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Abstract: IRT methods have become an important tool in analyzing large-scale
survey data. The application of the common IRT models raises several issues like
the implicit assumption of conditionally independent observations, handling col-
lateral information, and dealing with misreporting. It is shown that the Bayesian
IRT approach leads to a very flexible modeling framework for analyzing large-
scale survey data. The Bayesian IRT models are extended to provide a better fit
to the data and to extract richer information from the survey data. A variety of
extensions will be discussed.
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1 Introduction

The common item response theory (IRT) methods (Lord and Novick, 1968)
are standard tools for the analysis of large-scale survey data. For example,
in educational survey research, the National Assessment of Educational
Progress (NAEP) is primary focused on scaling the performances of a sam-
ple of students in a subject area (e.g., mathematics, reading, science) on
a single common scale, and measuring change in educational performance
over time. Further, the Organization for Economic Cooperation and De-
velopment (OECD) organizes the Program for International Student As-
sessment (PISA) that is focused on measuring and comparing the abilities
in reading, mathematics, and science of 15-year-old pupils over 32 coun-
tries in 2000. Another example is the large international survey Trends
in International Mathematics and Science Study (TIMSS) conducted by
the International Association for the Evaluation of Educational Achieve-
ment (IEA) also to measure trends in students’ mathematics and science
performances.

IRT methods provide a set of techniques for estimating individual ability
(e.g., attitude, behavior, performance) levels and item characteristics from
observed discrete multivariate response data. The ability levels cannot be
observed directly but are measured via a questionnaire or test. Item re-
sponse theory (IRT) is, in particular, useful for large-scale survey response
data where (1) the observations often have an ordinal character, (2) the
sampling designs are complex with individuals responding to different sets
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(booklets) of questions, (3) booklet effects are present (the performance on
items depends on an underlying latent variable but also on the positioning
of the items in a test), and (4) missing data occur. The essential idea of IRT
is that the effects of the persons and the items on the response data are
modeled by separate sets of parameters. The person parameters are usu-
ally referred to as the latent variables, and the item parameters are usually
labeled item difficulties or thresholds, item discrimination parameters and
guessing parameters.

The common IRT models are not directly applicable to analysing large-
scale survey data for comparative research. There are several measurement
issues connected to survey research that need to be addressed since ignoring
them may lead to inferential errors. Further, there is often a wide variety of
additional information available besides the observed response data. More
accurate inferences can be made when the different sources of information
can be combined.

Three topics will be considered. First, the multistage sampling design since
respondents are nested in classrooms, classrooms in schools, schools within
countries and so on. In a Bayesian modeling approach, a hierarchical pop-
ulation distribution for the respondents is easily specified that accounts for
the fact that respondents are nested within clusters. Common IRT models
assume a priori independence between individual abilities but homogeneity
of results of individuals in the same school is to be expected since pupils
in the same school share common experiences. Second, collateral informa-
tion can be used when response times are observed besides the response
patterns. Response times on test items are easily collected in modern com-
puterized testing. When collecting both (binary) responses and (continu-
ous) response times on test items, it is possible to measure the accuracy
and speed of respondents. The observed response times can be informative
with respect to the latent individual abilities. Third, the collection of data
through surveys on personal and sensitive issues may lead to answer re-
fusals and false responses, making inferences difficult. Respondents often
have a tendency to agree rather than disagree (acquiescence) and a ten-
dency to give social desirable answers (social desirability). A multivariate
randomized response sampling design can be used to improve the quality of
the survey data. It is shown that a Bayesian IRT model is easily adjusted
to handle the multivariate randomized (item) response data.

2 Bayesian IRT Models for Binary Response Data

An IRT model for binary response data defines the probability of a correct
or positive response to item k (k =1,..., K) for individual i (i =1,...,n)
given the item characteristics, denoted as &, = (ay, bx)?, and the individual
ability level, 6;. The well known probit version of the two-parameter IRT
model is also known as the normal ogive model where the probability of
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success is defined via a cumulative normal distribution,

ar0;—by

P(Y;k =1 | Qi,ak,bk) = <I>(ak9i — bk) = / gD(Z)dZ, (1)
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where ®(.) and ¢(.) is the cumulative normal distribution function and the
normal density function, respectively. The ay, is referred to as the discrim-
ination parameter and the by as the item difficulty parameter.

The Bayesian approach towards IRT modeling starts with the specification
of prior distributions. In most cases there is not much information about the
values of the item parameters. Without a priori knowledge to distinguish
the item parameters it is reasonable to assume a common distribution for
them.

An intuitive assumption of an IRT model is that the higher a respondent’s
ability level the more likely it is the respondent scores well on each item.
This so-called monotonicity assumption implies that P(Y;, = 1 | 6;) is
nondecreasing in #;, for binary response data, which is satisfied when the
discrimination parameter is restricted to be positive. A common depen-
dency structure of item parameters is specified via a hierarchical structured
prior. A multivariate normal prior distributed prior is assumed for the item
parameters. It follows that,

(akvbk)t NN(#’@Ef)IAk(ak)ﬂ (2)

where the set Ay, = {ar € R,ar > 0} with hyper prior parameters

T ~ IW(y,Xo) (3)
Be | Be ~ N(po,X¢/Ko), (4)
for k=1,..., K. The truncated multivariate Normal distribution in Equa-

tion (2) is the exchangeable prior for the set of K item parameters &;. The
joint hyper prior distribution for (pe, X¢) is a Normal inverse Wishart dis-
tribution, denoted as ZW, with parameters (wo, Xo/Ko; v, Xo) where Ky
denotes the number of prior measurements, and v and X, describe the
degrees of freedom and scale matrix of the inverse-Wishart distribution.
These parameters are usually fixed at specified values. A proper vague
prior is specified with gy = 0, v = 2, a diagonal scale matrix ¥, with
elements 100 and Ky a small number.

In general, the respondents are are assumed to be sampled independently
and identical distributed from a large population. So, an independent prior
distribution is specified for the ability parameter,

0; NN(N9703)7 (5)

for i =1,...,n. A Normal inverse Gamma prior is the conjugate prior for
the Normal distribution with unknown mean and variance. Therefore, a
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hyper prior distribution is specified as,

o2 ~IG(g1,92) (6)
po | o3 ~ N (1o, o3 /10), (7)

where g; and go are the parameters of the inverse Gamma distribution
denoted as ZG and ng presents the number of prior measurements.

3 Heterogeneity of the Respondent Population

Educational survey research is often concerned with exploring differences
within and between schools. The objective is to investigate the relation-
ship between explanatory and outcome factors. This involves choosing an
outcome variable, such as student’s ability, and studying differences among
schools after adjusting for relevant background variables. A general ac-
ceptable statistical model in the assessment requires the deployment of
multilevel analysis techniques. The student’s ability is considered to be an
outcome variable of the multilevel regression model. This outcome variable
is not directly observable but is known to be a latent variable. The idea
is to integrate the IRT model for measuring the individual abilities with
a (structural) multilevel model that explains differences at different levels
of abilities. The IRT measurement model defines the relationship between
the ability and the corresponding observed response data. The structural
multilevel model describes the nested structure of individual abilities in the

population.
The respondents at level-1 are nested in clusters and indexed i = 1,...,n;
for j = 1,...,J clusters. Let level-1 respondent-specific covariates be de-

noted by x;;. The level-1 prior distribution for the ability parameter 6; is
specified as

and the level-2 covariates are denoted as wg; for ¢ = 0,...,Q, such that
the level-2 prior is specified as

ﬁj ~ N(Wj77T)a (9)

An inverse-gamma prior distribution and an inverse-Wishart prior distri-
bution is specified for the variance components 03 and T respectively. The
extension to more levels is easily made. The IRT measurement model with a
multilevel population model for the ability parameters is called a multilevel
IRT model (MLIRT). An MCMC algorithm can be used to concurrently
estimate all model parameters (e.g., Fox, 2007; Fox and Glas, 2001).

Several advantages can be given of the MLIRT modeling framework. The
multilevel population model parameters are estimated from the item re-
sponse data without having to condition on estimated ability parameters. In
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empirical multilevel studies, estimated ability parameters are often consid-
ered to be measured without an error and treated as an observed outcome
variable. Ignoring the uncertainty regarding the estimated abilities may
lead to biased parameter estimates and the statistical inference may be
misleading. The modeling framework allows the incorporation of explana-
tory variables at different levels of hierarchy. The inclusion of explanatory
information can be important in various situations. The use of explanatory
information may lead to more accurate item parameter estimates. Another
related advantage of the model is that it can handle incomplete data in a
very flexible way.

4 The Use of Response Times as Collateral
Information

Bassili and Fletcher (1991) introduced a methodology for measuring accu-
rately response time within the context of a telephone survey. They showed
how response times can be measured precisely and reliably and that the
data from such measurement offer insight into the processes underlying sur-
vey responses applied to most types of computer-assisted telephone inter-
viewing (CATTI). Nowadays, computer-based testing has become a popular
mode for retrieving information and response times can be collected auto-
matically. In educational research, when the test takers’ responses as well
as their response times on the items are recorded, the relationship between
response times and response accuracies can be explored. This relationship
is complex at different hierarchical levels and it takes the form of a tradeoff
between speed and accuracy at the level of a fixed person but may become
a positive correlation for a population of test takers. The response times
can provide information about the items’ characteristics and the individ-
ual response process. More specific, they can be used to identify bad items
using, for example, the average response times as an indicator of question
problems, and they may serve as indicators of uncertainty and response er-
ror. This way, the response times contain information about the item and
person characteristics.

A log-normal distribution is used taking account of the natural lower-bound
at zero to model the response times. Each respondent complete the items at
a certain level of speed denoted as (;. The time needed to complete an item
k also depends on item characteristic parameters. They are denoted as ¢y
and \g, and can be seen as a discrimination and time-intensity parameter,
respectively. The log of the response time, log T;x, is normal distributed
with mean —¢i(; + A\ and variance af. It follows that

P(ti <ti)) = @((logtiy — (A — ¢uGi)) /o¢) by > 0. (10)
Hence, increasing the time intensity A; leads to a positive shift of the

location of the time distribution on the item. Likewise, an increase in the
speed parameter (; leads to a negative shift.
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Assume the normal ogive response model, Equation (1), for the response
data for measuring the ability levels. At the individual level, a bivariate
normal distribution is defined for the ability and speed parameter of the

test taker,
o) ()7 2))
(&) ~ ()T 2)  w

where parameter p denotes the covariance between the person parameters.
This population distribution reflects the individual speed and ability levels
in the population of test takers. This conjoint Bayesian IRT model con-
stitutes a two-parameter normal ogive, Equation (1), for the multivariate
response patterns and a normal model for the multivariate log transformed
response times, Equation (10), and, at a lower level, a multivariate nor-
mal model is specified for the underlying ability and speed parameters,
Equation (11). The model enables the simultaneous analysis of speed and
accuracy given response times and patterns. More about MCMC methods
for parameter estimation can be found in Fox, Klein Entink, van der Linden
(2007), and van der Linden (2007) that also includes a detailed description
of the model.

5 Asking Sensitive Questions

Survey researchers that are dealing with sensitive topics are often con-
fronted with misreporting of respondents leading to biased estimates. The
sensitive questions asked in the survey may lead to social desirable response
behavior where respondents edit the information they report to avoid em-
barrassing themselves. Sensitive questions can also be seen as intrusive by
the respondents or raise concerns about the possible repercussions of dis-
closing the information. The extent of misreporting depends on the design
of the survey and whether the respondent has anything embarrassing to
report. Asking sensitive questions in survey research usually affects the
response rates, the item nonresponse rates, and the response accuracy.
Self-administration, collecting the data in private, and confidentiality as-
surances are several design features that positively influences the accuracy
of reports on sensitive topics. Warner (1965) introduced the randomized
response technique for improving the accuracy of estimates from survey
data. A popular variation on Warner’s method is the unrelated-question
method of Greenberg, Abu-Ela, Simmons, and Horvitz (1969) where the
essential idea is that the interviewer is unaware whether the respondent is
answering the sensitive question or the non-sensitive question. A randomiz-
ing device (dice, coin) is used such that with probability p; a respondent is
confronted with the sensitive question. The univariate randomized response
technique enables the computation of (aggregated) estimated proportions
without revealing the significance of the individual answers.
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Fox (2005) introduced a multivariate randomized response technique with
the two-parameter normal ogive model in Equation (1) as the response
model for the randomly selected question. Let Y;; and Y denotes the ob-
served randomized response and the latent response to the sensitive ques-
tion, respectively, of respondent i to item k. The probability of observing
a positive randomized response equals,

PV =11056) = piP(Yie=110:8) + (1= pi)pes
= p1®(ard; — br) + (1 — p1)pa2.i, (12)

where po; denotes the known probability of a positive response to the
non-sensitive question. In an alternative method the response to the non-
sensitive question is simulated via a randomizing device that determines the
respondent’s answer and ps ; is defined by the properties of the randomizing
device.

The multivariate randomized response model makes it possible to measure
the underlying sensitive behavior 6; of the respondents. At a lower level,
the underlying sensitive behavior of the respondent can be related to other
respondent or group characteristics. Therefore, assume the structural mul-
tilevel model for 6;;, Equation (8) and (9). The likelihood of interest of
Q = (¢&,02,v,T) given the randomized response data can be expressed as

p(y| Q) = ﬁ/ ﬁ

i=1 i=1]j

K

/ H |:[p1<I> (akeij — bk) + (1 — pl)pli}Yijk
k=1

[pl (1 -0 (ainj — bk)) + (1 — pl) (1 _p277;)]1_yijk:|

p(0i; | Tij, Bj,07) deij]p(ﬁj | wj,~,T)|dB;.

MCMC methods makes it possible to estimate simultaneously all parame-
ters (Fox, 2005).

6 Conclusions

The Bayesian IRT framework provides a set of powerful tools for the anal-
ysis of large-scale complex survey data. The Bayesian IRT model can be
extended in different ways to handle measurement issues involved in large-
scale survey research. It is shown that the population distribution of the
respondents is easily extended to take account of a nested structure. Addi-
tional information can be incorporated via prior specifications. The frame-
work can also be extended to a multivariate framework with different link
functions to relate multivariate discrete and/or continuous observations
with multiple underlying latent variables. This makes it possible to conduct
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a simultaneous analysis of multiple tests each measuring a different latent
variable with an underlying correlation structure. The framework can han-
dle different complex sampling strategies to collect reliable response data
which includes the randomized response sampling design.

MCMC methods can be used to estimate simultaneously the Bayesian IRT
model parameters. The MCMC estimation methods make it possible to add
additional complexity in a straightforward way. This includes the specifi-
cation of different priors, constraints on parameters, and different distribu-
tional assumptions. The powerful estimation methods can also be used for
the computation of a Deviance Information Criteria that can be used for
comparing the fit of different Bayesian IRT models.
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