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A structural multilevel model is presented where some of the variables cannot be
observed directly but are measured using tests or questionnaires. Observed
dichotomous or ordinal polytomous response data serve to measure the latent
variables using an item response theory model. The latent variables can be defined at
any level of the multilevel model. A Bayesian procedure Markov chain Monte Carlo
(MCMC), to estimate all parameters simultaneously is presented. It is shown that
certain model checks and model comparisons can be done using the MCMC output.
The techniques are illustrated using a simulation study and an application involving
students’ achievements on a mathematics test and test results regarding management
characteristics of teachers and principles.

1. Introduction

School effectiveness research is a major topic in education, especially in light of the

concern for evaluation of differences in achievement and accountability. A major area of

interest is the identification of the characteristics of effective schools and criteria for
measuring effectiveness. The methods of measuring school effectiveness have changed

radically with the development of multilevel analysis. The hierarchical structure of

educational systems emphasizes the necessity of multilevel modelling. Multilevel

analysis enables the data to be treated in an appropriate manner, instead of being

reduced to a single level. The differences between classes and schools can be properly

taken into account, rather than aggregated arbitrarily. In this framework, most of the

variance is explained by student background variables, such as intelligence and socio-

economic status; other parts of the variance can be explained by class or school factors.
Applications of multilevel models to educational data can, for example, be found in Bock

(1989) and Goldstein (1995).
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In a standard application in school effectiveness research there are several schools,

with varying numbers of students, and each student has a test score. Interest is focused

on the effect of student and school characteristics on the students’ achievements.

A major component in the analysis is the use of achievement scores as a measure of

effectiveness. Most often, schools are compared in terms of the achievements of the

pupils, and test scores are used to represent these achievements. Students’
achievements cannot be observed directly but are observed by manifest variables or

proxies. It may also be possible that some explanatory variables on different levels are

observed by manifest variables, such as intelligence, socio-economic status or

community loyalty. Obviously, errors of measurement are inherent in manifest variables.

Traditionally, the manifest variables are used in further analyses as fixed and known

entities. An important deficiency is that the measurement error associated with the test

scores is ignored. This error can have an effect on the estimates of the parameters of the

multilevel model, that is, the standard errors of the parameters are underestimated.

In general, the use of unreliable variables leads to biased estimation of the regression
coefficients and the resulting statistical inference can be very misleading.

This problem can be handled by extending an item response theory (IRT) model to a

multilevel IRT model consisting of a latent variable assumed to be the outcome in a

regression analysis. This model has already become an attractive alternative to the

traditional multilevel models. It is often presented as a two- or three-level formulation of

an item response model, that is, a multilevel regression model is imposed on the ability

parameter in an item response model. Verhelst and Eggen (1989) and Zwinderman

(1991, 1997) defined a structural model for the one-parameter logistic model and the

Rasch model with observed covariates assuming the item parameters are known.
Zwinderman also illustrated the possibility of modelling differential item functioning.

Adams, Wilson, and Wu (1997) and Raudenbush and Sampson (1999) discussed a two-

and three-level hierarchical logistic regression model which can be seen as a Rasch

model embedded within a hierarchical structure. The first level of the multilevel model

describes the relation between the observed item scores and the ability parameters.

This two- and three-level model can be estimated in HLM 5 (Raudenbush, Bryk,

Cheong, & Congdon, 2000), Kamata (2001) defined the multilevel formulation of the

Rasch model as a hierarchical generalized linear model that can be estimated using the

HLM software. Also, Maier (2001) defined a Rasch model with a hierarchical model
imposed on the person parameters but without additional covariaties. Fox and Glas

(2001, 2003) extended the two-parameter normal ogive model by imposing a multilevel

model, with covariates on both levels, on the ability parameters. This multilevel IRT

model describes the link between dichotomous response data and a latent dependent

variable within a structural multilevel model. They also showed how to model latent

explanatory variables within structural multilevel model using dichotomous response

data.

All these models can handle dichotomous response data, that is, the Rasch model or

the normal ogive model is used as an item response model for measuring the latent
variables. But data collected from respondents using questionnaires and surveys are often

polytomous. For example, Likert items are frequently used on questionnaires in

educational and psychological measurement. Treating the polytomous data as

continuous and ignoring the ordinal discrete nature of the data can lead to incorrect

conclusions (Lee, Poon, & Bentler, 1992). On the other hand, transforming the

polytomous data to dichotomous data, by collapsing response categories to enforce

dichotomous outcomes, leads to a loss of information contained in the data. The best way
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is to extend the models to handle polytomous data measuring one latent ability.

Wu, Adams, and Wilson (1997) and Patz and Junker (1999) discussed models that can

handle both dichotomous and polytomous item responses along with a latent variable as

outcome in a regression analysis. In the present paper, attention is focused on measuring

latent dependent and independent variables of a multilevel model where manifest

variables, consisting of binary, ordinal or graded responses, are available. This extension

makes it possible to model relationships between observed and latent variables on

different levels using dichotomous and polytomous IRT models to describe the

relationship between the test performances and the latent variables. That is, relationships

between abilities of students underlying the test and other observed variables or other

measurements of some individual or group characteristics can be analysed taking into

account the errors of measurement using dichotomous or polytomous indicators.

It will be shown that adopting a fully Bayesian framework results in a straightforward

and easily implemented estimation procedure. That is, a Markov chain Monte Carlo

(MCMC) method will be used to estimate the parameters of interest. Computing the

posterior distributions of the parameters involves high-dimensional integrals, but these

can be dealt with by Gibbs sampling (Gelfand, Hills, Racine-Poon, & Smith, 1990;

Gelman, Carlin, Stern, & Rubin, 1995). Within this Bayesian approach, all parameters are

estimated simultaneously and goodness-of-fit statistics for evaluating the posited model

are obtained.

After this introduction, the model will be presented. In the next section, prior

choices and the estimation procedure will be discussed. Then several criteria, such as

the posterior predictive check, pseudo-Bayes factor and the marginal likelihood, are

introduced to assess the model fit. In section 6 a simulation study and a real data

example will be given. Section 7 contains a discussion and suggestions for further

research.

2. Model description

Educational or psychological tests are used for measuring variables such as intelligence

and arithmetic ability which cannot be observed directly. Interest is focused on the
knowledge or characteristics of students given some background variables, but only

the performance on a set of items is recorded. IRT models can be used to describe the

relationship between the abilities and the responses of the examines to the items of

the test in order to assess the abilities of the examinees. The class of IRT models is based

on the characteristics of the items in the test. The dependence of the observed

responses to binary or polytomously scored items on the latent ability is specified by

item characteristic functions. In the case of binary items, the item characteristic

function is the regression of item score on the latent ability. Under certain assumptions it
is possible to make inferences about the latent ability from the observed item response

using the item response functions. To be specific, the probability of a student

responding correctly to an item k ðk ¼ 1; : : : ;KÞ, is given by

PðY k ¼ 1ju;ak; bkÞ ¼ Fðaku2 bkÞ; ð1Þ

where F(·) denotes the standard normal cumulative distribution function, and ak and bk

are the discrimination and difficulty parameter of item k. Below, the parameters of item k

will also be denoted by jk ¼ ðak; bkÞT. The relation between the underlying latent ability

u, and the dichotomous outcomes can also be explained as follows. Assume a latent

independent random variable Zk which is normally distributed with mean aku2 bk and
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variance 1. Further, the response Yk is the indicator of Zk being positive. Thus, a correct

response on item k is obtained if a positive value is drawn form this normal distribution

with mean aku2 bk and variance 1. In the Appendix it will be shown that the

introduction of the latent random variables simplifies the implementation of the MCMC

algorithm.

The transition to polytomous scored items can be done by defining the polytomous

response, Y, as an indicator of Z falling into one of the response categories. Or, to put it

the other way around, the latent variable Z can be classified into more than two

categories by the cutoff or threshold parameters k. In this case, the latent variable Z is

defined as

Zk ¼ akuþ 1k; ð2Þ
where 1k is assumed to be standard normal. When the value of the latent variable Zk falls

between the thresholds kkc21 and kkc, the observed response on items k is classified into

category c. The ordering of the Ck response categories is

21 , kk1 # kk2 # · · · # kkCk
: ð3Þ

Notice that the number of categories may differ by item. Here, for notational

convenience, k0 ¼ 21 and the upper cutoff parameter kkCk
¼ 1 for every item

k (k ¼ 1, : : : ,K ), The probability that an individual, given some underlying latent ability,
u, obtains a grade c, or gives a response falling into category ck on item k, is defined by

PðY k ¼ cju;ak; kkÞ ¼ Fðaku2 kkc21Þ2Fðaku2 kkcÞ: ð4Þ

This item response model, called the graded response model or the ordinal probit

model, for polytomous scored items has been used by several researchers, among them
Johnson and Albert (1999), Muraki and Carlson (1995) and Samejima (1969). Notice that

(4) implies that the slope parameters of different categories within an item must be

constrained to be equal (see Mellenbergh, 1995).

Ordered polytomous responses can be modelled in various ways. But each approach

requires a different method to simplify the implementation of an MCMC algorithm.

Albert (2001) considered a class of sequential probit models and introduced a slightly

different definition of the latent variable Z that takes into account that the outcomes are

obtained through a sequential mechanism. Patz and Junker (1999) considered a

generalized partial credit model for the discrete ordinal responses and used Metropolis

steps in their MCMC algorithm.

The measurement model is sometimes of interest in its own right, but here attention

is focused on relations between latent variables and other observed variables.

The structural multilevel model defines the relations between the underlying latent

variables and other important variables at different levels. In the present paper, a sample

of clusters, say schools, indexed j ¼ 1; : : : ; J , is considered. A total of N individuals,

labelled i ¼ 1; : : : ;nj, j ¼ 1; : : : ; J , are nested within clusters. Consider, at level 1, an

observed or latent dependent variable v and Q covariates, of which Q 2 q are observed

without error, X ij, and there are q latent covariates uij. At level 2, S covariates are

considered, consisting of S 2 s observed without error, Wj of dimension (Q £ (S 2 s)),

and s latent covariates zj of dimension (Q £ s). This corresponds to the following

structural multilevel model:

vij ¼ b0
j½X ij;uij� þ eij; ð5Þ

bj ¼ g0½W j; z j� þ uj;
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where eij , N(0,s 2) and uj , N(0,T). Notice that the coefficients, regarding the

observed and latent covariates at level 1, vary over level 2 clusters and are both

regressed on observed covariates W and latent covariates z.
Both measurement models, the normal ogive and the graded response model, are not

identified. The models are overparameterized and require some restrictions on the

parameters. The most common way is to fix the scale of the latent ability to a standard

normal distribution. As a result, the multilevel IRT model (5) is identified by fixing the

scale of the latent abilities. Another possibility is to impose identifying restrictions on
the item parameters. In case of the normal ogive model, this can be done by imposing

the restriction
Q

kak ¼ 1 and
P

kbk ¼ 0.

Besides the regression among latent variables, it is possible to incorporate latent

variables at the lower level as a predictor of latent abilities at the higher level. Fox and

Glas (2003) give an example of a covariate representing adaptive instruction of teachers,

measured with a test consisting of 23 dichotomous items, predicting the abilities of the

students. An example will be given below of school climate, the social and educational

atmosphere of a school, reflecting students’ mathematical abilities, where school
climate will be measured with 23 polytomous items and the mathematical abilities by 50

dichotomous items.

Handling response error in both the dependent and independent variables in a

multilevel model using IRT has some advantages. Measurement error can be defined

locally as the posterior variance of the ability parameter given a response pattern

resulting in a more realistic, heteroscedastic treatment of the measurement error.

Besides the fact that in IRT reliability can be defined conditionally on the value of the

latent variable, it offers the possibility of separating the influence of item difficulty and
ability level, which supports the use of incomplete test administration designs, optimal

test assembly, computer adaptive testing and test equating. Further, it is possible handle

various kinds of item responses to assess the ability of interest without simplifying

assumptions regarding the discrete nature of the responses.

3. Parameter estimation

Let y be the matrix of observed data, where y ¼ ðyv;yu;yzÞ denotes the observed data

in measuring the latent abilities v, u and z, respectively. The likelihood of the

parameters of interest of model (5) is a product of the likelihood for the J groups, that is

lðj;s2; g;TjyÞ ¼
Y

j

ð Y
ijj

ð
f ðyv

ij jjv;vijÞpðvijjuij;bj;s
2Þ

�
Y

q

h ð
gqðyu

qijjj
u
q; uqijÞpðuqij;muq;s

2
uq
Þduqij

i
dvij

�

pðbjjzj; g;TÞ
Y

s

h ð
hsðyz

sjjjzs; zsjÞpðzsj;mzs;s
2
zsÞdzsj

i
dbj ð6Þ

where f ðyv
ij jjv;vijÞ is an IRT model specifying the probability of the observed response

pattern yv
ij as a function of the ability parameter vij and item parameters jv. Further,

gqðyu
qijjj

u
q; uqijÞ is an IRT model for the qth latent explanatory variable on level 1, uqij,

using dichotomous or polytomous response data yu
qij and item parameters j u

q. In the

same way, hsðyz
sjj j z

s
; zsjÞ is an IRT model for the sth latent explanatory variable on level 2,

zsj, using the observed data y z
sij and item parameters j z

s . Here, it is assumed that the
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latent explanatory variables u and z are mutually independent. It is possible to model

correlated latent covariates at the same level. Fox and Glas (2003) transformed the

parameterization of the latent variables in such a way that the latent variables are

independent. The same procedure can be applied.

Computing expectations of marginal distributions using, for example, Gauss-Hermite

quadrature is difficult and becomes unfeasible when the number of latent variables is

increasing. In fact, with more than about four latent variables Gauss-Hermite quadrature

does not converge to a proper solution. A Bayesian approach has the advantage that
computations for estimation can be based on MCMC methods, which circumvent the

computation of high-dimensional integrals. Moreover, the Bayesian approach gives the

possibility of modelling all dependencies among variables and all sources of uncertainty.

3.1 Priors
Bayesian procedures require the specification of priors, that is, in order to form a

posterior density, all prior distributions of all model parameters must be specified.

Diffuse proper priors will be used to reflect vague beliefs about the parameter values.

In equation (6) it is assumed that the latent abilities are drawn from a normal
distribution. As mentioned, identification of the model can be done by specifying the

scale of the latent variables, for example, by stating that each latent variable is standard

normal. The Bayesian approach has the advantage that the model can be identified by

defining an appropriate prior for the latent abilities.

The normal ogive model has two item-specific parameters, a discrimination and a

difficulty parameter; see equation (1). The prior for the difficulty and discrimination

parameter ensured that each item had a positive discrimination index, and assumed

independence between the item difficulty and discrimination parameter,

pðjÞ ¼ pðaÞpðbÞ/
YK
k¼1

Iðak . 0ÞIðak; bk [ AÞ; ð7Þ

where A is a sufficiently large bounded interval. The prior for the item parameters in the

graded response model, equation (4), can be specified in the same manner. That is,

pðjÞ ¼ pðaÞpðkÞ/
YK
k¼1

Iðak . 0ÞIðak; kk1; : : : ; kkCk
[ AÞ; ð8Þ

subject to condition (3), and A is again a sufficiently large bounded interval. It is assumed

that nothing is known about the distribution of the responses in categories. So,
uniformly distributed prior information is specified for the threshold parameters,

obeying restriction (3).

Particular parameters of the inverse-gamma distribution are selected to specify

relatively vague but proper priors for the variances of the random errors in the structural

multilevel model. The random errors on different levels are assumed to be independent.

The random errors on level 2 may correlate and if prior knowledge is available it is

possible to specify this with an inverse-Wishart distribution for the variance matrix T.

An uninformative prior was used for the fixed effects, that is g , c, where c is a
constant. The impropriety of this prior does not result in an improper posterior of the

fixed effects given that there are at least as many data points as observations and that

the columns of the matrix of explanatory variables are linearly independent (Browne &

Draper, 2000; Gelman et al., 1995, p. 237). In the same way it follows that the posterior
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distribution of the fixed regression coefficients at level 1 is proper using an improper

prior.

3.2 Posterior simulation
The likelihood in (6) involves computation of high-order multidimensional integrals and
makes classical inference based on maximum likelihood extremely difficult. Inference

about the unknown parameters within a Bayesian framework is based on their joint

posterior distribution. The joint posterior distribution of the parameters of interest is

very complex, but simulation-based methods circumvent the computation of high-

dimensional integrals. An MCMC algorithm is considered to obtain random draws from

the joint posterior distribution of the parameters of interest given the data. The Markov

chains are relatively easy to construct and the MCMC techniques are straightforward to

implement. Fox and Glas (2001, 2003) implemented a Gibbs sampler for a structural
multilevel model with a latent dependent variable and a structural multilevel model with

latent independent variables using dichotomous responses. The extension to a

structural multilevel model with latent dependent and independent variables and

dichotomous and polytomous response data is quite straightforward. The basic idea is to

introduce augmented data in order to draw samples from the conditional distributions

of the parameters (Tanner & Wong, 1987). This has been described by Albert (1992),

Albert and chib (1993) and Johnson and Albert (1999) for the normal ogive model and

the ordinal probit model, and extensively used in estimating parameters of complex
models; see Ansari and Jedidi (2000), Béguin and Glas (2001) and Fox and Glas (2001).

The full conditionals of all parameters can be specified (see Appendix), and the Gibbs

sampler is used to estimate the parameters. Each iteration of the Gibbs sampler consists

of sequentially sampling from the full conditional. distributions associated with the

unknown parameters, {v; jv; u; ju;b;s2; z; jz; g;T}, and sampling the augmented data

to circumvent the need for integration procedures.

The convergence of the Gibbs sampling algorithm can be accelerated by using a

Metropolis-Hastings step for sampling the cutoff parameters (Cowles, 1996).

But constructing a suitable proposal density for the cutoff parameters can be quite

difficult. Here, a new candidate is generated for cutoff parameter kc, the upperbound of

category c, form a normal distribution,

k c , NðkðmÞ
c ; s 2

MHÞ; ð9Þ

where k
ðmÞ
c is the value of kc in the mth iteration of the sampler. The variance of the

proposal distribution, s 2
MH, must be specified appropriately to establish an efficient

algorithm, that is, the simulations are moving fast through the target distribution

(Gelman, Roberts, & Gilks, 1996). In the present paper, the variance of this proposal

distribution is adjusted within the sampling procedure. This fine-tuning of the proposal

distribution results in a good and efficient convergence of the algorithm without

detailed prior information regarding the variance of the proposal distribution. To be

specific, suppose that after every 50th iteration the acceptance rate (see Appendix)

regarding the threshold parameters is evaluated. If the acceptance rate is low, a

high percentage of the sampled new candidates is rejected, the variance s 2
MH is too high.

On the other hand, if the acceptance rate is high, a high percentage of the sampled new

candidates is accepted, the variance s2
MH is too low. In both situations the variance is

adjusted in the right direction. Here, the variance s2
MHis adjusted to obtain an
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acceptance rate of approximately. 5 which was found to be optimal for univariate

Metropolis-Hastings chains of certain types (Gelman, Roberts, & Gilks, 1996).

Under general conditions, the distribution of the sequential draws converges to the

joint posterior distribution (Tierney, 1994). Convergence can be evaluated by

comparing the between and within variance of generated multiple Markov chains

from different starting points (see, for instance, Robert & Casella, 1999, p. 366). Another

method is to generate a single Markov chain and to evaluate convergence by dividing the

chain into subchains and comparing the between- and within-subchain variance. A single
run is less wasteful in the number of iterations needed. A unique chain and a slow rate of

convergence is more likely to get closer to the stationary distribution than several

shorter chains. In the examples given below, the full Gibbs sample instead of a set of

subsamples from this sample was used to estimate the parameters. (The latter procedure

leads to losses in efficiency; see MacEachern & Berliner, 1994.) Further, the CODA

software (Best, Cowles, & Vines, 1995) was used to analyse the output from the Gibbs

sampler and the convergence of the Markov chains. Finally, after the Gibbs sampler had

reached convergence and ‘enough’ samples were drawn, posterior means of all
parameters of interest were estimated with the mixture estimator, to reduce the

sampling error attributable to the Gibbs sampler (Liu, Wong, & Kong, 1994).

The posterior standard deviations and highest posterior density intervals can be

estimated from the sampled values obtained from the Gibbs sampler (Chen & Shao,

1999). The Appendix describes the different simulation steps and further details of the

full conditional distributions.

4. Model assessment

The plausibility of the model, or its general assumptions, can be assessed using posterior

predictive checks (Gelman, Meng, & Stern, 1996). Let y be the observed data and y rep

be the replicate observations given all model parameters, denoted by l. Samples of the

unknown model parameters are available via the MCMC algorithm. The observed data

can be compared with the sampled replicated data using some test quantity

or discrepancy L. The test quantity may reflect some standard checks on overall fitness

or on some specific aspects of the model. A posterior predictive p value given by

pðyÞ ¼ PðLðy rep;lÞ $ Lðy;lÞjy;HÞ ð10Þ

quantifies the extremeness of an observed value of the test quantity under model H.

This probability can be approximated from a sample of, say, M MCMC draws of the

model parameters with

pðyÞ < 1

M

XM
m¼1

IðLðyrep
ðmÞ;lðmÞÞ $ Lðy;lðmÞÞjy;HÞ; ð11Þ

where I (.) denotes the indicator function. For p values close to zero or one the posited

model does not fit the data, regarding the test quantity.
An overall fit test statistic, a X

2-discrepancy as defined by Gelman, Meng, and Stern

(1996), can be used to judge the fit of the model, that is,

Lðy;lÞ ¼
XK

k¼1

XN

i¼1

ðyik 2 EðyikjlÞÞ
Var ðyikjlÞ

2

; ð12Þ
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for N persons responding to K items. In fact, the X
2-discrepancy is the sum of squares of

standardized residuals with respect to their expectations under the posited model.

This statistic equals the outfit statistic of Masters and Wright (1997). A lack of fit, a

p-value close to zero or one, indicates that the observed data are not close to the

replicated data under the hypothesized model H. Here, an item response theory model,

as a part of the multilevel IRT model H, relates the observed data to a latent variable

within the structural multilevel model. Intuitively, a lack of fit under the X
2-discrepancy

mainly provides information regarding the fit of the IRT model. In the examples below,
this will turn out to be the case.

4.1 Comparing models
Bayes factors are often used when choosing between a set of competing models

(see Kass & Raftery, 1995). The underlying Bayesian argument is choosing the model

that maximizes the marginal likelihood of the data. However, there are some

shortcomings regarding the Bayes factors, apart from the computational problems in

calculating them for high-dimensional models. First, Bayes factors are not defined when

using improper priors. Seconds, the Bayes factor tends to attach too little weight to the

correct model given proper priors and an arbitrary sample size (see Gelfand & Dey,

1994). Here, the pseudo-Bayes factor (PsBF) is used in comparing models, which avoids
these problems (Geisser & Eddy, 1979).

The PsBF is based on the conditional predictive ordinate (CPO), also known as the

cross-validation predictive density. Consider i ¼ 1; : : : ; N students responding to k ¼
1; : : : ; K items. Let y(ik) denote the observed data, omitting a single response of student

i on item k. Accordingly, the CPO is defined as

pð yikjy ðikÞÞ ¼
ð

pð yikjy ðikÞ;lÞpðljy ðikÞÞdl; ð13Þ

where l represents the model parameters. It follows that pð yikjy ðikÞ;lÞ ¼ pð yikjlÞ, due

to conditional independence, that is, the responses on the different items are

independent given that the ability and the responses of the students are independent of

one another. These properties make the evaluation of the cross-validation predictive

density, equation (13), relatively straightforward. That is, consider p(ljy) as the

importance sampling function. Given M MCMC draws of lð1Þ; : : : ;lðMÞ, a Monte Carlo
estimate of the cross-validation predictive density (13) is given by

p̂ðyikjy ðikÞÞ ¼
1

M

XM
m¼1

1

p ðmÞð yikÞ

 !21

; ð14Þ

where p
(m)( yik) is the probability of the single response yik, given sampled parameters

l (m), that is, the probability of scoring correct or incorrect, equation (1) or the

probability of scoring in a certain category on item k, equation (4). The CPO is estimated

by the harmonic mean of the likelihoods using a sample from the posterior distribution

p(ljy), and for M !1 this estimate converges almost surely to the correct value

(Newton & Raftery, 1994). This method can be used to estimate the pseudo-Bayes factor.

The PsBF for comparing two models, H1 and H2, is defined in terms of products of CPOs,

PsBF ¼
i;k

Y pð yikjy ðikÞ;H1Þ
pð yikjy ðikÞ;H2Þ

; ð15Þ
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where yik denotes the response of student i on item k. Calculating the PsBF is

straightforward using equation (14).

Most of the Bayes model assessment procedures are based on estimates of the

marginal likelihood. The PsBF (15) is based on the observed response data. Other

informal likelihood or penalized likelihood criteria can also be used for model

comparison. The fit of the structural multilevel model (5) can be based on the marginal

likelihood of the multilevel parameters. The log-likelihood information of the multilevel

parameters can be estimated using the output from the MCMC sampling scheme.

An estimate of the marginal log-likelihood is the average of the log-likelihoods at each of

the sample points, that is,

l̂ðs2; g;Tjy;HÞ ¼ 1

M

XM

m¼1

X
j

X
ijjlog p v

ðmÞ
ij ju ðmÞ

ij ;b
ðmÞ
j ;s2ðmÞ

;H
� h�

þlog p b
ðmÞ
j jz ðmÞ

j ; g ðmÞ;TðmÞ;H
� i

; ð16Þ

using the m ¼ 1; : : : ;M samples from the joint posterior distribution under model H.

Instead of averaging over the log-likelihood values, another possibility could be to use

the maximum log-likelihood value as an overall measure of fit, to be compared across

models. In this case, the MCMC sampling run should be large to cover all possible values

of the log-likelihood under the posited model.

Dempster (1997) and Aitkin (1997), considered the posterior distribution of the log-

likelihood ratio (LR). The strength of evidence against model H1 given model H2 can be

measured by (v, pv), where pv is the posterior probability that LR , v, that is,

pv ¼ Pðlðs2;g;Tjy;H1Þ2 lðs2; g;Tjy;H2Þ , logvjyÞ: ð17Þ

The case v ¼ 1 is of particular importance, since p1 is equal to the posterior probability

that LR , 1; however, it would not be regarded as convincing evidence against H1.

Aitkin suggests varying v over some small values, say .3 or .1, and assessing changes in

the posterior probability pv that LR , v. The log-likelihood is a function of the data and
the parameters, and so has a posterior distribution obtainable from that of the

parameters. The sampled values from the MCMC run can be used to estimate the

posterior probability pv by checking how often the inner statement in (17) is true given

the sampled log-likelihood values under both models.

Obviously, changes in the measurement model(s) and in the prior specifications are

not captured by this information criterion. Log-likelihood ratio comparisons are quite

insensitive to prior changes, and vary only for strongly informative priors. Below it will

be shown that LR can be used to compare models with each other regarding model

change in the multilevel part. On the other hand, the PsBF (15), based on the response

data via an IRT model, may not always capture changes in the structural multilevel

model.

5. Parameter recovery

A simulation study was carried out to assess the performance of the MCMC estimation

procedure. To present some empirical idea about the performance of the estimation

method 100 simulated data sets were analysed. The following structural multilevel

model was considered:
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uij ¼ b0j þ eij; ð18Þ
b0j ¼ g00 þ g01zj þ u0j;

where eij , Nð0;s2Þ and u0j , Nð0; t2Þ. At level 1, a sample of 2,000 students, divided

equally over 200 groups, responding to a test of 40 items with four response categories,

was considered to measure the latent dependent variable. Responses to a test of 40
dichotomous scored items belonging to, for example, group representatives, were

considered to measure the latent level 2 explanatory variable. For each data set, the

latent abilties u and z were sampled from a standard normal distribution. The

discrimination and difficulty parameters, regarding the normal ogive model for

measuring z, were sampled as follows: ak , log Nðexpð1Þ; 1
4
Þ and bk , Nð0; 1

2
Þ,

k ¼ 1; : : : ; 40. The discrimination parameters in the graded response model for

measuring is u were generated according to the same distribution. The threshold

parameters were chosen in such a way that the generated latent responses, according to
(2), were divided into four response categories. The true population values of the

unknown parameters, s2; t2 and g, are given in Table 1.

For each of the 100 data sets the model parameters were estimated based on 19,000

draws form the joint posterior distribution. The simulated values at the beginning of the

MCMC run cannot be considered as draws from the joint posterior distribution. After a

number of iterations have been performed (the burn-in period), the distribution of the

simulated values approaches the true posterior distribution. The burn-in period consisted

of the first 1,000 iterations. This burn-in period was determined using Heidelberger and

Welch’s procedure, which is available in the CODA software (Best et al., 1995).

Initial values of the multilevel of the multilevel parameters were obtained by estimating

the random coefficients model (18) by HLM (Raudenbush et al., 2000) using observed

sum scores as an estimate for the dependent and explanatory variable. Fig. 1 shows

MCMC iterates of the variance parameter at level 1,s2, and the variance parameter at level

2, t2,of four arbitrary simulated data sets.

The four left-hand plots correspond to the sampled values of the level 1 variance

parameter and the four right-hand plots correspond to sampled values of the level 2

variance parameter, for four of the simulated data sets. Visual inspection shows that the

chains converged quite quickly to the stationary distribution. CODA (Best et al., 1995)

was used to check the convergence of the MCMC chains. Geweke’s convergence

diagnostic was computed for the several chains, and p-values, given in Fig. 1, indicate

that the convergence of each chain is plausible. Note that the p-values were computed

Table 1. Generating values, means and standard errors of recovered values

Generated Multilevel IRT

Fixed effects Coeff. Mean of estimates Standard deviation HPD Coverage

g00 1.25 1.254 .069 [1.122, 1.387] .94
g01 1 .996 .069 [.858, 1.127] .96

Random effects Var. comp. Var. comp. Standard deviation HPD Coverage
s 2 .9 .900 .033 [.837, .964] .86
t 2 .75 .780 .095 [.600, .967] .92
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based on the 19,000 sampled values after the burn-in period. As an additional check,

multiple chains were run from different starting points, for several simulated data, to

verify that they resulted in similar answers. The computations were performed on

a 733 MHz Pentium III, written in Fortran, and each run of 20,000 iterations took about

2 hours.

Table 1 presents the true parameters, the average of the mean, the average of the

posterior standard deviations, and the average 95% highest posterior density (HPD)

Figure 1. MCMC iterations of the variance parameters corresponding to the multilevel IRT model. The

p-values correspond to the Geweke convergence diagnostic.
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intervals over the 100 MCMC samples. Further, 95% coverage values for each parameter

are given in Table 1. The coverage is the proportion of the 100 HPD regions covering the

true parameter values. It can be seen that there is close agreement between the true

parameters and the average estimated means, and acceptable coverage properties.

Although only 100 simulated data were used, the average of the posterior standard

deviations was comparable to the standard deviation within the 100 posterior means, for
each model parameter. The average of p-values of the overall fit test statistic (10) related

to the observed item responses as indicators of u and z, was around. 49 and .68,

respectively.

5.1 Model comparison
Two alternative models were estimated using the simulated data sets to investigate the

performance of the PsBF and the log-likelihood of the structural multilevel model

comparison. The first alternative model (model 2) corresponds to the empty model, that

is, a structural multilevel model where observed sum scores were imputed for the latent

dependent and explanatory variable. Accordingly, the true model will be referred to as

model 1.

Table 2 presents the results of estimating the parameters of models 2 and 3 using the

same simulated data. Without the latent explanatory variable z there is a lot more
unexplained variance at level 2 but the other parameter estimates of model 2 remain

almost the same. Obviously, a higher variance at level 2 induces a higher posterior

standard deviation of the fixed effect. In model 2, the average of p-values of the overall

fit test statistic was around .55, using the item responses for measuring u, and did not

indicate a lack of fit.

Models 1 and 2 were compared in terms of the PsBF related to the observed

responses of the 2,000 students on 40 items. The average PsBF across the 100 data sets

for model 1 versus model 2 is given by exp(211,267 þ 11,268) ¼ exp(1). Although
the PsBF is greater than 1, this difference is far from being significant given the 95%

credible interval [exp(20.5), exp(2.5)] for the PsBF. Therefore, the PsBF cannot

significantly distinguish between models 1 and 2. Further, the estimated latent

dependent variables under models 1 and 2 are almost the same. That is, the average

mean square error between the estimated latent dependent variables related to models 1

and 2 over the L ¼ 100 data sets is

MSEðûmodel1; ûmodel2Þ ¼ L21
XL

L¼1

N21
XN

i¼1

û
ðlÞ
1i 2 û

ðlÞ
2i

� 2
" #

ð19Þ

and equals .05. Here, the level 2 explanatory variable explained variance within the

latent dependent variable, but did not accumulate a lot of information in estimating the

latent dependent variable as a parameter of the measurement model. The parameter

estimates of the measurement model hardly changed as a result of changing the

structural multilevel model.

The difference between models 1 and 2 is much better captured by the log-likelihood

of the structural model. There is an explanatory variable missing in model 2, and this had

an impact on the log-likelihood of the structural model. Fig. 2 displays the estimated log-
likelihoods of the various models, ordered to the values of model 1. Considering all

simulated data sets, the estimated log-likelihoods of models 1 are significantly larger than

the estimated log-likelihoods of model 2, the empty model. This clearly demonstrates a

preference for model 1.
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The average parameter estimates of model 3 differ somewhat from the true

parameter values. Both the variance at level 1 and that at level 2 were too large. The scale

of the latent dependent and explanatory variable in model 1 equals the scale of the

imputed observed sum scores in model 3. As a result, the parameter estimates are

comparable and the same amount of variance can be explained by both models.

The observed sum scores displayed less variance between students than the students’

item responses. Accordingly, the covariate at level 2 explains less variance between

groups, and its coefficient is underestimated. The estimates of the variance at levels 1

and 2 are somewhat higher but the same amount of variance is available in the

dependent variable. Therefore, model 1 explains more variance and fits the data better.

Although the differences between log-likelihoods are small in Fig. 2, it can be seen that

overall model 1 performs better than model 3. The posterior probability of the log-

likelihood ratio of model 3 against model 1, equation (17), was estimated, and the mean

across the 100 data sets was p.1 ¼ .150 for v ¼ .1, and p1 ¼ .210 for v ¼ 1. This provides

evidence that LR , 1, indicating that model 1 should be preferred to model 3. The mean

Figure 2. The estimated log-likelihoods of the structural multilevel part of models 1,2 and 3.
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square error, as defined in (19), between the true simulated abilities, u, and ûmodel1

equals .04, whereas the mean square error between the true simulated abilities, ûmodel3

equals .62. The simulated distributions of the latent variables, u, z were both normally

distributed. Fox and Glas (2003) showed that the differences between the observed sum

scores and the estimated abilities using IRT were much larger for skewed latent

distributions.

6. Analysing multilevel data with measurement error

The multilevel IRT model was used in the analysis of a mathematics test, administered to

3,500 grade 7 students in 119 schools located in the West Bank. The mathematics test

consisted of 50 dichotomous scored items. Interest was focused exploring differences
within and between schools in the West Bank and establishing factors which explain

these differences with respect to students’ mathematical abilities. Therefore, various

background variables were measured concerning characteristics of students, teachers

and schools. Besides the mathematics test, an intelligence test (IQ) was administered,

gender was recorded (0 ¼ male 1 ¼ female), and socio-economic status (SES) was

measured by the educational level of the parents. In the analyses, the observed sum

scores of the predictors IQ and SES were standardized.

Tests were taken by teachers and school principals to measure such aspects as the

school climate and the principal’s leadership. The school climate (Climate), from the

teachers’ perspective, was measured by 23 five-point Likert items, and leadership

(Leader) was measured by 25 five-point Likert items. In the sampling design only one

class was selected from each school, so the data comprised a student level (level 1) and

school level (level 2). A stratified sample of schools ensured that all school types and all

geographical districts were represented. The average number of students per class is 28,

with a minimum of 10 and a maximum of 46 students. A complete description of the

data, including the data collection procedure and the different questionnaires, can be

found in Shalabi (2002).

The variation in the test results of the mathematical items was modelled in terms of

single underlying abilities. That is, a two-parameter normal ogive model was used to

define the relationship between the observed responses and the latent dependent

abilities in the structural multilevel model. First, the variation in the mathematical

abilities and heterogeneity across schools was measured with an empty structural

multilevel model, that is, only an intercept at level 1 varying across schools. Second,

student characteristics were used as predictors to explain variation. Third, the latent

school characteristics, school climate and leadership, were used as level 2 predictors on

the level 1 intercept. Finally, it was investigated whether the effects of the student

characteristics differed across schools.

The MCMC estimation procedure developed was applied to estimate the parameters

of the various models. All models were indentified by transforming the scale of the latent

variables to a standardized normal scale. The estimated parameters and log-likelihoods

were thus made comparable. The convergence of the MCMC chains was monitored by

comparing the between and within variance of the generated Markov chains. Further,

Geweke’s convergence diagnostic was computed for the several chains and indicated

that chains of 50,000 iterations had converged after a burn-in period of 1,000 iterations.

The empty model is called model 1, and the structural multilevel model including the

three level 1 predictors is called model 2. Model 2 is given by,
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uij ¼ b0j þ b1jSESij þ b2jGenderij þ b3jIQij þ eij;

b0j ¼ g00 þ u0j;

b1j ¼ g10;

b2j ¼ g20;

b3j ¼ g30;

ð20Þ

where the error terms eij and u0j are independent and normally distributed with zero

mean and variances s2 andt2,respectively. The two-parameter normal ogive model was

used to measure the latent dependent variable. The parameter estimates of models 1 and

2 are given in Table 3.

Due to scaling, the population mean or grand mean of mathematical abilities, g00, is

zero. The estimated intra-school correlation coefficient, from model 1, is around .50,

which means that around 50% of the total variance, due to individual differences in

mathematical abilities, can be explained by school differences. For example, the

difference between the nine worst and eight best performing schools is 30% items

correct. The three level 1 predictors all have a positive significant effect on student’s

mathematical achievement. The mathematical abilities were scaled around zero, so

female students performed better than male students. From Table 3 it can be seen that

the three level 1 variables together account for a substantial proportion of variation in

student’s achievement: (.515 2 .408)/.515 < 21% of the student level and

(.507 2 .370)/.507 < 27% of the schools level variance.

The relevance of three level 1 predictors is supported by the pseudo-Bayes factor and

the log-likelihood values of both models. The estimated PsBF in favour of model 2 is exp

(296,773 þ 96,837) ¼ exp (64),with a 95% credible interval [exp (61.7), exp (66.3],

and provides strong evidence that model 2 fits the data better. Besides, the log-likelihood

of the structural multilevel model went up from 27,285.9 to 26,383.8. The p-value of

the overall fit test statistic, equation (10), related to the observed item responses, was

around .5 for both models.
Model 2 was extended by including two latent predictors at level 2, Leadership and

Climate. The estimated multilevel IRT model (model 3) consists of three measurement

models, a two-parameter normal ogive model for measuring the latent dependent

variable, and two graded response models for measuring the latent the latent variables at

level 2 using the polytomous scored item responses. The structural multilevel part is

given by

uij ¼ b0j þ b1jSESij þ b2jGenderij þ b3jIQij þ eij;

b0j ¼ g00 þ g01Leaderj þ g02Climatej þ u0j;

b1j ¼ g10;

b2j ¼ g20;

zb3j ¼ g30;

ð21Þ

where the explanatory variables at level 2, Climate and Leader, are latent explanatory,

variables, providing information regarding the schools’ social and educational

atmosphere and the management characteristics of the schools, respectively. For each
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test, it was investigated whether a unidimensional factor was sufficient to explain the

scores. All parameters were estimated simultaneously using the MCMC sampler

developed. The estimated multilevel parameters are given Table 4.

The level 2 predictor Leader has a positive significant effect on mathematical

abilities, at a 5% significance level. The effect of variable Climate is not significant and

negative. Both variables account for 8% of the school level variance. The parameter

estimates of the structural multilevel conclusions. Therefore, any correlation between

the latent explanatory variables did not result in different parameter estimates.

The p-values of the X
2-discrepancy, corresponding to the level 2 variables, were around

.8, meaning that the averaged sum over the standardized residuals based on predictive

data was somewhat higher than the sum over the standardized residuals based on the

observed data. That is, the estimated graded response models did not replicate data

close to the observed data. The difference in the log-likelihood, from 26,383.8 (model

2) to 26,246.8, is not significant given the 95% HPD interval [26,452.1, 26,034.6] for

the log-likelihood of model 3. The posterior probability pv, defined in (17), for the log-

likelihood ratio of model 3 against model 2 equals .865 for v ¼ .1. This means that the

posterior probability that LR , .1 equals .865. Also, the PsBF, related to the observed

data for measuring the latent dependent variable, did not show a preference for model 3.

That is, the estimated PsBF in favour of model 3 is exp(296,771 þ 96,773) ¼ exp(2),

with a 95% credible interval [exp (20.1), exp (4.1)]. It turns out that the latent variables

at level 2, with significant coefficients, did not result in a better model fit. The school

organizational and instructional variables, school climate and school climate and school

leadership, are rarely investigated in developing countries and proved to have not much

of an influence on the students’ mathematical abilities.
Analogous to a standard multilevel analysis, observed sum scores were used as

estimates for the latent mathematical abilities and the latent school variables, Climate

and Leader. Then, the Gibbs sampler, described in the Appendix, was used to estimate

the parameters of model 3, equation (21), where the observed sum scores were scaled

the same way as the latent variables within the multilevel IRT model 3. The parameter

estimates are shown in Table 4. It can be seen that the parameter estimates are lower

than the estimates resulting from the multilevel IRT model analysis, due to measurement

error in the observed sum scores. The estimate of the variance at level 1 is higher and at

level 2 is lower, meaning that there is more unexplained variance using observed sum

scores. Less variance is explained due to differences between schools and less variance

is explained by the level 1 characteristics SES, gender and IQ. The latent dependent

variable measured with an IRT model displays more differences between students than

the observed sum scores, that is, the observed sum scores display less variance between

students than the students’ item responses. Although the effects of the level 2 variables

were lower when observed sum scores were used, both effects are still significant. As in

the corresponding multilevel IRT analysis, the estimated log-likelihood of model 3 is not

significantly higher than the estimated log-likelihood of model 2 using observed sum

scores, from 26,445.3 (model 2) to 26,368.6. The estimates are smaller than the

corresponding multilevel IRT log-likelihoods. The log-likelihood of the structural

multilevel model is maximized using the multilevel IRT model, in spite of a poor fit of the

graded response models.

As a last step, it was investigated whether there were any differential school effects.

Therefore, the effect of level 1 predictors SES and IQ was allowed to vary across schools.

Whether the effect of gender varied from school to school could not be tested, since

only 27 public (governmental) schools are for both boys and girls. The structural
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multilevel part of model 4 is given by

uij ¼ b0j þ b1jSESij þ b2jIQij þ b3jGenderij þ eij;

b0j ¼ g00 þ g01Leaderj þ g02Climatej þ u0j;

b1j ¼ g10 þ u1j;

b2j ¼ g20 þ u2j;

b3j ¼ g30;

ð22Þ

where the error eij is normally distributed with zero mean and variance s 2. The error

terms at level 2, u0j, u1j and u2j, are multivariate normally distributed with zero means

and covariance matrix T, and they are independent of the level 1 residuals. The

variances and covariances of the level 2 random effects are denoted by

varðuqjÞ ¼ t2
q; covðuqj;uhjÞ ¼ tqh, where h; q ¼ 0; 1; 2. The parameter estimates of

model 4 are given Table 5.

The parameter estimates of the fixed effects correspond to the estimates of model 3.

The effect of Climate is still not significant. The estimated average regression coefficients

of SES and IQ correspond to the estimated parameter values in model 3. In contrast

to model 3, it is assumed that the effect of students’ SES and IQ on their achievements

differs between schools, but on average the size of each effect remains the same. It can

be seen that both variances, t2
1 and t2

2, differ significantly from zero; this means that the

effect of SES and IQ varies from school to school. The average effect of SES is positive;

however, there are schools where this effect can be negative. That is, the value of the

average SES effect minus two standard deviations equals 2 .254. In the same way, it can

be seen that the average effect of IQ is positive, but for some schools it may be negative,

Table 5. Parameter estimates of multilevel IRT model 4: investigating differential school effects

Model 4

Fixed effects Coefficient Standard deviation HPD

g00 2 .106 .062 [2 .230, .013]
g01 (Leader) .231 .088 [.046, .385]
g02 (Climate) 2 .145 .089 [2 .325, .013]
g10 (SES) .125 .023 [.078, .169]
g20 (IQ) .359 .025 [.310, .408]
g30 (Gender) .189 .061 [.072, .309]

Random effects Variance components Standard deviation HPD
s 2 .378 .012 [.356, .401]
t 2

0 .317 .050 [.223, .417]
t 2

1 (SES) .036 .006 [.024, .049]
t 2

2 (IQ) .047 .010 [.031, .066]
t01 .010 .014 [2 .017, .035]
t02 .008 .016 [2 .023, .038]
t12 .005 .005 [2 .010, .012]
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since approximately 95% of the schools have an effect of IQ between 2 .075 and .793.

Finally, the estimated covariances between the random effects, t01, t02 and t12, are all

not significantly different from zero. It can be stated that the random effects are

independent of each other.

The p-values of the X
2-discrepancy remained the same, .5 for the dependent

variable and .8 for both level 2 variables. Model 4 differs only in the random part

from model 3; the fixed part remains the same. Therefore, the difference in the log-

likelihood provides information concerning the significance of the school-dependent

effects of SES and IQ. The difference in the log-likelihood, from 26,246.8 (model 3)

to 22,307 (model 4), is significant given the HPD interval [23,095.2, 21,486.2], for

the log-likelihood of model 4. Further, the posterior probability pv, defined in (17),

for the log-likelihood of model 4 against model 3, is zero. Thus, the posterior

probability that LR , .1 equals 0. In conclusion, the effects of SES and IQ are

different over schools. The estimated PsBF in favour of model 4, related to the

dependent variable, is exp( 2 96,761 þ 96,771) ¼ exp (10), with a 95% credible

interval [exp (7.9), exp (12.1)]. Here, the PsBF also indicates a preference for model 4.

In sum, West Bank primary schools differ greatly, considering the mathematical

abilities of the students, but the school context, measured by climate and leader, did not

explain much variation at level 2. The level 1 characteristics SES, IQ and gender

explained a lot of variation at the student level. It turned out tat the effects of SES and IQ

differed over schools. There was an increase in the effects of school characteristics on

students’ achievements in comparison to traditional methods for analyzing these data.

Modelling measurement error in the latent dependent and independent explanatory

variables resulted in larger effects and more explained variance at both levels. The effects

were attenuated when traditional methods were used which ignored the measurement

error, that is, using observed sum scores as an estimate for the latent variables.

7. Conclusions

A multilevel IRT model has been proposed that contains latent dependent and/or

explanatory variables on different levels. IRT models are used to define the relationship

between observable test scores and the latent constructs. The model can handle

dichotomous and polytomous responses. The structural multilevel model describes the

relationship between different latent constructs and observed variables on different

levels.

The simulation study shows that the Bayesian estimation method works well.

The MCMC algorithm is very flexible and allows the modelling of various latent variables

on different levels using dichotomous and/or polytomous responses. The flexibility of

the estimation procedure allows the use of other measurement error models and can

handle multilevel models with three or more levels. The estimation procedure takes the

full error structure into account and allows for errors in both the dependent and

independent variables. The Metropolis-Hastings algorithm is used to sample parameters

via a proposal distribution from which it is easy to sample. Good convergence of the

algorithm is obtained by adjusting the variance of the proposal distribution. The Bayesian

estimation method developed for estimating all parameters simultaneously is

implemented in Fortran and freely available (Fox, 2003). The program runs within

the statistical package S-Plus (Insightful, 2001).
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Different statistics are needed to check the fit of the multilevel IRT model. It turned

out that the X
2-discrepancy can be used to test the fit of a measurement model, since it

is almost indifferent to changes in the multilevel model. In general, posterior predictive

checking provides information regarding the global fit of the model. Within the

framework of the posterior predictive checks, other specific diagnostics can be

developed to check assumptions such as local independence, heteroscedasticity and

autocorrelation. Since the MCMC run can be time-consuming, it contains the estimation

of the model parameters and the checking of some of the model assumptions. Various

applications and developments of complex psychometric models show this twofold use

of the MCMC samples; see, for example, Ansari and Jedidi (2000), Béguin and Glas

(2001), and Lee and Zhu (2000). The pseudo-Bayes factor can be used to compare

models with each other but it is sensitive to the choice of prior, and may not always

reflect changes in the structural model. Therefore, modelling differences within the

structural part are better assessed by looking at the likelihood of the structural part.

The complex likelihood of the multilevel IRT model reveals the usefulness of looking at

a part of the likelihood. The log-likelihood quantity could be extended to penalize

models which improve fit at the expense of more parameters, and so serves as a measure

to assess model parsimony. For example, a Bayesian information criterion (BIC) could be

defined to compare multilevel IRT models with different structural multilevel parts.

It is hard to give a general specification of when the multilevel IRT model will make a

substantive difference in the analysis, leaving aside theoretical considerations. In cases

of skewed distributions or cases where some of the responses to the items are missing,

the multilevel IRT model is preferred. In cases of missing response data, the MCMC

estimation procedure for complete data can be modified in such a way that only the

available data are used. This is done by defining an indicator variable that specifies the

items that are administered and the persons who are responding. The example showed

a better fit of the multilevel IRT model. In the case of a smaller number of level 1 units or

response items, or bad fit of one of the measurement models, a multilevel model with

observed sum scores could be preferred. In general, more research is needed to obtain

rules for choosing between these models in different situations.

In the present paper, the measurement models, within the multilevel IRT model,

assume that the ability parameter is unidimensional. In some situations, a priori

information may show that multiple abilities are involved in producing the observed

response patterns. Then, a multidimensional IRT model serves to link the observed

response data to several latent variables. The multilevel IRT model could be extended to

handle these correlated latent variables within the structural multilevel model.

Two options are possible: one of the correlated latent variables is a dependent variable,

or all latent variables are explanatory variables within the structural multilevel model.

Thus the dependency structure and other person and group characteristics can be taken

into account in analysing the relation between multidimensional latent abilities.

The parameters of a normal ogive multidimensional IRT models can be estimated within

a Bayesian framework using the Gibbs sampler (Béguin & Glas, 2001). Accordingly, the

parameters of this extended multilevel IRT model can be estimated within a Bayesian

framework using MCMC, by defining the full conditionals of all parameters.
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Appendix: The MCMC implementation

The Gibbs sampler consists of stepwise draws from the full conditional distributions.

The algorithm is specified by defining all the full conditional distributions. Accordingly,

the (m þ 1)th iteration involves generating draws from these distributions. Below, an

implementation is given for an arbitrary latent variable in the structural multilevel

model. In all the steps, other possible latent variables are treated as observed variables.
Obviously, the full conditionals of other latent variables and parameters of the

corresponding measurement models can be obtained in the same way.

The first step is to augment the observed data, y, with latent data z. By defining a

continuous latent variable, z, that underlies the binary or polytomous response it is

easier to sample from the conditional distributions of the parameters of interest. These

augmented data, as defined in equation (2) and below equation (1), serve to simplify

calculations. This procedure has been widely applied; see, for example, Albert (1992)

and Johnson and Albert (1999). Let z denote the augmented data regarding the observed
binary or polytomous data, y, for measuring the latent ability u. Accordingly, let u be an

arbitrary latent variable within the structural multilevel model.

(1) The conditional distribution of the discrimination and difficulty parameters in the

normal ogive model, equation (1), can be obtained by viewing these parameters as

coefficients in the regression of z on H ¼ ½u; 2 1�. It follows that

jkju; zk , Nðĵk; ðHtHÞ21Þ I ðak . 0Þ I ðak [ AÞ; ð23Þ
where jk ¼ ðak; bkÞ and A is a sufficiently large bounded interval. The full

conditional distribution of the discrimination parameter in the graded response

model, equation (4), can be obtained in the same way.

(2) The conditional distribution of the threshold parameter is difficult to specify.

Therefore, a candidate k	
k, regarding the thresholds of item k, is sampled from a

proposal distribution, equation (9), from which it is easy to sample. The candidate

is accepted or rejected based on the Metropolis-Hastings acceptance probability,

min
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ij j

F
�
akuij 2 k
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�
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Þ
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; 1

#

where yij,k denotes the response of person ij on item k. For the other parameters

the sampled values from the last iteration are used. The first part represents the
contribution from the likelihood whereas the second part represents normalized

proposal distributions.

(3) The conditional distribution of the latent variable u. The latent variable is a

dependent variable or an independent variable at level 1 or 2 in the structural
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multilevel model. In all three cases, the conditional distribution is a product of two

normal distributions and the full conditional distribution follows from standard

properties of normal distributions (Lindley & Smith, 1972). In all cases, one part

follows from the measurement model, where uij can be viewed as a regression

coefficient in the regression from zijk 2 bk or zijk on ak in the case of binary or

polytomous data, respectively. Here, the three separate cases are described using

the graded response model.

† Dependent latent variable uij. It follows from equations (2) and (5) that

uijjzij; j;bj;s
2;y , N

ûij=nþ X ijbj=s
2

1=nþ 1=s2
;

1

1=nþ 1=s2

 !
; ð24Þ

with ûij ¼
P

kakzijk=
P

ka2
k and v ¼ 1=

P
ka2

k.

† Explanatory latent variable uij at level 1. Again, from equations (2) and (5), it

follows that

uijjzij; j;bj;s
2;y , N

ûij=nþ ~uij=f

1=nþ 1=f
;

1

1=nþ 1=f

 !
; ð25Þ

where the posterior expectation contains ûij, as defined above, and a term
~uij ¼ b21

qj wij 2 b2
j X2

ij

� 
, and the posterior variances of v and f ¼ b22

qj s
2,

where bqj is the regression coefficent of uij;b
2
j X2

ij is the product of regression

coefficients and explanatory variables at Level 1 without the latent variable uij.

† Explanatory latent variable uj at level 2. In the same way, it follows that

ujjzj; j;bj; gq;T;y , N
ûj=nþ ~uj=f

1=nþ 1=f
;

1

1=nþ 1=f

 !
; ð26Þ

where again ûj is the least squares estimator following from the measurement

model, equation (2), an ~uj ¼ g21
qs bqj 2 g2q W2

j

� 
with f ¼ Tqq=g

2
qs, where gqs

is the regression coeifficient of explanatory variable uj, and g2q W2
j is the

product of other regression coefficients and explanatory variables. When
defining a normal distributed prior for u, equations (24–26) are easily extended;

see Fox and Glas (2003).

(4) The full conditional for the regression coefficient, bj. Let X and W be the

explanatory variables at level 1 and 2, respectively, including any latent

explanatory variables. From equation (5) and a non-informative prior it follows that

bjjs2; g;T;y , N
Xt

jX jb̂j=s
2 þ T21W j g

Xt
jX j=s2 þ T21

;
1

XT
j X j=s2 þ T21

 !
; ð27Þ

where b̂j ¼ Xt
jX j

� 21

Xt
jvj:

(5) The full conditional for the fixed effects, g. Again, W represents the explanatory

variables at level 2, including the latent variable at level 2. From equation (5) and a

non-informative prior it follow that

gjbj;T;y , N

P
jW

t
jT

21bjP
jW

T
j T21W j

;
1P

jW
T
j T21W j

 !
: ð28Þ
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(6) The full conditional for the variance at level 1, s 2. A prior for the variance can be

specified in the form of an inverse-gamma (IG) distribution with shape and scale

parameters, ðn0=2;n0S0=2Þ. S0 is a prior guess and n0 displays the strength of this

belief. It follows that

s2jb;y , IG
N þ n0

2
;
NS þ n0S0

2

� �
; ð29Þ

where S ¼
P

ijj1=nj vij 2 X ijb j

� �2
. A non-informative but proper prior is specified

if n0 ¼ .0001 and S0 ¼ 1 (Congdon, 2001).

(7) The full conditional or the variance a level 2, T. An inverse-Wishart distribution

with small degrees of freedom, but greater than the dimension of b j; n0, and unit

matrix, S 0, can be used as a diffuse proper prior for T. It follows that

Tjb; g;y , Inv 2 Wishartðn0 þ J; ðS þ S0Þ21Þ ð30Þ

where S ¼
P

jðbj 2 W jgÞðbj 2 W jgÞt .
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