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Bayesian modification indices are presented that provide information
for the process of model evaluation and model modification. These
indices can be used to investigate the improvement in a model if fixed
parameters are re-specified as free parameters. The indices can be
seen as a Bayesian analogue to the modification indices commonly
used in a frequentist framework. The aim is to provide diagnostic
information for multi-parameter models where the number of possible
model violations and the related number of alternative models is too
large to render estimation of each alternative practical. As an
example, the method is applied to an item response theory (IRT)
model, that is, to the two-parameter model. The method is used to
investigate differential item functioning and violations of the assump-
tion of local independence.
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1 Introduction

Model selection problems often concern choosing the most appropriate model from

among a set of possible choices. However, a selection problem also occurs when just

one specific model M0 has been proposed, and the choice is between accepting or

rejecting model M0. In many instances, this model rejection problem (see, BERNARDO

and SMITH (1994)) can be phrased as a hypothesis-testing problem, for example, the

test of the simple hypothesis that a certain model parameter equals zero. In that case,

the model rejection problem corresponds to testing certain assumptions of a specific

model, say the null-model.

Consider a parametric framework {p(k j y), k 2 L}, where p(k j y) is the

posterior distribution of k given the data y. Further, model M0 corresponds to

p(y j k0). The focus is on a point null hypothesis of the form k ¼ k0 and an

alternative hypothesis k 6¼ k0. It will be assumed that there is no reason to favour

k ¼ k0 above k ¼ k1 for any value of k1 in the neighborhood of k0. To perform a
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Bayesian test of significance of the null hypothesis k ¼ k0 at a level of significance a,
a credible interval is constructed from the posterior distribution and the null

hypothesis is rejected if and only if k0 is outside this interval. This approach was

introduced by LINDLEY (1965, section 5.6) and can also be found in ZELLNER (1971,

section 10.2). The approach is based on the idea that the posterior distribution for a

parameter k is a basis for expressing beliefs about possible values of k. If the value

k ¼ k0 is in a region in which the posterior probability density is not high, this leads

to the suggestion that this value for k is not credible.

The primary purpose of modification indices is not so much testing the model, but

providing diagnostic information on model fit for multi-parameter models. In a

frequentist framework, in principle, model fit can be investigated by defining more

general alternative models and using the likelihood ratio (LR) test to evaluate the

seriousness of the violation. In multi-parameter models, however, the number of

model violations can become very large. For example, item response theory (IRT)

models describe the responses of students to test items, and model fit can be violated

for every item and every person in many different ways. It is not practical to estimate

an alternative model and compute an LR statistic for every one of these violations.

Therefore, the initial fit analysis in IRT is often based on the analysis of residuals.

One of the problems of the analysis of residuals, however, is that the presence of too

large residuals does not automatically lead to the identification of the source of the

misfit. An often used alternative is based on the Lagrange Multiplier (LM) test

(AITCHISON and SILVEY, 1958), and the equivalent efficient score test (RAO, 1947). In

the applications in the field of IRT (see GLAS (1998, 1999)) the null model is the IRT

model and the alternative model implies model violations such as differential item

functioning, violation of the assumed item characteristic functions and violation of

local stochastic independence. The LM tests are computed using the parameter

estimates under the null model. Therefore, a plethoria of model violations for all

items can be assessed as a by-product of one single estimation run.

In the present article, this approach will be generalized to a Bayesian framework. It

will be shown that an MCMC algorithm for estimating the parameters of the

null-model canbe extended to estimate themarginal posterior distributionof the added

parameter k, denoted as the Bayesian Modification (BM) distribution. Obviously, the

marginal posterior distribution of k is unknown but a credible interval is needed to

perform the significance test of the hypothesis k ¼ k0. The extra step in the MCMC

algorithm consists of sampling values of the added parameter k, denoted as Bayesian

Modification Indices (BMI), given the sampled values of the other IRT model

parameters. These extra draws do not influence the chain, and the Markov chain

remains restricted to themanifold of the posterior of the null-model. Theoretical results

will show that the resulting estimate of themarginal posterior is a good approximation

of the truemarginal posterior distribution. As a result, various model violations can be

tested by sampling extra parameters in the MCMC algorithm.

The outline of the paper is as follows. In Section 2, Bayesian modification (BMI)

indices and the specific model violations are defined for IRT models. Then, in
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Section 3, the performance of the method is evaluated in a number of simulation

studies.

2 Bayesian modification indices for IRT models

In this section, two BM indices will be presented. These indices are the modification

indices for the item characteristic functions, local independence, and for differential

item functioning (GLAS, 1998, 1999). Exact definitions of these model violations will

be given below; a general framework will be outlined first.

The 2PNO model (LORD and NOVICK, 1968) will be considered as a null-model.

From this null-model, a more general model is derived by adding parameters such

that the assumption to be tested is violated. In the 2PNO model, the probability of a

correct response of person i to item j, denoted Yij ¼ 1, is given by

P Yij ¼ 1; hi; aj; bj
� �

¼ U gij
� �

;

where U denotes the standard normal cumulative distribution function, and

gij ¼ ajhi � bj with hi the ability of person i, aj, the discrimination parameter and bj
the difficulty parameter of the item j, respectively.

In general, Bayesian modification indices for the 2PNO are derived as follows.

Suppose that item j is the item of interest, and that the alternative model parameters

are f and d. A general model will be defined as

gij ¼ ajhi � bj þ xtiðfhi � dÞ; ð1Þ

where xtiðfhi � dÞ is the inner product of an explanatory variable xi and a vector that

is a function of the alternative model parameters f and d. It must be noted that

equation (1) is a general formulation, in many applications the number of alternative

parameters per item may be one only. Obviously, interest is focused on the BMI

values of the parameters f and d.

An MCMC algorithm for generating the posterior distribution of the parameters

of the 2PNO is described by Albert (1992). This implementation of the MCMC

algorithm involves a data augmentation step which produces �pseudo-data� Zij

defined by

Zij ¼ ajhi � bj þ �ij;

where �ij is a normally distributed error variable. Within this MCMC algorithm for

the null-model the definition of the augmented data Zij can be extended to

Zij ¼ ajhi � bj þ xtiðfhi � dÞ þ �ij; ð2Þ

Notice that (2) implies a normal regression model with Zij � ajhi þ bj as dependent
variables, xi and hi as predictor variables and f and d as regression coefficients. So,

the full conditionals of f and d follow from this linear regression model, and both

parameters are easily sampled. Notice that (2) also provides a nice interpretation of
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the procedure: the magnitude of the draws of f and d depend on the extent to which

the difference between Zij and ajhi � bj is properly modelled under the null model

and the extent to which adding a predictor xi can improve the null-model.

The extension of the null-model, equation (2), can always be written as a linear

regression model with two components,

Zj ¼ x1nj þ x2kþ �j; ð3Þ

where the parameters are defined as nj ¼ (aj, bj) and k ¼ (f, d) and the non-observed

augmented data are defined as Zj ¼ (Z1j,. . .,Znj)
t. The covariates X are split up in

two components x1 and x2, and contain the covariates corresponding to parameters

nj and k, respectively. Given the parameters Zj and X, the parameters nj and k can be

estimated using least squares, that is

n̂j

k̂

 !
¼ xt1x1 xt1x2

xt2x1 xt2x2

� ��1

XtZj ¼
V11 V12

V21 V22

� �
XtZj ¼ VXtZj;

with V ¼ (XtX)�1 and X ¼ (x1, x2). Note that interest is focused on the least squares

estimate of k for the computation of the BMI values. In the Appendix, the following

theorem is proved.

Theorem 1. The marginal BM distribution of parameters k of dimension r in equation

(3) given the augmented data, employing a noninformative reference prior for the

regression parameters and residual variance parameter, is a multivariate t-distribution,

k j Zj � tr k̂; s20V22; n� 2
h i

;

where V22 is the submatrix of V associated with k̂, and s20 is an estimate of the residual

variance under the null-model.

This BM distribution resembles the true marginal posterior distribution except

that the residual variance is based upon the null-model, and the increase of r degrees

of freedom. With a sufficient number of observations, inferences from the BM

distribution are useful due to the correspondence with the true marginal posterior

distribution.

Suppose that the null-model holds. The alternative model parameters are all equal

to zero, that is, k0 ¼ 0. Then the parameters k0 are located inside the highest

posterior density (HPD) region if and only if:

P p k j yð Þ > p k0 j yð Þ j y½ � � 1� ~a; ð4Þ

where 1 � ~a is some predefined credible level, say 0.90, and p(k j y) is considered a

random variable.

If the model is violated, the point k0 is not captured by the HPD region, and this

can be regarded as an indication of the existence of a model violation. One minus the

content of the HPD region which just covers k0 can be regarded as a Bayesian
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p-value (see BOX and TIAO (1973); HELD (2004)). It gives the significance level

associated with the null hypothesis k0 ¼ 0 against the alternative k0 6¼ 0. It provides

the posterior evidence against a given point based on the HPD region. There is a

large amount of literature about different p-values and the philosophy behind it (see

e.g. BAYARRI and BERGER (1999, 2000); GELMAN, CARLIN, STERN and RUBIN (1995);

MENG (1994) and references therein). However, it is beyond the scope of the present

article to discuss the use of different p-values.

Theorem 2. The Bayesian p-value of any point k0 can be calculated based on the fact

that the quantity

ðk� k̂ÞtV�1
22 ðk� k̂Þ=ðrs20Þ

is F-distributed with r and n � 2 degrees of freedom given the augmented data Z. In

particular, a single parameter k has the distribution

k� k̂

s0
ffiffiffiffiffiffiffi
V22

p ¼ tn�2:

This result follows directly from the fact that k follows a multivariate

t-distribution. Marginal Bayesian p-value or HPD regions are computed by

averaging over the sampled values of the augmented data, say Z(1),. . .,Z(M) with

the use of an MCMC algorithm. For example, the computation of a Bayesian

p-value follows from Theorem 2, that is,

p̂ðk0Þ ¼ 1=M
XM
m¼1

P ~pðk j ZðmÞ; yÞ � ~pðk0 j ZðmÞ; yÞ j ZðmÞ; y
� �

¼ 1=M
XM
m¼1

P Fðr;n�2Þ <
k0 � k̂
� �t

V�1
22 k0 � k̂
� �

rs20

0
B@

1
CA;

where F(r,n�2) is an F-variable with r and n � 2 degrees of freedom, and p(k0) the
probability of an HPD just including k0. A significant modification index can be seen

as a caution index for further investigation. Besides the HPD region and Bayesian

p-value, the mean and variance of the sampled values may provide a further indi-

cation of the possible importance of the violation.

2.1 Local independence

Here, xi is a one-dimensional vector with an element yij and d a one-dimensional

vector with an element djk that models the dependence between the items j and k.

In this model, which was originally proposed by KELDERMAN (1984) in

the framework of the Rasch model, it is assumed that the magnitude

of the dependence between the responses does not depend on the latent variable

hi.
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This model, equation (2), is a linear regression model given the augmented Zi

values as a dependent variable and h and yi as explanatory variables. That is,

Zij ¼ ajhi � bj þ yijdjk þ �ij; for i ¼ 1; . . . ; n;

where the errors are independently normally distributed. Then, the BM distribution

of djk given the augmented data is a t-distribution. This BM distribution can be used

to test the null-hypothesis djk ¼ 0.

2.2 Differential item functioning

Differential item functioning (DIF) is a difference in item responses between equally

proficient members of two or more groups. Usually, one distinguishes a reference

group, say the majority population, and one or more focal groups, say disadvan-

taged groups. A dichotomous item is subject to DIF if, conditionally on proficiency

level, the probability of a correct response differs between groups. One might think

of a test of foreign language comprehension, where girls are impeded by items

referring to a football setting. The poor performance of the girls on the football-

related items must not be attributed to their poor level of comprehension of the

foreign language but to their lack of knowledge of football. Since DIF is highly

undesirable in fair testing, methods for detection of DIF are extensively studied (see,

for instance, HOLLAND and WAINER (1993) or CAMILLI and SHEPARD (1994)) and

various methods for detection of DIF have been proposed (HOLLAND and THAYER,

1988; HAMBLETON and RODGERS, 1989; KELDERMAN, 1989; SWAMINATHAN and

RODGERS, 1990; MURAKI and BOCK, 1991).

The definition of a Bayesian modification for DIF proceeds as follows. Define a

background variable

xi ¼
1 if i belongs to the focal group,
0 if i belongs to the reference group.

�

Usually, two forms of DIF are distinguished: uniform DIF, where the difference

of the probability of a correct response between groups does not depend on the value

of the latent trait, and non-uniform DIF, where interaction between this difference

and the latent trait does exist (see MELLENBERGH (1982, 1983)). In the present

framework, this can be modelled by adding parameters dj for modelling uniform

DIF and dj and fj for modelling non-uniform DIF, respectively.

3 Some power studies

A number of simulation studies were conducted to investigate the power of the

procedure proposed here. The aim of the first simulation presented here is to

illustrate the data used in the power studies. The data were generated under the

2PNO model. The item parameter values are given in the first columns of the first

panel of Table 1. The simulees were drawn from two groups. These groups had
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different normal ability distributions with means and standard deviations as

displayed in the first columns of the second panel of Table 1. Every group consisted

of 1000 simulees. An example of classical statistics of a simulated data set are

displayed in the last columns of the two panels of Table 1. The columns of the first

panel contain the true item parameters, and the p-values and the distributions of the

test takers� sum scores, for the two groups, respectively. The columns of the second

panel contain the mean and the standard deviation of the distributions of the ability

parameters per group, the mean and the standard deviation of the score distributions

per group, and the coefficient alpha per group.

After computing the posterior distributions of the item and population parameters

using MCMC, parameter estimates and credible intervals were computed as the

mean and standard deviation of the posterior distributions, respectively. These

estimates are given in Table 2. The number of MCMC iterations was 1000 for the

burn-in period and 3000 for generating the actual estimates. Notice that the model is

identified by setting the mean and the standard deviation of the ability distribution

of the first group equal to zero and one, respectively.

In Table 2, the last two columns give the significance probabilities for the Bayesian

modification indices targeted at DIF and violation of local independence, respect-

ively. The BMI targeted at local independence was used to test the dependence of the

item response on item j on the response to the previous item j � 1. Therefore, in the

last column there is no significance probability for the first item.

Using the generating values of the item and population parameters of Table 1, a

number of power studies were performed. These studies concerned the Type I error

rate under the null-model, the hit rate, that is, the power to detect model violations,

and the false alarm rate, that is, the Type I error rate for model-conform items in a

test where one or more of the other items violated the model. The studies on the

Table 1. Simulation values and data summary. Number of observations equals 2000.

Item ai bi

p-value

Score

Frequency

g ¼ 1 g ¼ 2 g ¼ 1 g ¼ 2

0 32 11

1 0.40 �1.00 0.41 0.84 1 64 26

2 0.60 �1.00 0.40 0.83 2 90 54

3 0.80 �1.00 0.39 0.83 3 132 103

4 0.40 0.00 0.24 0.50 4 155 152

5 0.60 0.00 0.26 0.55 5 164 190

6 0.80 0.00 0.24 0.55 6 156 194

7 0.40 1.00 0.9 0.20 7 114 145

8 0.60 1.00 0.11 0.24 8 63 84

9 0.80 1.00 0.10 0.24 9 23 35

10 0.60 0.00 0.25 0.56 10 0 0

Group lh rh Mean SD Alpha

1 0.00 1.0 4.6 2.2 0.58

2 0.50 0.8 5.2 2.0 0.49
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Type I error rate under the null-model were conducted for sample sizes of 1000 and

2000 simulees. Further, apart from a test length of 10 items, a test of 20 items was

generated by duplicating the true parameter values of Table 1. Model violations

were simulated by generating responses using a non-zero value for a d-parameter.

Introducing non-zero f-parameters is beyond the scope of this study. The model

violation was always imposed on the last item of the test. For all studies reported

below, 100 replications were made. In every replication, the probability was

computed that the parameter point d ¼ 0 was covered by the 90% HPD region,

according to equation (4), using the sampled parameter values from the BM

distribution. Further, the Bayesian p-values associated with the null hypothesis

d ¼ 0 against the alternative d 6¼ 0, were computed. Power was defined as the

percentage of significantly shifted BM distributions over replications.

Two series of simulations were performed, the first one aimed at DIF, and the

second at violation of local independence.

The first series of simulation studies entailed the power of the test based on the

BM for DIF. Data were generated using the true item and population parameters

for Table 1, with the distinction that a DIF parameter d ¼ 0.10, d ¼ 0.20, or

d ¼ 0.50 was added to the last item. The results are shown in Table 3. The

reported sample sizes refer to the number of simulees in each of the two groups.

As expected, the hit rate is an increasing function of both the effect size, the

sample size and the number of items. Not shown in the table is the fact that for

all combinations of sample size and test length, the false alarm rate of all BM

tests was approximately 10%.

In the second series of simulations, the power of the BM distribution targeted at

violation of local independence was investigated. In these simulations, only one group

of test takers with a standard normal ability distribution was used. Further, the item

parameters were as displayed in Table 1, with the distinction that a parameter

Table 2. Estimated parameter values, standard deviations and fit indices. Number of observations equals

2000.

Item ai sd(ai) bi sd(bi) BMIDif BMILoc

1 0.57 0.08 �1.01 0.06 0.26 –

2 0.63 0.08 �1.02 0.06 0.58 0.54

3 0.82 0.10 �1.07 0.07 0.46 0.58

4 0.42 0.06 0.06 0.04 0.44 0.33

5 0.62 0.07 �0.04 0.05 0.55 0.44

6 1.05 0.13 0.03 0.07 0.39 0.52

7 0.36 0.07 0.95 0.05 0.43 0.61

8 0.60 0.08 0.91 0.06 0.49 0.19

9 0.96 0.14 1.09 0.11 0.66 0.71

10 0.58 0.07 �0.06 0.05 0.61 0.48

Group lh sd(lh) rh sd(rh)

1 0.00 – 1.00 –

2 0.37 0.07 0.78 0.07
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d ¼ 0.10, d ¼ 0.20, or d ¼ 0.50 was added to model the dependency between item 9

and 10. The BM distributions were computed for every consecutive pair of items. The

results for the BM distributions of the last item are shown in Table 3 under the label

LOC. The results are generally analogous to the results of DIF, with the exception that

the power for the combination of the smallest sample and effect size becomes negligible.

The false alarm rate of the BM distributions for the other items and the other model

violation considered here were close to the nominal significance probability.

4 Discussion

In this paper, it was investigated how violations to multi-parameter models can be

evaluated in a Bayesian framework. The main advantage of the approach is that

many model violations for all items can be assessed without complicated and time

consuming computations. Analogous to modification indices in a frequentist

framework, modification indices mainly serve a purpose as caution indices, and a

significant result can be followed by a more detailed analysis with more traditional

tools such as Bayes factor, posterior predictive checks, or the Bayesian Information

Criterion (BIC).

A point of further study is the generalization of the approach to more complex

models. One of the main advantages of estimating IRT models using a fully Bayesian

approach is that traditional frequentist approaches break down because of the

infeasible numerical evaluation of the multiple integrals involved in solving the

estimation equations. In the framework of computer adaptive testing, interesting

models are testlet response models (BRADLOW, WAINER and WANG, 1999), models

with multidimensional latent abilities (BéGUIN and GLAS, 2001) and multilevel IRT

models (FOX and GLAS, 2001, 2003) and it is in the realm of these models that more

research needs to be done.

Appendix: Proof of Theorem 1

According to equation (3), define

Table 3. Power of the BM for DIF and local independence (LOC), detection percentage.

N K

DIF LOC

Effect Size Effect Size

0.10 0.20 0.50 0.10 0.20 0.50

1000 10 16 78 100 0 4 51

20 24 85 100 0 5 77

2000 10 33 94 100 0 4 83

20 34 98 100 0 3 93
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V�1 ¼ x1; x2½ �t x1; x2½ �
� �

¼ V11 V12
V21 V22

� ��1

¼ W11 W12

W21 W22

� �
;

where x1 is an n � 2 and x2 an n � rmatrix with rank 2 and r, respectively. Under the

null-model, k ¼ 0, the conditional distribution of the parameters of item j equals

nj j Z; x1; r20 � N n̂j;x1 ; r
2
0V11

� �
where n̂j;x1 is the least-squares estimate of nj, given x1 and Z. It is assumed that the

elements of k, nj and logðr20Þ are uniformly and independently distributed. The BMI

values of k are sampled from its full conditional distribution, that is,

k j Z; x; nj; r20 � N k̂þ V t
12V

�1
11 nj � n̂j;x1

� �
; r20W

�1
22

� �
;

where k̂ is the least-squares estimate of k given x and Z. The BM distribution can be

obtained by integration,

~pðk j x;ZÞ ¼
Z Z

~p k j Z; x; nj; r20
� �

p nj; r
2
0 j Z; x1

� �
dnj dr

2
0

/
Z Z

r�ðnþrþ1Þ
0 exp

�
�1

2r20
k� k̂
� �

� V t
12V

�1
11 nj � n̂j;x1

� �h it
W22

�
� k� k̂
� �

� V t
12V

�1
11 nj � n̂j;x1

� �h i
þ ðn� 2Þs20

þ nj � n̂j;x1

� �t
V �1
11 nj � n̂j;x1

� ���
dnj dr

2
0: ð5Þ

The expression within the exponent can be recognized as a specific form of the

inverse of the partitioned full rank symmetric matrix V, see, for example, SEARLE

(1971, p. 27), that is,

nj� n̂j;x1

� �t
; k� k̂
� �th i V �1

11 þV �1
11 V12W22V t

12V
�1
11 �V �1

11 V12W22

�W22V t
12V

�1
11 W22

	 

nj� n̂j;x

� �
k� k̂
� �

2
4

3
5:

Since this term represents the inverse of matrix V, equation (5) with K ¼ (nj, k)

simplifies to

~pðK jZÞ/
Z Z

r�ðnþrþ1Þ
0 exp

�1

2r20
ððn�2Þs20þðK� K̂ÞtV�1ðK� K̂ÞÞ

� �
dnj dr

2
0

/
Z

ms20þ K� K̂
� �t

V�1 K� K̂
� �h i�ðmþ2þrÞ=2

dnj; ð6Þ

where m ¼ n � 2. The integrand in (6) is in the form of a multivariate t-distribution.

As a result, the marginal distribution of a r-dimensional subset has the multivariate

t-distribution (BOX and TIAO, 1973)

k j Zj � tr k̂; s20V22; m
h i

:
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