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Responses to Test Items

Collection of responses on tests, i = 1, . . . , N persons who
answer k = 1, . . . ,K items, resulting in N ×K 0/1 responses Y :

Y =


1 0 1 . . . Y1K
0 1 1 . . . Y2K
...

. . .
...

YN1 0 1 . . . YNK



• Develop a model to say something about the structure of
this data set

• Structure: person and item effects.
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Stage 1: Modeling Success Probabilities

P (Yik = 1 | θi, ξk) = F (akθi − bk)
θi ∼ N

(
µθ, σ

2
θ

)

• Response observations k are nested within persons, random
person effects (latent variable)

• Response observations k are nested within items,
fixed/random item effects.
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Two-Parameter Item Response Model

Individual i

qi yik

Item k

ak

bk

mq

sq
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Likelihood-Model

Collection of N ×K responses, N persons and K items

P (Yik = 1 | θi, ak, bk) =

{
exp(d(akθi−bk))

1+exp(d(akθi−bk)) Logistic Model

Φ(akθi − bk) Probit Model

p (y | θ,a, b) =
∏
i

[∏
k

F (ηik)
yik (1− F (ηik))

1−yik

]

where ηik = akθi − bk
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Population Model for Item Parameters

Stage 2: Prior for Item Parameters

(ak, bk)
t ∼ N (µξ,Σξ) IAk

(ak),

where the set Ak = {ak ∈ R, ak > 0}

Stage 3: Hyper prior

Σξ ∼ IW(ν,Σ0)

µξ | Σξ ∼ N (µ0,Σξ/K0).
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Population Model for Person Parameter

Stage 2: Prior for Person Parameters

θi ∼ N (µθ, σ
2
θ).

Respondents are sampled independently and identically
distributed.

Stage 3: Hyper prior

σ2θ ∼ IG(g1, g2)

µθ | σ2θ ∼ N (µ0, σ
2
θ/n0).
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Longitudinal Item Response Data

• Discrete response data Yijk : (subject i, measurement
occasion j, item k)

• Several measurement occasions j = 1, . . . , ni, several points
in time.

• Latent Growth Modeling
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Latent Growth Modeling

• Model Latent Developmental Trajectories:

θij = β0i + β1iTimeij + eij

β0i = γ00 + u0i

β1i = γ10 + u1i

1. Subjects not measured on the same time points across time
(include all data)

2. Number of observations per subject may vary
3. Follow-up times not uniform across subjects (time a

continuous variable, individualized schedule)
4. Handle time-invariant and time-varying covariates
5. Estimate subject-specific change across time (average

change)
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Latent Growth Modeling

• Specify curvilinear individual change, e.g., polynomial
individual change of any order

• Model the covariance structure of the level-1 measurement
errors explicitly.

• Model change in several domains simultaneously.
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Mini-Mental State Examination (MMSE)

• Data: 4016 measurements of 668 subjects (4-16
measurement occasions)

• 26 MMSE (binary) items;

• What day of the week is it? (orientation)
• pencil - What is this? (language)
• subtract 7 from 100 (attention/concentration)
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Demographics

Table: Demographic information of the study participants.

Participants (N = 668)

Gender Male 329 Female 339
Age start mean

50-59 55 41
60-69 195 149
70-79 323 315
80-89 149 215
90-100 9 14

Average sum score
24− 26 302
22− 23 66
20− 21 47
18− 19 61
15− 17 66
< 14 126
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Mixture IRT Modeling

Modeling of asymmetrical data: Define latent groups g1 and g2

p (θij | Ω) =

2∑
g=1

πigp (θij | Ωg)

P (Gi = 1 | yi,θi) =
πi1
∏ni
j=1 p (yij | θij) p (θij | Ω1)∑

g=1,2 πig
∏ni
j=1 p (yij | θij) p (θij | Ωg)
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Likelihood-model M1

Measurement PartM1

P (Yijk = 1 | θij , ak, bk) = F (akθij − bk)

Latent Growth PartM1

p
(
θij | γ00, τ2, σ2

)
= πi1φ

(
µij,1, σ

2
)

+ πi2φ
(
µij,2, σ

2
)

µij,1 = γ00,1 + ui0,1

µij,2 = γ00,2 + ui0,2(
γ(2) < γ(1)

)
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Table: MMSE: Parameter Estimates of Model M1.

Mixture MLIRT M1

Decline Stable
Mean SD Mean SD

Fixed Effects
γ00 Intercept -.998 .037 .689 .030

Random Effects
Within-individual

σ2θ Residual variance .133 .003 .133 .003

Between-individual
τ200 Intercept .211 .015 .211 .015
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Likelihood-model M2

Measurement PartM2

P (Yijk = 1 | θij , ak, bk) = F (akθij − bk)

Latent Growth PartM2

p
(
θij | γ,T , σ2

)
= πi1φ

(
µij,1, σ

2
)

+ πi2φ
(
µij,2, σ

2
)

µij,g = βi0,g + βi1,gTimeij

βi0,g = γ00,g + ui0,g

βi1,g = γ10,g + ui1,g,

and ui,g ∼ N (0,Tg) with Tg a diagonal matrix with elements
τ200,g and τ211,g for g = 1, 2.
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Table: MMSE: Parameter estimates of Model M2

Mixture MLIRT M2

Decline Stable
Mean SD Mean SD

Fixed Effects
γ00 Intercept −.332 .037 .913 .012

Time Variables
γ10 Follow-up time −.274 .013 −.007 .004

Random Effects
Within-individual

σ2θ Residual variance .043 .001 .043 .001
Between-individual

τ200 Intercept .471 .038 .016 .003
τ211 Follow-up time .047 .004 .002 .000
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Estimated random effects of cognitive impairment
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Survival Time Data

• Time to certain (non-repeatable) events (e.g., death,
response, failure time)

• Persons were followed to death or (right-)censored in a
study

survival time vi =

{
ti ti ≤ ci observed (uncensored)
ci ti > ci not observed (censored)
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Distribution of Survival Times

• Survivor function: probability survives longer than t

S(t) = P (T > t) = 1− F (t)

• Probability density function

f(t) ≥ 0, t ≥ 0

• Hazard function: conditional failure rate

h(t) =
f(t)

1− F (t)
=
f(t)

S(t)

J.-P. Fox Bayesian Item Response Modeling



Right-Censored Observations

Joint probability of observing data v:

f(v | η) =

r∏
i=1

f(ti,η)

n∏
i=r+1

S(ci,η)
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Problems in Survival Modeling

• Censoring: data missingness, subject does not undergo the
event

• Unobserved between-individual variation in the probability
to experience the event

• Presence of time-varying covariates (e.g., prognostic
factors)
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Identify Prognostic Factors

• Prognosis, course, outcome of a disease

• Model probability of surviving given (possible) prognostic
factors (risk factors, individual characteristics)

• Popular model: Cox Proportional Hazards Model:

h(t | x1)

h(t | x2)
= constant

h(t | x) = h0(t)g(x)

= h0(t) exp(ηtx)

• Violate proportional hazards assumption when using
time-varying covariates
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Joint Modeling Approach

• Patients and controls with different (latent,
time-continuous) backgrounds may have different survival
prognosis

• Longitudinal factor/covariates are measured infrequently
and with measurement error

• Subjects enter the study at different time-points, measured
at different times, different number of measurements
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Joint Modeling: Two-stage procedure

• Survival information not used in modeling the covariate
process.

• New growth curves are estimated at each new event
(interpretability)

• Handle measurement error in time-dependent (latent)
covariate(s) survival model
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Joint Modeling

• Joint distribution (survival data, response data):

p (t,y | x) =

∫
p (t,y | η,x) p (η | x) dη

=

∫ ∫
p (t | η,x) p (y | η) p (η | Ω,x) p(Ω)dηdΩ

=

∫ ∫
p (t | η,Ω,x) p (y | η) p (η | Ω,x) p(Ω)dηdΩ

J.-P. Fox Bayesian Item Response Modeling



Time Density Function

• Define vi = min(ti, ci),

Di =

{
1 Event observed
0 Censored observation

• Density Function:

f (vi, di | η,Ω) = h (vi | η,Ω)di S (vi | η,Ω)

= h (vi | η,Ω)di exp

[
−
∫ vi

0
h (u | η(u),Ω) du

]
• Define subject-specific time-intervals, til − ti(l+1);

fil
(
di, ti(l+1), til | ηl

)
=

S
(
ti(l+1) | ηl

)1−di f (ti(l+1) | ηl
)di

S (tl | ηl)
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fil
(
di, ti(l+1), til | ηl

)
=

S
(
ti(l+1) | ηl

)1−di f (ti(l+1) | ηl
)di

S (tl | ηl)
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Time Density Function

• For subject i

fi (di, ti | η) =

l=Li−1∏
l=0

fil
(
di, til, ti(l+1) | ηl

)
=

l=Li−1∏
l=0

S
(
ti(l+1) | ηl

)1−di f (ti(l+1) | ηl
)di

S (tl | ηl)
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Estimated Parameters Mixture Model

Decline Stable
EAP SD EAP SD

Fixed Effects
γ00 Intercept -.709 .031 .776 .036
γ01 Time Slope -.112 .012 -.009 .006

Variance Components
τ2 Between Individual .244 .124 .134 .118
σ2 Residual .219 .029 .219 .029

Mixture Proportion
π .432 .020 .568 .020
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Results: Comparing Models

Model Density Covariates Groups DIC

M1 Exponential 1 2 2146.0
M2 Weibull 1 2 1872.3
M3 Lognormal 1 2 1905.4
M4 Exponential 1, θ 2 2041.7
M5 Weibull 1, θ 2 1836.0
M6 Lognormal 1, θ 2 1816.1
M7 Weibull 1, θ, Male, Age 2 1775.0
M8 Lognormal 1, θ, Male, Age 2 1768.1
M9 Weibull 1, θ, Male, Age 1 1856.3
M10 Lognormal 1, θ, Male, Age 1 1858.3
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Stratified Lognormal Survival Model M10

Decline (g=2) Stable (g=1)
EAP SD EAP SD

Fixed Effects
β0,g Intercept 1.986 .072 2.561 .081
β1,g Male -.270 .064 -.282 .076
β2,g Age (standardized) -.179 .080 -.212 .090
Λg Cognitive Function .369 .041 .254 .046

Variance Components
σ2S Residual .362 .031 .362 .031
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Cognitive Function
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Discussion

• Mental health (individual trajectory of cognitive
impairment) serves as a time-varying covariate

• Making inferences at the level of individuals (patients) and
their disease trajectories

• Combine cognitive test outcomes with other indicators to
serve as a diagnostic tool
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