
For the best experience, open this PDF portfolio in
Acrobat 9 or Adobe Reader 9, or later.

Get Adobe Reader Now!

http://www.adobe.com/go/reader




Random Item Effects Modeling (Part 1)


Jean-Paul Fox


University of Twente
Department of Behavioural Science


Enschede, Netherlands


April 27, 2011


J.-P. Fox Bayesian Random-Item Response Modeling







Random Item Effects Modeling


Introduction Bayesian Item Response Modeling


Conditional Modeling


Example


Multilevel IRT


J.-P. Fox Bayesian Random-Item Response Modeling







Modeling Item Responses


Collection of responses, i = 1, . . . , N persons k = 1, . . . ,K
items. Data matrix N ×K responses:


•


Y =



1 0 1 . . . Y1K
0 1 1 . . . Y2K
...


. . .
...


YN1 0 1 . . . YNK





• Model the structure of the data


• Structure: persons (rows) and items (columns).
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A Likelihood Model; Binary Responses


P (Yik = 1) = F (θi − bk)


• Transform this probability to a continuous scale of all real
numbers
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A Likelihood Model; Binary Responses


log


(
P (Yik = 1)


1− P (Yik = 1)


)
= θi − bk


• The log-odd is defined on (−∞,∞)
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A Likelihood Model; Binary Responses


log


(
P (Yik = 1)


1− P (Yik = 1)


)
= θi − bk


• The Logistic Model


• The Probit Model
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A Likelihood Model; Binary Responses


log


(
P (Yik = 1)


1− P (Yik = 1)


)
= θi + bk


• The Rasch model, or One-parameter (likelihood) model.
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Conditional Modeling Framework


P (Yik = 1 | θi, bk) =
exp (θi − bk)


1 + exp (θi − bk)
Features of this model:


• Distinct parameters of persons and items


• Continuous latent variable θ ∈ R


• Monotonic increasing function of θ
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Conditional Independence (1)


• Conditional on person parameter, item responses are
assumed to be independent. (within-person dependency)


p (yi | θi,b) =


K∏
k=1


p (yik | θi, bk)


• The person parameter explains (within-person) associations
between item responses
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Conditional Independence (2)


• Conditional on item difficulty, item responses are assumed
to be independent


p (yk | θ, bk) =


N∏
i=1


p (yik | θi, bk)


• The item parameter explains (structural) relationships
between item responses
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Define Prior Model (Level-1 Parameters)


• Prior model for person parameters


p(θi | µθ, σ2θ) ∼ N
(
µθ, σ


2
θ


)


• Prior model for item parameters


p(bk | µb, σ2b ) ∼ N
(
µb, σ


2
b


)
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Hierarchical Prior Model (Level-2 Parameters)


• Hyperprior for prior parameters:


µθ ∼ N
(
µ0, σ


2
0


)
σ2θ ∼ IG (g1, g2)


• Hyperprior model for item parameters:


µb ∼ N
(
µ0, σ


2
0


)
σ2b ∼ IG (g1, g2)
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Hierarchical Prior Model (Level-2 Parameters)


• Hyperprior for prior parameters:


µθ ∼ N
(
µ0, σ


2
0


)
σ2θ ∼ IG (g1, g2)


• Hyperprior model for item parameters:


µb ∼ N
(
µ0, σ


2
0


)
σ2b ∼ IG (g1, g2)
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Two-Parameter Item Response Model


Individual i


qi yik


Item k


ak


bk


mq


sq
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Bayesian Model Building


1. Construct a likelihood model.


2. Specify a prior population model for person parameters.


3. Specify a prior population model for item parameters.


4. Specify hyperpriors for the prior parameters:
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Marginal Estimation


• Make inferences from the (marginal) posterior distributions


• Inferences about person parameters;


p (θ | y) =


∫ ∫
p
(
θ | y, µθ, σ2θ


)
p (µθ | µ0) p


(
σ2θ | g1, g2


)
dµdσ2θ


• MCMC produces samples from all marginal distributions.
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An Example


• Example One-Parameter Model


• R2WinBUGS interface


• Posterior inferences
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WinBUGS: One-Parameter Model


Listing 1: WinBUGS Code


model
{


for ( i in 1 :N) {
for ( k in 1 :K) {


p [ i , k ] <− exp ( 1 . 7∗( theta [ i ]−b [ k ] ) ) / (1+exp ( 1 . 7∗( theta [ i ]−b [ k ] ) ) )
Y[ i , k ] ˜ dbern (p [ i , k ] )
}


theta [ i ] ˜ dnorm(0 , p r e c i s i o n )
}


. . .
}
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R2WinBUGS package


• Run program in WinBUGS


• Can call WinBUGS from R with package R2WinBUGS


• Advantage: output from WinBUGS in R, easy to calculate
some inferential statistics
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The Data


• N = 300 persons took a math test of K = 10 items


• 150 group A (males), 150 group B (females)


• Focus on math achievement differences (between-persons,
between-groups)
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WinBUGS: One-Parameter Model


Listing 2: WinBUGS Code


model
{


for ( i in 1 :N) {
for ( k in 1 :K) {


p [ i , k ] <− exp ( 1 . 7∗( theta [ i ]−b [ k ] ) ) / (1+exp ( 1 . 7∗( theta [ i ]−b [ k ] ) ) )
Y[ i , k ] ˜ dbern (p [ i , k ] )
}


meanterm [ i ] <− gamma ∗ Males [ i ]
theta [ i ] ˜ dnorm(meanterm [ i ] , p r e c i s i o n )


}


. . .
}
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The Bottom Line


1. Construct a likelihood model for observed response data


2. Define prior population distributions likelihood model
parameters (hierarchical modeling)


3. Define hyperpriors for the prior parameters


4. Use MCMC for posterior estimation and inference
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Multilevel Population Model


• Respondents are grouped into larger units


• Information characterizing respondents and higher-level
units


• School effectiveness research, cross-national surveys,
longitudinal survey studies
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Population Model for Item Parameters


Stage 2: Prior for Item Parameters


(ak, bk)
t ∼ N (µξ,Σξ) IAk


(ak),


where the set Ak = {ak ∈ R, ak > 0}


Stage 3: Hyper prior


Σξ ∼ IW(ν,Σ0)


µξ | Σξ ∼ N (µ0,Σξ/K0).
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Population Model for Person Parameters


Stage 2: Prior for Person Parameters


θij | µθj ∼ N
(
µθj , σ


2
)


µθj | µθ ∼ N
(
µθ, τ


2
)


Stage 3: Hyper prior


σ2 ∼ IG (g1, g2)


τ2 ∼ IG (g1, g2)


µθ ∼ N
(
µ0, σ


2
0


)
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Multilevel IRT (MLIRT)


School j


Individual i


qij


xk


xij


bj


wj


yijk


Item k
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The Synthesis: IRT and Multilevel Models


Stage 1 Response (Likelihood) Model


P (Yijk = 1 | ξk, θij) =


{
Ψ (d (akθij − bk))
Φ (akθij − bk)


Stage 2 Structural (Prior) Model


θj = xjβj + ej


βj = wjγ + uj


Stage 3 (Hyper-)Prior Model
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The Synthesis: IRT and Multilevel Models


• Parameters are estimated from the item response data
without having to condition on estimated person
parameters. (Ignoring the uncertainty regarding the latent
abilities may lead to biased parameter estimates)


• Allows the incorporation of explanatory variables at
different levels of hierarchy. (using collateral information to
sample examinees and to assign items to them)


• Handle incomplete data in a very flexible way. (Item
responses and subjects are missing for completely random
reasons)
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The Synthesis: IRT and Multilevel Models


• MLIRT modeling framework provides shrinkage estimators
that are based on an efficient combination of the response
data and the collateral information.


p
(
θij | y,xj ,βj , ξ, σ2θ


)
∝ p (y | ξ, θij) p


(
θij | xj ,βj , σ2θ


)
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The Synthesis: IRT and Multilevel Models


The use of explanatory information may lead to more accurate
item parameter estimates.


p (ξk | y,x) =


∫
p (ξk | y,θ) p


(
θ;β, σ2θ ,x


)
dθ
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The Synthesis: IRT and Multilevel Models


p (ξk | y,x) =


∫
p (ξk | y,θ) p


(
θ;β, σ2θ ,x


)
dθ


=


∫
p (y | ξk,θ) p(ξk)p


(
θ;β, σ2θ ,x


)
p(y)


dθ
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The Synthesis: IRT and Multilevel Models
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MLIRT for Longitudinal Item Response Data


• MLIRT model: compound symmetry model - (co)variances
are equal across time


θij = β0i + eij


β0i = γ00 + u0i


• Mixed Regression Model:


1. Subjects not measured on the same timepoints across time
(include all data)


2. Number of observations per subject may vary
3. Follow-up times not uniform across subjects (time a


continuous variable, individualized schedule)
4. Handle time-invariant and time-varying covariates
5. Estimate subject-specific change across time (average


change)


• Extensions to model covariance patterns
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Mixture MLIRT Modeling


Modeling of asymmetrical data: Define latent groups g1 and g2


p (θij | Ω) =


2∑
g=1


πigp (θij | Ωg)


P (Gi = 1 | yi,θi) =
πi1
∏ni
j=1 p (yij | θij) p (θij | Ω1)∑


g=1,2 πig
∏ni
j=1 p (yij | θij) p (θij | Ωg)
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Random Item Effects Modeling


Measurement Invariance


Random Item Effects Approach


Identification


MCMC


Testing Measurement Invariance


Measurement Invariance: Longitudinal Data


Longitudinal Invariance


J.-P. Fox Bayesian Random-Item Response Modeling







Measurement Invariance


DIF:


• Unconditional methods (item x group interaction, Coffman,
1964; Echternacht, 1974)


1. Dependence on other items
2. Dependence on the score distribution


• Conditional methods (Scheuneman, 1979; Lord, 1980;
Mellenbergh, 1982)


P (Y = 1 | θ, g) = P (Y = 1 | θ)


for all g, θ
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Graphical display of DIF
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Conditional DIF Detection


1. Specify item response model (likelihood model)


2. Specify distribution of the latent variable θ


3. Estimate the ICCs in each group (θ not on the same scale)


4. Assess the degree of bias (Mellenbergh, Hambleton)
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Conditional DIF Detection


Distributional assumptions (Thissen et al, 1986; Reise et al,
1993)


1. Evaluate fit of item response model in each group


2. Different population distributions, same item curves,
simultaneous analysis


3. Full measurement invariance versus partial measurement
invariance


4. Inspection of item parameters for DIF detection
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Many groups, ...


1. Specifying the population distribution (number of
parameters)


2. Finding anchor items


3. DIF in difficulty and discrimination parameters.
(Tests for partial measurement invariance)
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Random Item Parameters


Group-Specific Items


P (Yijk = 1 | θij , ãkj , b̃kj) =


{
exp(d(ãkjθij−b̃kj))


1+exp(d(ãkjθij−b̃kj))


Φ(ãkjθij − b̃kj)
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National and International Item Parameters


National


ξ̃kj =
(
ãkj , b̃kj


)t
∼ N


(
(ak, bk)


t ,Σξ̃


)


International


(ak, bk)
t ∼ N (µξ,Σξ)
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ãkj , b̃kj


)t
∼ N


(
(ak, bk)


t ,Σξ̃


)


International


(ak, bk)
t ∼ N (µξ,Σξ)
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Hyper Prior


Hyper Prior


Σξ ∼ IW(ν,Σ0)


µξ | Σξ ∼ N (µ0,Σξ/K0)


Correlation Structure


Cov
(
ξ̃kj , ξ̃k′j′


)
=



Σξ + Σξ̃ k = k′, j = j′


Σξ k = k′, j 6= j′


0 k 6= k′.


J.-P. Fox Bayesian Random-Item Response Modeling







Hyper Prior


Hyper Prior


Σξ ∼ IW(ν,Σ0)


µξ | Σξ ∼ N (µ0,Σξ/K0)


Correlation Structure


Cov
(
ξ̃kj , ξ̃k′j′
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Σξ + Σξ̃ k = k′, j = j′


Σξ k = k′, j 6= j′


0 k 6= k′.


J.-P. Fox Bayesian Random-Item Response Modeling







Population Model


Independent Sampling Design


θi ∼ N (µθ, σ
2
θ)


Multilevel Design


θij ∼ N
(
xtijβj , σ


2
j


)
βj ∼ N


(
wt
jγ, τ


2
)
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Graphical Display of Random Item Effects Model
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Random Item Characteristic Curves
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Implied (Marginal) IRT Model


P (Yijk = 1 | θi, ξk) = E
(


Φ
(
akθi − b̃kj


))
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P
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Implied (Marginal) IRT Model


P (Yijk = 1 | θi, ξk) = E
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Φ
(
akθi − b̃kj
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= E


(
P
(
Zijk ≤ akθi − b̃kj | b̃kj


))
= P


(
Zijk ≤ akθi − bk − εbkj
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= P


(
Zijk + εbkj ≤ akθi − bk


)
= Φ


 akθi − bk√
1 + σ2
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= Φ (a∗kθi − b∗k)
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Polytomous Response Data


Graded Response Model


P
(
Yijk = c | θi, ξ̃kj


)
=


{
Φ (ãkjθi − κ̃kj,c−1)− Φ (ãkjθi − κ̃kj,c)
Ψ (ãkjθi − κ̃kj,c−1)−Ψ (ãkjθi − κ̃kj,c)
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Latent Variable Framework


Latent Augmented Responses


Zijk | Yijk = c, θi, ξ̃kj ∼ N (ãkjθi, 1) I (κ̃kj,c−1 ≤ Zijk ≤ κ̃kj,c) .


Graded Response Model


P
(
Yijk = c | θi, ξ̃kj


)
= P


(
ãkjθi − κ̃kj,c ≤ Z̃ijk ≤ ãkjθi − κ̃kj,c−1


)
= P


(
κ̃kj,c−1 − ãkjθi ≤ Z̃ijk ≤ κ̃kj,c − ãkjθi


)
= Pijk(c)− Pijk(c− 1).
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ãkjθi − κ̃kj,c ≤ Z̃ijk ≤ ãkjθi − κ̃kj,c−1
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Implied (Marginal) IRT Model


P (Yijk ≤ c | θi, ξk) = E (Φ (akθi − κ̃kj,c−1))


= E
(
P
(
Z̃ijk ≤ akθi − κ̃kj,c−1 | κ̃kj,c−1


))
= P


(
Z̃ijk ≤ akθi − κk,c−1 − εκkj,c−1


)
= P


(
Z̃ijk + εκkj,c−1


≤ akθi − κk,c−1


)
= Φ


akθi − κk,c−1√(
1 + σ2


κk


)



= Φ
(
a∗kθi − κ∗k,c−1


)
.
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Implied (Marginal) IRT Model


Expected conditional success probability


P (Yijk = c | θi, ξk) = Φ
(
a∗kθi − κ∗k,c−1


)
− Φ


(
a∗kθi − κ∗k,c


)
.


International Item Parameters


a∗k = ak/
√


1 + σ2
κk
,


κ∗k,c = κk,c/
√


1 + σ2
κk
.
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Identification: linkage between countries


• Identify scale; mean and variance latent variable


• Restrictions on item parameters or population parameters
latent variable


• Detect any indeterminancies
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Identification: linkage between countries


Latent mean versus country-specific difficulties


P
(
Yijk = 1 | β0j , b̃kj


)
= E


(
Φ
(
θij − b̃kj


))
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Φ
(
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Identification: linkage between countries


Latent mean versus country-specific difficulties


P
(
Yijk = 1 | β0j , b̃kj


)
= E


(
Φ
(
θij − b̃kj


))
= E


(
P
(
Zijk ≤ θij − b̃kj | θij , b̃kj


))
= P


(
Zijk ≤ β0j + eij − b̃kj | β0j , b̃kj


)
= Φ


β0j − b̃kj√
1 + σ2


θ
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Identification: linkage between countries


Latent variance versus country-specific discriminations


P
(
Yijk = 1 | β0j , b̃kj


)
= E


(
E
(


Φ
(
ãkjθij − b̃kj | θij , ~̃ξkj


)))
= E


(
P
(
Z̃ijk ≤ ãkj (β0j + eij)− b̃kj | β0j , ~̃ξkj


))
= P


(
Z̃ijk ≤ ak (β0j + eij) + εakj (β0j + eij)− b̃kj | β0j , b̃kj


)
.
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Estimation; MCMC


• (Straightforward) Implementation M-H within Gibbs
Algorithm


• Sampling (Constrained) threshold parameters
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Sampling Thresholds; M-H


Nation-Specific


κ̃∗kj,c ∼ N
(
κ̃


(m)
kj,c, σ


2
mh


)
I
(
κ̃∗kj,c−1 < κ̃∗kj,c < κ̃


(m)
kj,c+1


)


Acceptance Ratio


R =
p
(
κ̃∗kj | θij ,κk, σ2


κk
,y
)


p
(
κ̃


(m)
kj | θij ,κk, σ2


κk
,y
) Ck−1∏


c=1


Φ


(
κ̃
(m)
kj,c+1−κ̃


(m)
kj,c


σmh


)
− Φ


(
κ̃∗kj,c−1−κ̃


(m)
kj,c


σmh


)
Φ
(
κ̃∗kj,c+1−κ̃


∗
kj,c


σmh


)
− Φ


(
κ̃
(m)
kj,c−1−κ̃


∗
kj,c


σmh


) .
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Sampling Thresholds; M-H


Nation-Specific


κ̃∗kj,c ∼ N
(
κ̃


(m)
kj,c, σ


2
mh


)
I
(
κ̃∗kj,c−1 < κ̃∗kj,c < κ̃


(m)
kj,c+1


)


Acceptance Ratio


R =
p
(
κ̃∗kj | θij ,κk, σ2


κk
,y
)


p
(
κ̃


(m)
kj | θij ,κk, σ2


κk
,y
) Ck−1∏


c=1


Φ


(
κ̃
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Sampling Thresholds; M-H


International


p
(
κk,c | κ̃k,c, σ2


κk


)
∝


∏
j


p
(
κ̃kj,c | κk,c, σ2


κk


)
,


Proposal


κ∗k,c ∼ N
(
κ


(m)
k,c , σ


2
mh


)
I
(
κ∗k,c−1 < κ∗k,c < κ


(m)
k,c+1


)
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Sampling Thresholds; M-H


International


p
(
κk,c | κ̃k,c, σ2


κk


)
∝


∏
j


p
(
κ̃kj,c | κk,c, σ2


κk


)
,


Proposal


κ∗k,c ∼ N
(
κ


(m)
k,c , σ


2
mh


)
I
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κ∗k,c−1 < κ∗k,c < κ


(m)
k,c+1
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Sampling Thresholds; Gibbs Sampling


Nation-Specific Threshold


A = (κ̃kj,c−1, κ̃kj,c+1)


κ̃kj,c = νkj,cIA (νkj,c) ,


IA (νkj,c) =


{
1 νkj,c ∈ A
0 otherwise,


where νkj,c ∼ N
(
κk,c, σ


2
κk


)
.
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Sampling Thresholds; Gibbs Sampling


Distribution Unrestricted Nation-Specific Threshold


F (νkj,c) = Φ ((νkj,c − κk,c)/σκk)


Distribution Restricted Nation-Specific Threshold


G (κ̃kj,c) =
F (κ̃kj,c)− F (κ̃kj,c−1)


F (κ̃kj,c+1)− F (κ̃kj,c−1)
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Sampling Thresholds; Gibbs Sampling


Distribution Restricted Nation-Specific Threshold


νkj,c = F−1 (G (κ̃kj,c)) = F−1 (p) = κk,c + σκkΦ−1 (p)


= κk,c + σκkΦ−1


(
F (κ̃kj,c)− F (κ̃kj,c−1)


F (κ̃kj,c+1)− F (κ̃kj,c−1)


)


Sample Higher-level Parameters


p
(
νk,c, κk,c, σ


2
κk
| κ̃k,c


)
∝ p


(
κ̃k,c | νk,c, κk,c, σ2


κk


)
p
(
νk,c, κk,c, σ


2
κk


)
∝ p (κ̃k,c | νk,c) p


(
νk,c, κk,c, σ


2
κk


)
∝ p


(
νk,c | κk,c, σ2


κk


)
p (κk,c) p


(
σ2
κk


)
,


J.-P. Fox Bayesian Random-Item Response Modeling







Sampling Thresholds; Gibbs Sampling


Distribution Restricted Nation-Specific Threshold
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κk


)
p
(
νk,c, κk,c, σ


2
κk


)
∝ p (κ̃k,c | νk,c) p


(
νk,c, κk,c, σ


2
κk


)
∝ p


(
νk,c | κk,c, σ2


κk


)
p (κk,c) p


(
σ2
κk


)
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Testing for Measurement Invariance


• Testing cross-national item variances σ2
ak


, σ2
bk


• Testing country means µj and variances σ2
j
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Bayes Factor


p
(
σ2
bk


= 0 | y
)


=
p
(
y | σ2


bk
= 0
)
p
(
σ2
bk


= 0
)


∫
p
(
y | σ2


bk


)
p
(
σ2
bk


)
dσ2


bk


Encompassing Prior


BF =
p
(
σ2
bk


= 0 | y
)


p
(
σ2
bk


= 0
) =


p (y | H0)


p (y | H1)
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Bayes Factor, Common Likelihood


Common Likelihood


BF =


∫
Θ0
p
(
σ2
bk
| H0


)
p
(
y | σ2


bk


)
dσ2


bk∫
Θ1
p
(
σ2
bk
| H1


)
p
(
y | σ2


bk


)
dσ2


bk


=


∫
Θ1


p
(
σ2
bk
| H0


)
p
(
σ2
bk
| H1


)
 p


(
σ2
bk
| H1


)
p
(
y | σ2


bk


)
p (y | H1)


dσ2
bk


=


∫
Θ1


p
(
σ2
bk
| H0


)
p
(
σ2
bk
| H1


)
 p (y | σ2


bk
, H1


)
dσ2


bk


= E


p
(
σ2
bk
| H0


)
p
(
σ2
bk
| H1


) | y,
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HPD Region Testing


The point
(
ξ̃k1 = ξ̃k2 = . . . = ξ̃kJ = ξk


)
P
(
p
(
ξ̃k | y


)
> p
(
ξ̃k1 = ξ̃k2 = . . . = ξ̃kJ = ξk | y


)
| y
)
< 1− α,
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HPD Region Testing


The point
(
ξ̃k1 = ξ̃k2 =. . . = ξ̃kJ = ξk


)


P
(
χ2


2J ≤
∑
j


(
ξk − µξ̃kj


)t
Ω−1


ξ̃kj


(
ξk − µξ̃kj


)
| zkj ,θj ,Σξ̃, ξk


)
< 1−α.
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HPD Region Testing


The point
(
ξ̃k1 = ξ̃k2 =. . . = ξ̃kJ = ξk


)


P
(
χ2


2J ≤
∑
j


(
ξk − µξ̃kj


)t
Ω−1


ξ̃kj


(
ξk − µξ̃kj


)
| zkj ,θj ,Σξ̃, ξk


)
< 1−α.
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DIC: Comparing Constrained and Unconstrained Models


DIC


DIC = D (Λ) +D (Λ)−D
(
Λ̂
)


= D (Λ) + pD,


Deviance Function


D (Λ) = −2 log p (Λ)
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DIC: Integrated Data Likelihood


p
(
y | θ, ξ,Σξ̃


)
=


∫
p
(
z | θ, ξ,Σξ̃


)
dz


=


∫ ∫
p
(
z | θ, ξ̃


)
p
(
ξ̃ | ξ,Σξ̃


)
dξ̃dz


=


∫ p
(
z, ξ̃ | θ, ξ,Σξ̃


)
p
(
ξ̃ | z,θ, ξ,Σξ̃


)dz.
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Generalized Partial Credit Model - Group Specific


For item k, group j, person i, the probability of scoring
category c = 0, ..., C is denoted by:


P
(
Yijk = c | θij , ãkj , b̃ckj


)
=


exp[
∑c


0(ãkjθij)− (b̃ckj)]∑C
0 (exp[


∑c
0(ãkjθij)− (b̃ckj)])


,


where
∑c=0


0 (ãkjθij)− (b̃ckj) = 0


Restrictions:


for each j,
∑
k


∑
c


b̃ckj = 0,
∏
k


ãkj = 1
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Random item parameters


The random group-specific item parameters are assumed to be
normally distributed:


ξ̃kj | ξk,Σξk ∼ N (ξk,Σξk)


ξ̃kj = (ãkj , b̃1kj , ..., b̃Ckj)


ξk = (ak, b1k, ..., bCk)


Σξk =



σ2
ak


σakb1k ... σakbCk


σb1kak σ2
b1k


... σb1kbCk


... ... ... ...
σbCkak σbCkb1k ... σ2


bCk
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Random item parameters


Population model for the international item parameters:


ξk | µξ,Σξ ∼ N (µξ,Σξ)


µξ = (a0, b10, ..., bC0)


Σξ =



σ2
a σab1 ... σabC


σb1a σ2
b1


... σb1bC
... ... ... ...
σbCa σbCb1 ... σ2


bC



Hyper priors:


Σξ ∼ IW(ν,Σ0)


µξ | Σξ ∼ N (µ0,Σξ/K0)
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Metropolis-Hastings step


• Metropolis-Hastings step necessary for sampling of the
group-specific item parameters


• For each k and j and for c = 1, C, sample a proposal ξ̃∗ckj


from the proposal distribution N(ξ̃
(m)
ckj , σ


2
mh)I(ã∗kj > 0).


• The acceptance ratio R is now defined as:


R =
p(y | ξ̃∗ckj ,θ(m), ξ̃


(m+1)
kj )p(ξ̃∗ckj | (ξ


(m)
ck , σ


(m)
ξck


)


p(y | ξ̃(m)
ckj ,θ


(m), ξ̃
(m+1)
kj )p(ξ̃


(m)
ckj | (ξ


(m)
ck , σ


(m)
ξck


)
(1)


• A random uniform number uckj is drawn, and the proposal
is accepted when uckj ≤ R.
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Invariance Test


• Diagonal elements of a IW distributed matrix are inverse
gamma distributed.


•


Σξk =



σ2
ak


σakb1k ... σakbCk


σb1kak σ2
b1k


... σb1kbCk


... ... ... ...
σbCkak σbCkb1k ... σ2


bCk



• Bayes factor for nested models can be applied in the same


way as for the 2 parameter model.


• Compute Bayes factor for each of the diagonal elements:


BF =
P (σ2


ξck
< δ|y,M1)


P (σ2
ξck


< δ|M1)
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Longitudinal invariance - causes of non-invariance


• Change of a person’s understanding of items over time can
result in ”item parameter drift”.


• Lengthening or shortening of the intervals between scale
points over time


• Change caused by f.e.: experiences between time 1 and
time 2, learning effects, testing effects
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Longitudinal invariance - model on the latent variable


• The change over time in the latent variable for person i is
modeled by a (random) linear time effect


θij = θi + λi(Tij − Ti0) + βj + eij


• Multilevel model:


θij ∼ N
(
λiti + βj , σ


2
θij


)
λi ∼ N (κ,Φ)


βj ∼ N
(
γ, τ2


)
ti = (1, (Tij − Ti0))


J.-P. Fox Bayesian Random-Item Response Modeling







Longitudinal invariance - model on item parameters


• The change over time in item parameters is modeled by a
linear time effect of the average time on occasion j,
tj =


∑
i Tij/I


ξ̃ckj = ξck + δcktj + εξck


• A multivariate regression model is formulated for the time
specific item parameters.


Ξk |∆k,Σk ∼ N (T∆k,Σk)


 ak1 b1k1 ... bCk1


... ... ... ...
akJ b1kJ ... bCkJ


 =


 1 t1
... ...
1 tJ


[ ak b1k ... bCk
δak δb1k ... δbCk


]
+ Uk


ukj ∼ N (0,Σk)
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International Comparisons of Student Achievement


• PISA 2003: Balanced incomplete test design, clusters,
booklets, domains,...


• Eight mathematic items (major domain) from booklet one


• 9796 respondents from 40 participating countries
(excluding Liechtenstein with 28 students)
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International Comparisons of Student Achievement


General ModelM4: Level 1 and 2


P
(
Yijk | θij , ξ̃k


)
= Φ


(
ãkjθij − b̃kj


)
(
ãkj , b̃kj


)t
= (ak, bk)


t +
(
εakj , εbkj


)t
θij = β0j + eij


Level 3


eij ∼ N
(
0, σ2θj


)
β0j ∼ N


(
γ00, τ


2
)(


εakj , εbkj
)t ∼ N


(
0,Σξ̃


)
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International Comparisons of Student Achievement


ModelM0


MLIRT with nesting of students in countries and invariant items


ModelM1


Ignore nesting of students in countries and random items


ModelM2


MLIRT with nesting of students in countries and random items
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PISA 2003: Exploring Cross-National Item Variation


Invariance Non-Invariance
Model M0 ModelM1 Model M2


Item Mean SD Mean SD σak Mean SD σak p0(ak)


Discrimination parameter
1 .80 .02 .72 .03 .07 .81 .03 .08 .86
2 1.06 .03 1.07 .06 .28 1.09 .05 .23 .99
3 .72 .02 .61 .02 .06 .71 .02 .06 .56
4 .68 .02 .61 .02 .08 .69 .03 .11 .97
5 .55 .02 .53 .02 .09 .58 .02 .11 .99
6 .36 .02 .34 .03 .10 .40 .04 .16 .99
7 .69 .02 .60 .03 .07 .69 .03 .09 .92
8 .66 .02 .63 .03 .09 .68 .03 .11 .97
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PISA 2003: Exploring Cross-National Item Variation


Invariance Non-Invariance
Model M0 ModelM1 Model M2


Item Mean SD Mean SD σbk Mean SD σbk p0(bk)


Difficulty parameter
1 -.58 .01 -.58 .06 .38 -.59 .03 .13 .99
2 .18 .01 .17 .07 .45 .19 .03 .11 .96
3 -.04 .01 -.04 .06 .37 -.03 .03 .10 .99
4 -.35 .01 -.37 .05 .34 -.35 .02 .10 .97
5 -.01 .01 -.02 .04 .24 -.02 .02 .08 .72
6 -1.51 .02 -1.54 .04 .24 -1.59 .02 .10 .90
7 -.78 .01 -.78 .05 .34 -.78 .02 .09 .95
8 -.94 .01 -.96 .04 .26 -.95 .02 .08 .76
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PISA 2003: Exploring Cross-National Item Variation


Invariance Non-Invariance
Model M0 Model M1 Model M2


Structural Part
Fixed
γ00 .010 .083 .000 - .734 .083
Random
σ2θ .791 .013 1.000 - .791 .014
τ200 .269 .063 .270 .063


Information Criteria
-2log L 95727.5 102322.1 94681.0
DIC (pD) 100395.1(4667) 98960.2(4279)
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International Comparisons of Student Achievement


ModelM3


MLIRT with nesting of students in countries, factor variance
non-invariance, and invariant items


ModelM4


MLIRT with nesting of students in countries, factor variance
non-invariance, and random items
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International Comparisons of Student Achievement


ModelM3


MLIRT with nesting of students in countries, factor variance
non-invariance, and invariant items


ModelM4


MLIRT with nesting of students in countries, factor variance
non-invariance, and random items
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PISA 2003: Exploring Cross-National Item Variation


Invariance Non-Invariance
Model M3 Model M4


Item Mean SD Mean SD σak p0(ak)


Discrimination parameter
1 .80 .02 .73 .04 .08 .43
2 1.06 .03 1.02 .12 .12 .82
3 .72 .02 .63 .03 .07 .17
4 .68 .02 .62 .03 .07 .29
5 .55 .02 .52 .03 .07 .39
6 .36 .02 .32 .06 .05 .09
7 .69 .02 .62 .03 .07 .21
8 .66 .02 .61 .04 .07 .25
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PISA 2003: Exploring Cross-National Item Variation


Invariance Non-Invariance
Model M3 Model M4


Item Mean SD Mean SD σbk p0(bk)


Difficulty parameter
1 -.58 .02 -.59 .03 .16 .99
2 .18 .02 .19 .09 .17 .99
3 -.04 .01 -.00 .04 .12 .99
4 -.35 .01 -.37 .03 .13 .99
5 -.01 .01 -.02 .03 .11 .98
6 -1.51 .02 -1.52 .09 .13 .99
7 -.78 .02 -.79 .03 .12 .99
8 -.94 .02 -.96 .04 .09 .93
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PISA 2003: Exploring Cross-National Item Variation


Invariance Non-Invariance
Model M3 Model M4


Structural Part
Fixed
γ00 .010 .073 .496 .051


Random
σ2θ .797 .023 .370 .011
τ200 .218 .056 .104 .025


Information Criteria
-2log L 94331.2 87277.4
DIC (pD) 99984.3(5653.1) 91593.5(4316.1)
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SHARE: Survey of Health, Ageing and Retirement in
Europe (2004)


• Financed by the European Union


• Data on health, socioeconomic status and social and family
networks


• More than 45,000 individuals aged 50 or over


• 12 countries ranging from Scandinavia (Denmark and
Sweden) through Central Europe (Austria, France,
Germany, Switzerland, Belgium, and the Netherlands) to
the Mediterranean (Spain, Italy and Greece). Further data
were collected in 2005-2006 in Israel.


• SHARE contributes directly to inform public policies, both
in substance and as a research tool
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SHARE: Depression Inventory


• What are your hopes for the future? (any/no mentioned)


• In the last month, have you felt that you would rather be
dead?


• Do you tend to blame yourself or feel guilty about
anything?


• Have you had trouble sleeping recently?


• In the last month, what is your interest in things?


• Have you been irritable recently?


• What has your appetite been like?


• In the last month, have you had too little energy to do the
things you wanted to do?


• How is your concentration? (television/radio)


• Can you concentrate on something you read?


• What have you enjoyed doing recently? (any/ no activity)


• In the last month, have you cried at all?
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Observed Country Differences


Austria Sweden Spain France


Irritable recently 13 % 20 % 30 % 37%


Mentioned no hopes future 21 % 8 % 22 % 21%


Felt rather be dead 3 % 4 % 11 % 5%


Blame self or feel guilty 12 % 35 % 15 % 30%


Differences in latent depression level and/item characteristics or
both?
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Overview


International Comparisons of Student Achievement


Survey of Health, Ageing and Retirement in Europe
SHARE: Measurement Invariance
SHARE: Random Item Effects Approach


European Social Survey (ESS)


Invariance in Cross-National Consumer Research
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Reasons for Non-Invariance


(van de Vijver & Tanzer, 2004)


• Translation errors


• Differences in connotation of words


• Different appropriateness for measuring construct


• Additional constructs measured in some countries


• Familiarity with content/response format


• Response tendency
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Types of measurement invariance


Steenkamp & Baumgartner, 1998


• Configural invariance


• Metric invariance (equal discrimination)


• Scalar invariance (equal difficulty/endorsement)


• Latent mean invariance


• Latent variance invariance


When measurement invariance is not present or when the
variance is not modeled, test scores cannot be compared across
countries
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Traditional Tests for Invariance


Widely Used


Likelihood ratio test (o.a. Thissen, Steinberg & Wainer, 1993):


• Baseline model: all parameters free


• Restrict parameters one by one and test for significant
decrease in fit


Problems


• Invariant anchor items needed to link the scales


• Invariant items hard to find with many groups and/or items


• Many analyses need to be done before the final set of
invariant items is found
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Random Item Effects Approach


P (Yijk = 1 | θij , ãkj , b̃kj) = Φ(ãkjθij − b̃kj)


National Item Parameters


ξ̃kj =
(
ãkj , b̃kj


)t
∼ N


(
(ak, bk)


t ,Σξ̃


)
International Item Parameters:


(ak, bk)
t ∼ N (µξ,Σξ)


Hyper priors:


Σξ ∼ IW(ν,Σ0)


µξ | Σξ ∼ N (µ0,Σξ/K0)
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SHARE example


Assume all subjects are independently sampled: θ ∼ N(0, 1)


Austria Sweden Spain France


Irritable 13 % 20 % 30 % 37%
bkj 1.312 1.012 0.768 0.482
No hopes 21 % 8 % 22 % 21%
bkj 0.808 1.622 0.918 0.951
Suicidal 3 % 4 % 11 % 5%
bkj 2.422 2.265 1.848 1.863
Blame self 12 % 35 % 15 % 30%
bkj 1.173 0.430 0.985 0.600
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Testing Measurement Invariance


Hypotheses:


• For scalar and metric invariance:
Ho: σ2ak = 0 and σ2bk = 0


• For latent mean and variance invariance:
Ho: τ2 = 0 and σ2θ1 = σ2θ2 = ... = σ2θJ
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Posterior Probability


• Compute probability of H0 under the estimated posterior
density


• σ2 = 0 has no probability under posterior density


• Define ”about equality constraint” δ close to zero that
represents ”no relevant effect”


P (σ2 < δ|Y,M1)
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Bayes factor


• Compares marginal likelihoods


P (Y |M0)


P (Y |M1)
=


∫
P (Y |θ,M0)P (θ|M0)dθ∫
P (Y |θ,M1)P (θ|M1)dθ


• Often hard to compute due to complex integrals


• Sensitive to specified prior
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Bayes Factor and Posterior Probability Tests


Bayes Factor Prob.
Discrimination σ2ak δ < .01 δ < .02 δ < .01 δ < .02


irritability 0.026 4.97 4.92 0.033 0.404
fatigue 0.040 0.41 1.47 0.003 0.121
tearfulness 0.018 20.30 8.21 0.137 0.674
hopes 0.020 15.28 7.42 0.103 0.609
suicidal 0.040 2.07 2.35 0.014 0.193
sleeping problems 0.020 14.76 7.39 0.099 0.606
interest 0.060 0.24 0.72 0.002 0.059
appetite 0.029 5.46 4.42 0.037 0.362
concentration media 0.031 3.56 3.67 0.024 0.301
concentration 0.038 1.43 2.14 0.010 0.176
enjoyment 0.030 3.51 3.83 0.024 0.314
guilt 0.042 0.22 1.15 0.001 0.094
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Bayes Factor and Posterior Probability Tests


Bayes Factor
Difficulty σ2bk δ < .01 δ < .02


irritability 0.026 5.60 4.93
fatigue 0.022 12.66 6.71
tearfulness 0.022 9.06 6.18
hopes 0.059 0.04 0.29
suicidal 0.050 0.11 0.61
sleeping problems 0.031 2.27 3.3
interest 0.029 4.56 4.25
appetite 0.025 6.76 5.27
concentration media 0.043 0.20 1.07
concentration reading 0.042 0.34 1.36
enjoyment 0.071 0.00 0.06
guilt 0.078 0.00 0.02
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Comparing Countries


Austria Sweden Spain France


means -1.42 -1.27 -0.96 -1.00


Irritable 13 % 20 % 30 % 37%
bkj -0.019 -0.237 -0.219 -0.365


No hopes 21 % 8 % 22 % 21%
bkj 0.138 0.613 0.264 0.209


Suicidal 3 % 4 % 11 % 5%
bkj 0.678 0.550 0.509 0.284


Blame self 12 % 35 % 15 % 30%
bkj 0.172 -0.261 0.454 -0.358
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SHARE Depression Scale


J.-P. Fox Bayesian Random-Item Response Modeling







SHARE Depression Scale
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SHARE Depression Scale: Hopes and Guilt
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ESS 2002: Attitude Toward Immigrant


• Eight dichotomized items: perceived consequences and
allowance of immigration


• ESS round 1: 22 countries. (Austria, Belgium, Switzerland,
Czech Republic, Germany, Denmark, Spain, Finland,
France, United Kingdom, Greece, Hungary, Ireland, Israel,
Italy, Luxembourg Netherlands, Norway, Poland, Portugal,
Sweden and Slovenia)


• Sample sizes per country varied from 850 to 2,646, where
missing values were treated as missing at random.


• Item parameter variation: Meuleman, Davidov, & Billiet,
2009; Welkenhuysen-Gybbels, Billiet,& Cambr, 2003
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ESS: Attitude towards immigrants items


1 Allow people of the same race or ethnic group
2 Allow people from the poorer countries outside Europe
3 Country is made a worse or a better place by people


from other countries
4 Bad or good for country’s economy that people come


from other countries
5 Country’s cultural life is generally undermined or enriched


by people from other countries
6 People who come take jobs away from workers in country
7 People who come here take out more than they put in
8 Country’s crime problems made worse or better by people


from other countries
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Model Extension: Explaining Item-Variance


Variance in country-specific item parameters can be
explained by country characteristics Vkj :


ãkj | Vkj , δak , σ
2
ak
∼ N


(
ak + Vt


kjδak , σ
2
ak


)
b̃kj | Vkj , δbk , σ


2
bk
∼ N


(
bk + Vt


kjδbk , σ
2
bk


)
,
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ESS: Attitude Towards Immigrants


Greece Norway Poland Sweden


Not allow immigrants 87 % 39% 44% 15%
poor countries


Make worse country 67% 39% 27% 17%


Take away jobs 78% 19% 52% 12%
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ESS: Attitude Towards Immigrants


Greece Norway Poland Sweden


Latent means 1.01 -0.42 -0.36 -1.09


Not allow immigrants 87 % 39% 44% 15%
poor countries


Make worse country 67% 39% 27% 17%


Take away jobs 78% 19% 52% 12%
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ESS: Attitude Towards Immigrants


Greece Norway Poland Sweden


Latent means 1.01 -0.42 -0.36 -1.09


Allow from poor countries 87 % 39% 44% 15%
bkj -0.69 -0.03 -0.11 0.29


Make worse country 67% 39% 27% 17%
bkj 0.52 -0.06 0.47 0.17


Take away jobs 78% 19% 52% 12%
bkj -0.18 0.76 -0.35 0.67
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Item Parameters, Variances, Bayes Factors


EAP BF EAP BF
ak σ2ak bk σ2bk


Allow poor countries 1.00 0.04 1.08 -0.31 0.18 0.00
Allow same ethnicity 0.89 0.03 4.01 0.22 0.13 0.00
Worse country 1.34 0.04 1.65 0.18 0.06 0.45
Bad for economy 1.38 0.04 1.31 0.27 0.14 0.00
Undermine culture 1.14 0.02 5.65 0.67 0.12 0.00
Take away jobs 0.84 0.02 6.53 0.13 0.18 0.00
Take out more 0.91 0.02 5.03 -0.22 0.12 0.00
Worse crime rate 0.76 0.02 8.60 -0.95 0.12 0.00
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ESS: Item-Covariate Effects


δak
% % GDP


immig unemp


allow poor countries -0.02 0.04 0.15
allow same ethnicity 0.07 0.01 0.07
worse country -0.02 -0.01 0.03
bad for economy -0.11 0.01 -0.04
undermine culture 0.02 -0.08 -0.01
take jobs away 0.01 -0.02 -0.15
take out more 0.06 0.01 -0.08
worse crime rate -0.01 0.04 0.05


P (β > 0) >.90
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ESS: Item-Covariate Effects


δbk
% % GDP


immig unemp


allow poor countries -0.03 0.04 0.03
allow same ethnicity 0.05 0.03 -0.02
worse country 0.00 0.05 0.01
bad for economy 0.10 -0.01 -0.02
undermine culture 0.00 0.03 0.00
take jobs away -0.18 -0.06 0.32
take out more 0.01 -0.06 -0.17
worse crime rate 0.05 -0.03 -0.15


GDP = Gross Domestic product, P (β > 0) >.95
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ESS Covariates
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Invariance in Cross-National Consumer Research


• ”Relaxing Measurement Invariance in Cross-National
Consumer Research Using A Hierarchical IRT Model”
(Martijn G. de Jong, Jan Benedict E.M. Steenkamp,
Jean-Paul Fox, JCR 2007)


• Two global marketing research (GfK & TNS) agencies
collected attitudinal data on SNI in 11 countries.


• Brazil, China, France, Japan, the Netherlands, Poland,
Russia, Spain, Taiwan, Thailand, and the U.S.


• Average number of respondents per country: 480 Total
number of respondents: 5,484


• Survey developed in English (back-translated in the local
languages)
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Consumer Susceptibility to Normative Influence (SNI)


• Consumer Susceptibility to Normative Influence (Bearden
et al. JCR 1989).


• Important CB scale, with over 100 citations since its
development.


• Attitudes toward brands (Batra et al. 2000)


• Attitudes toward advertising (Mangleburg and Bristol
1998)


• Consumer confidence (Bearden, Netemeyer and Teel 1990)


• Protective self-presentation efforts (Wooten and Reed 2004)


• Purchase of new products (Steenkamp and Gielens 2003)


• Consumer boycotts (Sen, Gurhan-Canli, and Morwitz
2001).
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SNI: Susceptibility to Normative Influence


1 If I want to be like someone, I often try to buy the same brands
that they buy.


2 It is important that others like the products and brands I buy
3 I rarely purchase the latest fashion styles until I am sure


my friends approve of them.
4 I often identify with other people by purchasing the same


products and brands they purchase
5 When buying products, I generally purchase those brands that


I think others will approve of
6 I like to know what brands and products make


good impressions on others.
7 If other people can see me using a product, I often purchase


the brand they expect me to buy
8 I achieve a sense of belonging by purchasing the same products


and brands that others purchase
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SNI: Discrimination Parameters


Item 1 2 3 4 5 6 7 8


France 0.86 0.65 0.58 1.26 1.27 1.17 1.56 1.09
Netherlands 0.79 0.82 0.58 1.23 1.32 1.08 1.15 1.29
Spain 0.88 0.71 0.89 0.94 1.31 0.89 1.26 1.28
China 1.02 1.03 0.64 1.29 1.07 0.70 1.32 1.15
Poland 0.93 0.88 0.27 1.24 1.42 1.10 1.58 1.51
Brazil 0.88 0.73 0.84 0.76 1.47 1.17 1.33 1.06
Thailand 0.84 0.81 0.52 1.30 1.24 1.03 1.23 1.38
Russia 0.87 1.22 0.40 1.10 1.41 1.26 0.85 1.41
USA 0.76 0.82 0.61 1.13 1.31 1.04 1.28 1.30
Taiwan 0.89 0.91 0.58 1.30 1.30 0.59 1.56 1.37
Japan 1.04 0.78 0.72 1.30 1.25 0.68 1.25 1.24
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SNI: Variances Discriminations and Thresholds


Discr CI Thresh. CI


Item 1 0.018 (0.010, 0.033) 0.031 (0.014, 0.049)
Item 2 0.030 (0.010, 0.065) 0.099 (0.051, 0.153)
Item 3 0.048 (0.013, 0.102) 0.111 (0.064, 0.167)
Item 4 0.048 (0.010, 0.106) 0.178 (0.100, 0.267)
Item 5 0.035 (0.010, 0.079) 0.089 (0.046, 0.137)
Item 6 0.074 (0.020, 0.157) 0.039 (0.018, 0.062)
Item 7 0.053 (0.011, 0.118) 0.087 (0.044, 0.134)
Item 8 0.036 (0.010, 0.082) 0.127 (0.067, 0.201)
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SNI: Posterior Mean Threshold
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SNI: RFS For Item 6


J.-P. Fox Bayesian Random-Item Response Modeling







References
• De Jong, M.G., Steenkamp, J.B.E.M., and Fox, J.-P. (2007). Relaxing


crossnational measurement invariance using a hierarchical IRT model.
JCR, 34, 260–278.


• De Jong, M.G., Steenkamp, J.B.E.M., Fox, J.-P., and Baumgartner,
H. (2008). Using item response theory to measure extreme response
style in marketing research: A global investigation. JMR, 45, 104–115.


• Glas, C.A.W. and van der Linden, W.J. (2003). Computerized
adaptive testing with item cloning. APM, 27, 247–261.


• Fox, J.-P. (2010) Bayesian Item Response Modeling: Theory and
Applications. New York: Springer.


• Fox, J.-P. (2007). Multilevel IRT modeling in practice. JSS, 20 (5).


• Janssen, R., Tuerlinckx, F., Meulders, M., and De Boeck, P. (2000). A
hierarchical IRT model for criterion-referenced measurement. JEBS,
25, 285–306.


• Verhagen, A.J. and Fox, J.-P. (2011). Bayesian Tests of Measurement
Invariance. Psychometrika (under review).


• A. J. Verhagen and Fox, J.-P. (2010). Random item effects modeling
for cross-national survey data. In E. Davidov & P. Schmidt, and J.
Billiet (Eds.), Cross-cultural Analysis: Methods and Applications
(pp), London: Routeledge Academic.


J.-P. Fox Bayesian Random-Item Response Modeling





		Outline

		Main Part

		International Comparisons of Student Achievement

		Survey of Health, Ageing and Retirement in Europe

		SHARE: Measurement Invariance

		SHARE: Random Item Effects Approach



		European Social Survey (ESS)

		Invariance in Cross-National Consumer Research





