore, several item selection criteria have been proposed. Owen (1975) proposed to select items 

with a difficulty level closest to the estimated ability. Van der Linden (1998) introduced Maximum 
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Posterior Weighted Information, Maximum Expected Information, Minimum Expected Posterior 

Variance, and Maximum Expected Posterior Weighed Information as item selection criteria. Chang and 

Ying (1996) introduced the Maximum Posterior Weighted Kullback-Leibler Information criterion. This is 

not an exhaustive list, but all of these criteria have in common that they are posterior-based, where 

some of the employ Fisher Information and others are based on Kullback-Leibler information. Veldkamp 

(2010) describes how all of these criteria can be implemented in the shadow test approach. For example, 

for Owen’s criterion, the model for the selection of the g-th item is given by 
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 (1.16) 

where the set       denotes the items that have been selected in the previous (g-1) steps of CAT.  

The posterior distribution of the latent variable contains information from the prior and the response 

data. When an uninformative prior distribution is used, the measurement precision solely depends on 

the response data. When an informative prior is used, the information from the response data is 

combined with prior beliefs. For some applications, like licensure exams, relying on prior beliefs might be 

undesirable. In other cases, there might be quite a strong argument in favor of incorporating prior 

beliefs. Imagine the case were a lot of collateral information about the respondent is available. This 

information could come from earlier tests of the same topic (as in progress testing), or from other 

subtests that correlate highly with the test at hand. Following Mislevy (1987) and Zwinderman (1991), 

Matteucci and Veldkamp (2012) elaborated the framework for dealing with collateral information. 

Bayesian Dutch intelligence scale construction 
The methodology of BSC was applied to a computerized adaptive Dutch intelligence scale (Maij – de 

Meij, et al, 2008). The scale consisted of three subscales (Number Series, Figure Series, and Matrices). 

First, the Matrices subtest is administered, after that the Number Series subtest. The correlation 

between the scores on the Number Series subtest and the Matrices subtest is equal to ρ=0.394. This 

information was used to elicit an empirical prior for the number series ability, based on the estimated 

ability for the Matrices subtest: 

  ~ .243 .394 ,.414ˆ
NS MN    (1.17) 

where     and    represent the latent scores on the Number Series and the Matrices subscales, 

respectively.   

In order to demonstrate the attributed value of BSC, the use of this empirical prior was compared to the 

standard normal prior  ~ 0,1 .NS N  For this computerized adaptive scale, an item bank was available 
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that consisted of 499 items calibrated with the Probit model described in Equation (1.1). The intelligence 

test is a variable length CAT where a stopping rule is formulated based on the measurement precision.  

Based on the estimated abilities of 660 real candidates, more or less evenly distributed over the ability 

range, answer patterns to the variable length CAT were simulated and the person parameters were re-

estimated using the Bayesian framework described above. The test length for various levels of the 

estimated ability is shown in Figure 3. For a more elaborate description of this example, See also 

Matteucci and Veldkamp (2012). 

 

 

Figure 3: Test length; BSC with an informative empirical prior (red) and with a uninformative prior. 

 For those candidates with an ability level in the middle of the population, the informative prior resulted 

in slightly shorter tests, but the effect of adding collateral information was only small. For the candidates 

with the lowest and highest ability values however, considerable reduction in test length was obtained. 

In other words, empirical priors can be used successfully to reduce test length for respondents in the 

tails of the distribution, without any loss of measurement precision.  

Here, the use of BSC was illustrated for ability estimation. Another application of BSC is related to the 

estimation of item parameters, see, for example, Matteucci, Mignani, & Veldkamp (2012). 
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Discussion 
Bayesian psychometric modeling have received much attention with the introduction of simulation-

based computational methods. With the introduction of these powerful computational methods, 

Bayesian IRT modeling became feasible, which made it possible to analyze much more complex models 

and to include prior information in the statistical analysis. Prior information can be used to quantify 

uncertainties concerning model parameters or hypotheses. Furthermore, especially in educational 

measurement, prior information can be useful when dealing with a non-standardized test setting, a 

complex experimental design, a complex survey, or any other measurement situation where common 

modeling assumptions do not hold. 

The Bayesian approach in combination with sampling based estimation techniques is particularly 

powerful for hierarchically organized item response data. A multilevel modeling approach for item 

response data has been described, where item response observations are nested in items and students. 

Prior distributions are defined for the parameters of the distribution of the data. Subsequently, the 

parameters of these prior distributions can be described by hyper priors. Extending this multilevel 

modeling approach even further, the survey population distribution of students and/or items can be 

integrated into the item response model. Such a multilevel modeling framework takes the survey design 

into account, the backgrounds of the respondents, and clusters in which respondents are located. A 

classic example is discussed, where  educational survey data are collected through multistage sampling 

(PISA, 2009), where the primary sampling units are schools, and students are sampled conditional on the 

school unit.  

Advantages of Bayesian item response models have also been discussed in Bayesian scale construction. 

The use of empirical prior information in student and item parameter estimation can reduce the costs of 

item bank development. Furthermore, it is shown that the test length can be reduced considerably when 

prior information about the ability level of the candidates is available.  
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Appendix A.  

Data Augmentation Scheme in R. 
N <- 10    #sample size 
Y <- sample(c(0,1), N, replace = T, prob = c(.5,.5)) #simulate response pattern 
Z <- Y   #initialize vector of latent response data  
mutheta <- 0  #prior mean value 
XG <- 1000  #number of iterations 
Mtheta <- matrix(0,ncol=2,nrow=XG) #store output 
library(msm) # use function rtnorm to sample from truncated normal distribution 

for(ii in 1:XG){ 
 Z[Y==1] <- rtnorm(sum(Y), mean=theta, sd=1, lower=0, upper=Inf)  #sample Z>0 when Y=1 
 Z[Y==0] <- rtnorm(sum(1-Y), mean=theta, sd=1, lower=-Inf, upper=0) #sample Z<0 when Y=0 

 #sample posterior values for  given normal prior with mean mutheta 

 theta1 <- rnorm(1,mean = sum(Z)/(N+1)+ mutheta/(N+1),sd=sqrt(1/(N + 1)))  
 #sample posterior values for  given uniform prior  

 theta2 <- rnorm(1,mean = mean(Z),sd=sqrt(1/N))  
 
 Mtheta[ii,1] <-theta1 # Average approximates posterior mean 
 Mtheta[ii,2] <-theta2 # Average approximates posterior mean (and maximum likelihood estimate) 
} 

 
Listing 1: WinBUGS Code: Bayesian IRT for Binary Response Data 

model{ 
    for (i in 1:N) { #Students 
      for (k in 1:K) { #Items 
         p[i,k] <- (exp(1.7*(a[k]*theta[i]-b[k]))/(1+exp(1.7*(a[k]*theta[i]-b[k])))) #Logistic 2PL IRT Model 
         #p[i,k] <- c[k] + (1-c[k])*(exp(1.7*(a[k]*theta[i]-b[k]))/(1+exp(1.7*(a[k]*theta[i]-b[k])))) #Logistic 3PL IRT Model 
         Y[i,k] ~ dbern(p[i,k]) 
       } 
       theta[i] ~ dnorm(0,1) #Standard Normal Population Distribution for Students 
   }  
 
for (k in 1:K) { 
 adummy[k] ~ dnorm(mu[2],prec[2]) #Lognormal distribution for Item Discriminations 
 a[k] <- exp(adummy[k]) 
 b[k] ~ dnorm(mu[1],prec[1]) #Normal Distribution for Item Difficulties 
#c[k] ~ dbeta(b11,b12) #Beta distribution for Guessing parameters 
} 
 
#Hyperprior specifications  
 mu[1] ~ dnorm(0,1) 
 mu[2] ~ dnorm(1,1) 
 prec[1] ~ dgamma(1,1) 
 prec[2] ~ dgamma(1,1) 
 sigma[1] <- 1/prec[1] 
 sigma[2] <- 1/prec[2] 
##guessing hyperprior specification 
#b11~dunif(2,10)    
#b12~dunif(2,10) 
#ec <- b11/(b11+b12)    # posterior mean of average guessing in the test 
#varc <- (b11*b12)/(pow(b11+b12,2)*(b11+b12+1))  # posterior variance of average guessing in the test 
} 
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Listing 2: WinBUGS Code: Multilevel model for IRT-based plausible values 

model  
 
{ 
 
############################ 
##### description of variables 
############################ 
 
# school covariates 
# x variables:    x[country number, school number, variable number]  
#1. Autonomy resources   (simple ratio) school level variable 
#2. Autonomy curriculum  (simple ratio) school level variable 
 
# country covariates (z variables)  
#    1 = Standardized(normal): Age of first selection (system level) 
#   2 = Standardized(normal): Number of school types (system level) 
 
 
# student SES: SES.student[country, school, student] 
# plausible value 1: PV1[country, school, student] 
 
 
# K : number of countries with complete data on country covariates 
# M : number of schools within country 
# N : number of students  per [country,school] 
# which.countries: a vector describing the countries with complete data on all country covariates. 
# R: number of country covariates 
# Q: number of school covariates 
 
 
########################################################### 
### the actual modelling of the plausible values, ie the likelihood 
########################################################### 
 
for (k in 1:K) # for every country 
 { 

z.gamma[which.countries[k]]  <- inprod(  z[which.countries[k],] , gamma[]) 
  v[which.countries[k]] ~ dnorm(0,tau.country) 
 for (j in 1:M[which.countries[k]]) # for every school in each country 
  { 
  x.beta[which.countries[k],j]   <- inprod( x[which.countries[k], j, ], beta[]) 
  u[which.countries[k],j]  ~  dnorm(0, tau.school) 
  for (i in 1:N[which.countries[k],j]) # for every individual in each school in each country 
   { 
   PV1[which.countries[k],j,i]  ~ dnorm( expTheta[which.countries[k],j,i], tau.individual) 
   expTheta[which.countries[k],j,i] <- mu + alpha*SES.student[which.countries[k],j,i] +    
x.beta[which.countries[k],j]  +  z.gamma[which.countries[k]]  +  u[which.countries[k],j]+ v[which.countries[k]] 
   } 
  } 
 } 
 
 
###################################################### 
## Priors for population mean and variances 
###################################################### 
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mu ~ dnorm(0,.1) # normal prior for the population mean 
 
tau.individual ~ dgamma(.1, .1)  # inverse gamma prior for residual variance at student level 
var.individual <- 1/tau.individual   
 
tau.school ~  dgamma(.1, .1)  # inverse gamma prior for residual variance at school level 
var.school <- 1/tau.school 
 
tau.country~ dgamma(.1,.1) # inverse gamma prior for residual variance at country level 
var.country<- 1/tau.country 
 
 
#################################################### 
####priors for regression coefficients alpha, beta and gamma 
#################################################### 
 
# effect of individual covariate SES: 
alpha ~dnorm(0,.1) 
 
# effects of school covariates: 
beta[1] ~ dnorm(0, .1) 
beta[2] ~ dnorm(0, .1) 
 
# effects of country covariates 
gamma[1] ~ dnorm(0,.1) 
gamma[2] ~ dnorm(0,.1) 
   
    
}  
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