# Joint Modeling of Longitudinal Item Response Data and Survival

Jean-Paul Fox

University of Twente Department of Research Methodology, Measurement and Data Analysis Faculty of Behavioural Sciences Enschede, Netherlands

J.-P. Fox

**Bayesian Item Response Modeling** 

< ロ > < 同 > < 回 > < 回

Introduction Cross-classified Response Data

J.-P. Fox

Bayesian Item Response Modeling

イロト イヨト イヨト イヨト

æ

Introduction Cross-classified Response Data

Longitudinal Response Data Mini-Mental State Examination (MMSE)

Bayesian Item Response Modeling

・ロト ・ 一下・ ・ 日 ト

Э

DQC

### Introduction Cross-classified Response Data

### Longitudinal Response Data Mini-Mental State Examination (MMSE)

#### Survival Analysis

Joint Modeling of Latent Developmental Trajectories and Survival Joint (Response, Survival) Analysis Outcomes

< 🗇 🕨 🔺 🖻 🕨

### Introduction Cross-classified Response Data

### Longitudinal Response Data Mini-Mental State Examination (MMSE)

#### Survival Analysis

Joint Modeling of Latent Developmental Trajectories and Survival Joint (Response, Survival) Analysis Outcomes

Discussion

Bayesian Item Response Modeling

< - The base of t

- - E - F

### Introduction Cross-classified Response Data

Longitudinal Response Data Mini-Mental State Examination (MMSE)

#### Survival Analysis

Joint Modeling of Latent Developmental Trajectories and Survival

Joint (Response, Survival) Analysis Outcomes

Discussion

**Bayesian Item Response Modeling** 

A (1) < (1) < (1) < (1) </p>

### Responses to Test Items

Collection of responses on tests, i = 1, ..., N persons who answer k = 1, ..., K items, resulting in  $N \times K$  0/1 responses Y:

$$\mathbf{Y} = \begin{bmatrix} 1 & 0 & 1 & \dots & Y_{1K} \\ 0 & 1 & 1 & \dots & Y_{2K} \\ \vdots & & \ddots & \vdots \\ Y_{N1} & 0 & 1 & \dots & Y_{NK} \end{bmatrix}$$

Bayesian Item Response Modeling

▲ □ ▶ ▲ □ ▶ ▲ □

### Responses to Test Items

Collection of responses on tests, i = 1, ..., N persons who answer k = 1, ..., K items, resulting in  $N \times K$  0/1 responses Y:

$$\mathbf{Y} = \begin{bmatrix} 1 & 0 & 1 & \dots & Y_{1K} \\ 0 & 1 & 1 & \dots & Y_{2K} \\ \vdots & & \ddots & \vdots \\ Y_{N1} & 0 & 1 & \dots & Y_{NK} \end{bmatrix}$$

• Develop a model to say something about the structure of this data set

・ 同 ト ・ ヨ ト ・ ヨ ト

### Responses to Test Items

Collection of responses on tests, i = 1, ..., N persons who answer k = 1, ..., K items, resulting in  $N \times K$  0/1 responses Y:

$$\mathbf{Y} = \begin{bmatrix} 1 & 0 & 1 & \dots & Y_{1K} \\ 0 & 1 & 1 & \dots & Y_{2K} \\ \vdots & & \ddots & \vdots \\ Y_{N1} & 0 & 1 & \dots & Y_{NK} \end{bmatrix}$$

- Develop a model to say something about the structure of this data set
- Structure: person and item effects.

・ ヨート ・ ヨート

# Stage 1: Modeling Success Probabilities

$$P(Y_{ik} = 1 | \theta_i, \boldsymbol{\xi}_k) = F(a_k \theta_i - b_k)$$
  
$$\theta_i \sim N(\mu_{\theta}, \sigma_{\theta}^2)$$

Bayesian Item Response Modeling

Э

## Stage 1: Modeling Success Probabilities

$$P(Y_{ik} = 1 | \theta_i, \boldsymbol{\xi}_k) = F(a_k \theta_i - b_k)$$
  
$$\theta_i \sim N(\mu_{\theta}, \sigma_{\theta}^2)$$

• Response observations k are nested within persons, random person effects (latent variable)

**Bayesian Item Response Modeling** 

・ロト ・ 一下・ ・ ヨト ・

## Stage 1: Modeling Success Probabilities

$$P(Y_{ik} = 1 \mid \theta_i, \boldsymbol{\xi}_k) = F(a_k \theta_i - b_k)$$
  
$$\theta_i \sim N(\mu_{\theta}, \sigma_{\theta}^2)$$

- Response observations k are nested within persons, random person effects (latent variable)
- Response observations k are nested within items, fixed/random item effects.

A (1) < (1) < (1) </p>

### Two-Parameter Item Response Model



J.-P. Fox

Bayesian Item Response Modeling

< ロト < 同ト < ヨト < ヨ

### Likelihood-Model

### Collection of $N\times K$ responses, N persons and K items

Bayesian Item Response Modeling

イロト イポト イヨト イヨト

Э

### Likelihood-Model

Collection of  $N\times K$  responses, N persons and K items

$$P(Y_{ik} = 1 \mid \theta_i, a_k, b_k) = \begin{cases} \frac{\exp(d(a_k \theta_i - b_k))}{1 + \exp(d(a_k \theta_i - b_k))} & \text{Logistic Model} \\ \Phi(a_k \theta_i - b_k) & \text{Probit Model} \end{cases}$$

Bayesian Item Response Modeling

イロト イポト イヨト イヨト

Э

### Likelihood-Model

Collection of  $N \times K$  responses, N persons and K items

$$P(Y_{ik} = 1 \mid \theta_i, a_k, b_k) = \begin{cases} \frac{\exp(d(a_k \theta_i - b_k))}{1 + \exp(d(a_k \theta_i - b_k))} & \text{Logistic Model} \\ \Phi(a_k \theta_i - b_k) & \text{Probit Model} \end{cases}$$

$$p(\boldsymbol{y} \mid \boldsymbol{\theta}, \boldsymbol{a}, \boldsymbol{b}) = \prod_{i} \left[ \prod_{k} F(\eta_{ik})^{y_{ik}} (1 - F(\eta_{ik}))^{1 - y_{ik}} \right]$$

where  $\eta_{ik} = a_k \theta_i - b_k$ 

Bayesian Item Response Modeling

イロト イヨト イヨト イヨト 三日

### Population Model for Item Parameters

#### Stage 2: Prior for Item Parameters

 $(a_k, b_k)^t \sim \mathcal{N}(\boldsymbol{\mu}_{\xi}, \boldsymbol{\Sigma}_{\xi}) I_{\mathcal{A}_k}(a_k),$ where the set  $\mathcal{A}_k = \{a_k \in \mathcal{R}, a_k > 0\}$ 

Bayesian Item Response Modeling

イロト イヨト イヨト

ъ

### Population Model for Item Parameters

#### Stage 2: Prior for Item Parameters

$$(a_k, b_k)^t \sim \mathcal{N} \left( \boldsymbol{\mu}_{\boldsymbol{\xi}}, \boldsymbol{\Sigma}_{\boldsymbol{\xi}} \right) I_{\mathcal{A}_k}(a_k),$$
  
where the set  $\mathcal{A}_k = \{a_k \in \mathcal{R}, a_k > 0\}$ 

Stage 3: Hyper prior

$$\begin{aligned} \boldsymbol{\Sigma}_{\boldsymbol{\xi}} &\sim \quad \mathcal{IW}(\nu, \boldsymbol{\Sigma}_0) \\ \boldsymbol{\mu}_{\boldsymbol{\xi}} \mid \boldsymbol{\Sigma}_{\boldsymbol{\xi}} &\sim \quad \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_{\boldsymbol{\xi}}/K_0). \end{aligned}$$

Bayesian Item Response Modeling

Э

Population Model for Person Parameter

Stage 2: Prior for Person Parameters

$$\theta_i \sim \mathcal{N}(\mu_{\theta}, \sigma_{\theta}^2).$$

Respondents are sampled independently and identically distributed.

Bayesian Item Response Modeling

Population Model for Person Parameter

Stage 2: Prior for Person Parameters

$$\theta_i \sim \mathcal{N}(\mu_{\theta}, \sigma_{\theta}^2).$$

Respondents are sampled independently and identically distributed.

Stage 3: Hyper prior

$$\sigma_{\theta}^2 \sim \mathcal{IG}(g_1, g_2)$$
$$\mu_{\theta} \mid \sigma_{\theta}^2 \sim \mathcal{N}(\mu_0, \sigma_{\theta}^2/n_0).$$

Bayesian Item Response Modeling

▲ □ ▶ ▲ □ ▶ ▲ □

## Longitudinal Item Response Data

• Discrete response data  $Y_{ijk}$ : (subject *i*, measurement occasion *j*, item *k*)

**Bayesian Item Response Modeling** 

## Longitudinal Item Response Data

- Discrete response data  $Y_{ijk}$  : (subject *i*, measurement occasion *j*, item *k*)
- Several measurement occasions  $j = 1, ..., n_i$ , several points in time.

イロト イポト イヨト イヨト

## Longitudinal Item Response Data

- Discrete response data  $Y_{ijk}$ : (subject *i*, measurement occasion *j*, item *k*)
- Several measurement occasions  $j = 1, ..., n_i$ , several points in time.
- Latent Growth Modeling

• Model Latent Developmental Trajectories:

$$\theta_{ij} = \beta_{0i} + \beta_{1i}Time_{ij} + e_{ij}$$
  
$$\beta_{0i} = \gamma_{00} + u_{0i}$$
  
$$\beta_{1i} = \gamma_{10} + u_{1i}$$

(1)

э

• Model Latent Developmental Trajectories:

$$\begin{aligned} \theta_{ij} &= \beta_{0i} + \beta_{1i} Time_{ij} + e_{ij} \\ \beta_{0i} &= \gamma_{00} + u_{0i} \\ \beta_{1i} &= \gamma_{10} + u_{1i} \end{aligned}$$

1. Subjects not measured on the same time points across time (include all data)

< ロト < 同ト < ヨト < ヨ

ъ

• Model Latent Developmental Trajectories:

$$\begin{aligned} \theta_{ij} &= \beta_{0i} + \beta_{1i} Time_{ij} + e_{ij} \\ \beta_{0i} &= \gamma_{00} + u_{0i} \\ \beta_{1i} &= \gamma_{10} + u_{1i} \end{aligned}$$

- 1. Subjects not measured on the same time points across time (include all data)
- 2. Number of observations per subject may vary

→ □ → → □ → → □

• Model Latent Developmental Trajectories:

$$\begin{aligned} \theta_{ij} &= \beta_{0i} + \beta_{1i} Time_{ij} + e_{ij} \\ \beta_{0i} &= \gamma_{00} + u_{0i} \\ \beta_{1i} &= \gamma_{10} + u_{1i} \end{aligned}$$

- 1. Subjects not measured on the same time points across time (include all data)
- 2. Number of observations per subject may vary
- 3. Follow-up times not uniform across subjects (time a continuous variable, individualized schedule)

• Model Latent Developmental Trajectories:

$$\begin{aligned} \theta_{ij} &= \beta_{0i} + \beta_{1i} Time_{ij} + e_{ij} \\ \beta_{0i} &= \gamma_{00} + u_{0i} \\ \beta_{1i} &= \gamma_{10} + u_{1i} \end{aligned}$$

- 1. Subjects not measured on the same time points across time (include all data)
- 2. Number of observations per subject may vary
- 3. Follow-up times not uniform across subjects (time a continuous variable, individualized schedule)
- 4. Handle time-invariant and time-varying covariates

• Model Latent Developmental Trajectories:

$$\begin{aligned} \theta_{ij} &= \beta_{0i} + \beta_{1i} Time_{ij} + e_{ij} \\ \beta_{0i} &= \gamma_{00} + u_{0i} \\ \beta_{1i} &= \gamma_{10} + u_{1i} \end{aligned}$$

- 1. Subjects not measured on the same time points across time (include all data)
- 2. Number of observations per subject may vary
- 3. Follow-up times not uniform across subjects (time a continuous variable, individualized schedule)
- 4. Handle time-invariant and time-varying covariates
- 5. Estimate subject-specific change across time (average change)

• Specify curvilinear individual change, e.g., polynomial individual change of any order

**Bayesian Item Response Modeling** 

▲ 同 ▶ → 国 ▶

- Specify curvilinear individual change, e.g., polynomial individual change of any order
- Model the covariance structure of the level-1 measurement errors explicitly.

J.-P. Fox

< A > < A > >

- Specify curvilinear individual change, e.g., polynomial individual change of any order
- Model the covariance structure of the level-1 measurement errors explicitly.
- Model change in several domains simultaneously.

< A > < A > >

Introduction Cross-classified Response Data

### Longitudinal Response Data Mini-Mental State Examination (MMSE)

#### Survival Analysis

Joint Modeling of Latent Developmental Trajectories and Survival

< A > < A > >

Joint (Response, Survival) Analysis Outcomes

Discussion

J.-P. Fox

# Mini-Mental State Examination (MMSE)

• Data: 4016 measurements of 668 subjects (4-16 measurement occasions)

Bayesian Item Response Modeling

< ロ > < 同 > < 回 > < 回

# Mini-Mental State Examination (MMSE)

- Data: 4016 measurements of 668 subjects (4-16 measurement occasions)
- 26 MMSE (binary) items;

・ロト ・ 一下・ ・ 日 ト

# Mini-Mental State Examination (MMSE)

- Data: 4016 measurements of 668 subjects (4-16 measurement occasions)
- 26 MMSE (binary) items;
  - What day of the week is it? (orientation)
## Mini-Mental State Examination (MMSE)

- Data: 4016 measurements of 668 subjects (4-16 measurement occasions)
- 26 MMSE (binary) items;
  - What day of the week is it? (orientation)
  - pencil What is this? (language)

## Mini-Mental State Examination (MMSE)

- Data: 4016 measurements of 668 subjects (4-16 measurement occasions)
- 26 MMSE (binary) items;
  - What day of the week is it? (orientation)
  - pencil What is this? (language)
  - subtract 7 from 100 (attention/concentration)

# Demographics

|                   | Participants $(N = 668)$ |            |  |  |
|-------------------|--------------------------|------------|--|--|
| Gender            | Male 329                 | Female 339 |  |  |
| Age               | start                    | mean       |  |  |
| 50-59             | 55                       | 41         |  |  |
| 60-69             | 195                      | 149        |  |  |
| 70-79             | 323                      | 315        |  |  |
| 80-89             | 149                      | 215        |  |  |
| 90-100            | 9                        | 14         |  |  |
| Average sum score |                          |            |  |  |
| 24 - 26           | 302                      |            |  |  |
| 22 - 23           | 66                       |            |  |  |
| 20 - 21           | 47                       |            |  |  |
| 18 - 19           | 61                       |            |  |  |
| 15 - 17           | 66                       |            |  |  |
| < 14              | 126 <                    |            |  |  |

#### Table: Demographic information of the study participants.

Bayesian Item Response Modeling



Bayesian Item Response Modeling

# Mixture IRT Modeling

Modeling of asymmetrical data: Define latent groups  $g_1$  and  $g_2$ 

$$p(\theta_{ij} \mid \mathbf{\Omega}) = \sum_{g=1}^{2} \pi_{ig} p(\theta_{ij} \mid \mathbf{\Omega}_g)$$

Bayesian Item Response Modeling

(1)

## Mixture IRT Modeling

Modeling of asymmetrical data: Define latent groups  $g_1$  and  $g_2$ 

$$p(\theta_{ij} \mid \mathbf{\Omega}) = \sum_{g=1}^{2} \pi_{ig} p(\theta_{ij} \mid \mathbf{\Omega}_g)$$

$$P(G_{i} = 1 \mid \boldsymbol{y}_{i}, \boldsymbol{\theta}_{i}) = \frac{\pi_{i1} \prod_{j=1}^{n_{i}} p(\boldsymbol{y}_{ij} \mid \boldsymbol{\theta}_{ij}) p(\boldsymbol{\theta}_{ij} \mid \boldsymbol{\Omega}_{1})}{\sum_{g=1,2} \pi_{ig} \prod_{j=1}^{n_{i}} p(\boldsymbol{y}_{ij} \mid \boldsymbol{\theta}_{ij}) p(\boldsymbol{\theta}_{ij} \mid \boldsymbol{\Omega}_{g})}$$

Bayesian Item Response Modeling

ヘロト ヘヨト ヘヨト ヘヨト

Likelihood-model  $\mathcal{M}_1$ 

Measurement Part  $\mathcal{M}_1$ 

$$P(Y_{ijk} = 1 \mid \theta_{ij}, a_k, b_k) = F(a_k \theta_{ij} - b_k)$$

J.-P. Fox

Bayesian Item Response Modeling

イロト イヨト イヨト イヨト

Likelihood-model  $\mathcal{M}_1$ 

Measurement Part  $\mathcal{M}_1$ 

$$P(Y_{ijk} = 1 \mid \theta_{ij}, a_k, b_k) = F(a_k \theta_{ij} - b_k)$$

#### Latent Growth Part $\mathcal{M}_1$

$$p(\theta_{ij} | \gamma_{00}, \tau^{2}, \sigma^{2}) = \pi_{i1}\phi(\mu_{ij,1}, \sigma^{2}) + \pi_{i2}\phi(\mu_{ij,2}, \sigma^{2})$$
  

$$\mu_{ij,1} = \gamma_{00,1} + u_{i0,1}$$
  

$$\mu_{ij,2} = \gamma_{00,2} + u_{i0,2}$$

 $\left(\gamma^{(2)} < \gamma^{(1)}\right)$ 

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

#### Table: MMSE: Parameter Estimates of Model $\mathcal{M}_1$ .

|                                       | Mixture MLIRT $\mathcal{M}_1$ |      |        |      |
|---------------------------------------|-------------------------------|------|--------|------|
|                                       | Decline                       |      | Stable |      |
|                                       | Mean                          | SD   | Mean   | SD   |
| Fixed Effects                         |                               |      |        |      |
| $\gamma_{00}$ Intercept               | 998                           | .037 | .689   | .030 |
| Random Effects<br>Within-individual   |                               |      |        |      |
| $\sigma_{\theta}^2$ Residual variance | .133                          | .003 | .133   | .003 |
| $Between\mspace{-individual}$         |                               |      |        |      |
| $	au_{00}^2$ Intercept                | .211                          | .015 | .211   | .015 |

Bayesian Item Response Modeling

## Likelihood-model $\mathcal{M}_2$

#### Measurement Part $\mathcal{M}_2$

$$P(Y_{ijk} = 1 \mid \theta_{ij}, a_k, b_k) = F(a_k \theta_{ij} - b_k)$$



Bayesian Item Response Modeling

イロト イヨト イヨト イヨト

#### Likelihood-model $\mathcal{M}_2$

#### Measurement Part $\mathcal{M}_2$

$$P(Y_{ijk} = 1 \mid \theta_{ij}, a_k, b_k) = F(a_k \theta_{ij} - b_k)$$

#### Latent Growth Part $\mathcal{M}_2$

$$p(\theta_{ij} \mid \boldsymbol{\gamma}, \boldsymbol{T}, \sigma^2) = \pi_{i1}\phi(\mu_{ij,1}, \sigma^2) + \pi_{i2}\phi(\mu_{ij,2}, \sigma^2)$$
  

$$\mu_{ij,g} = \beta_{i0,g} + \beta_{i1,g}Time_{ij}$$
  

$$\beta_{i0,g} = \gamma_{00,g} + u_{i0,g}$$
  

$$\beta_{i1,g} = \gamma_{10,g} + u_{i1,g},$$

and  $u_{i,g} \sim \mathcal{N}(0, T_g)$  with  $T_g$  a diagonal matrix with elements  $\tau_{00,g}^2$  and  $\tau_{11,g}^2$  for g = 1, 2.

*Table:* MMSE: Parameter estimates of Model  $\mathcal{M}_2$ 

|                                       | Mixture MLIRT $\mathcal{M}_2$ |      |        |      |  |
|---------------------------------------|-------------------------------|------|--------|------|--|
|                                       | Decline                       |      | Stable |      |  |
|                                       | Mean                          | SD   | Mean   | SD   |  |
|                                       |                               |      |        |      |  |
| Fixed Effects                         |                               |      |        |      |  |
| $\gamma_{00}$ Intercept               | 332                           | .037 | .913   | .012 |  |
| Time Variables                        |                               |      |        |      |  |
| $\gamma_{10}$ Follow-up time          | 274                           | .013 | 007    | .004 |  |
|                                       |                               |      |        |      |  |
| Random Effects                        |                               |      |        |      |  |
| With in-individual                    |                               |      |        |      |  |
| $\sigma_{\theta}^2$ Residual variance | .043                          | .001 | .043   | .001 |  |
| Between-individual                    |                               |      |        |      |  |
| $	au_{00}^2$ Intercept                | .471                          | .038 | .016   | .003 |  |
| $	au_{11}^2$ Follow-up time           | .047                          | .004 | .002   | .000 |  |

Bayesian Item Response Modeling

Đ.

### Estimated random effects of cognitive impairment



Bayesian Item Response Modeling

(日) (四) (三)

## Survival Time Data

• Time to certain (non-repeatable) events (e.g., death, response, failure time)

## Survival Time Data

- Time to certain (non-repeatable) events (e.g., death, response, failure time)
- Persons were followed to death or (right-)censored in a study

survival time 
$$v_i = \begin{cases} t_i & t_i \le c_i \text{ observed} & (\text{uncensored}) \\ c_i & t_i > c_i \text{ not observed} & (\text{censored}) \end{cases}$$

< ロト < 同ト < ヨト < ヨ

#### Distribution of Survival Times

• Survivor function: probability survives longer than t

$$S(t) = P(T > t) = 1 - F(t)$$

• Probability density function

 $f(t) \ge 0, t \ge 0$ 

• Hazard function: conditional failure rate

$$h(t) = \frac{f(t)}{1 - F(t)} = \frac{f(t)}{S(t)}$$

Bayesian Item Response Modeling

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

#### Right-Censored Observations

Joint probability of observing data v:

$$f(\boldsymbol{v} \mid \boldsymbol{\eta}) = \prod_{i=1}^{r} f(t_i, \boldsymbol{\eta}) \prod_{i=r+1}^{n} S(c_i, \boldsymbol{\eta})$$

Bayesian Item Response Modeling

(日) (同) (三) (三) (三)

## Problems in Survival Modeling

• Censoring: data missingness, subject does not undergo the event

Bayesian Item Response Modeling

(日) (同) (三) (三) (三)

## Problems in Survival Modeling

- Censoring: data missingness, subject does not undergo the event
- Unobserved between-individual variation in the probability to experience the event

- 4 日 ト - 4 日 ト - 4

## Problems in Survival Modeling

- Censoring: data missingness, subject does not undergo the event
- Unobserved between-individual variation in the probability to experience the event
- Presence of time-varying covariates (e.g., prognostic factors)

• Prognosis, course, outcome of a disease

Bayesian Item Response Modeling

(日) (同) (三) (三) (三)

- Prognosis, course, outcome of a disease
- Model probability of surviving given (possible) prognostic factors (risk factors, individual characteristics)

・ 同 ト ・ ヨ ト ・ ヨ

- Prognosis, course, outcome of a disease
- Model probability of surviving given (possible) prognostic factors (risk factors, individual characteristics)
- Popular model: Cox Proportional Hazards Model:

$$\frac{h(t \mid \boldsymbol{x}_1)}{h(t \mid \boldsymbol{x}_2)} = \text{constant}$$

$$\begin{aligned} h(t \mid \boldsymbol{x}) &= h_0(t)g(\boldsymbol{x}) \\ &= h_0(t)\exp(\boldsymbol{\eta}^t \boldsymbol{x}) \end{aligned}$$

- Prognosis, course, outcome of a disease
- Model probability of surviving given (possible) prognostic factors (risk factors, individual characteristics)
- Popular model: Cox Proportional Hazards Model:

$$\frac{h(t \mid \boldsymbol{x}_1)}{h(t \mid \boldsymbol{x}_2)} = \text{constant}$$

$$h(t \mid \boldsymbol{x}) = h_0(t)g(\boldsymbol{x})$$
  
=  $h_0(t)\exp(\boldsymbol{\eta}^t \boldsymbol{x})$ 

• Violate proportional hazards assumption when using time-varying covariates

### Overview

Introduction Cross-classified Response Data

Longitudinal Response Data Mini-Mental State Examination (MMSE)

#### Survival Analysis

Joint Modeling of Latent Developmental Trajectories and Survival

Joint (Response, Survival) Analysis Outcomes

Discussion

**Bayesian Item Response Modeling** 

A (1) < A (1) < A (1) </p>

# Joint Modeling Approach

• Patients and controls with different (latent, time-continuous) backgrounds may have different survival prognosis

**Bayesian Item Response Modeling** 

<ロト < 同ト < 回ト < 回

# Joint Modeling Approach

- Patients and controls with different (latent, time-continuous) backgrounds may have different survival prognosis
- Longitudinal factor/covariates are measured infrequently and with measurement error

# Joint Modeling Approach

- Patients and controls with different (latent, time-continuous) backgrounds may have different survival prognosis
- Longitudinal factor/covariates are measured infrequently and with measurement error
- Subjects enter the study at different time-points, measured at different times, different number of measurements

## Joint Modeling: Two-stage procedure

• Survival information not used in modeling the covariate process.

**Bayesian Item Response Modeling** 

(1)

## Joint Modeling: Two-stage procedure

- Survival information not used in modeling the covariate process.
- New growth curves are estimated at each new event (interpretability)

< ロト < 同ト < ヨト < ヨ

## Joint Modeling: Two-stage procedure

- Survival information not used in modeling the covariate process.
- New growth curves are estimated at each new event (interpretability)
- Handle measurement error in time-dependent (latent) covariate(s) survival model

## Joint Modeling

• Joint distribution (survival data, response data):

$$p(\mathbf{t}, \mathbf{y} \mid \mathbf{x}) = \int p(\mathbf{t}, \mathbf{y} \mid \mathbf{\eta}, \mathbf{x}) p(\mathbf{\eta} \mid \mathbf{x}) d\mathbf{\eta}$$
  
= 
$$\int \int p(\mathbf{t} \mid \mathbf{\eta}, \mathbf{x}) p(\mathbf{y} \mid \mathbf{\eta}) p(\mathbf{\eta} \mid \mathbf{\Omega}, \mathbf{x}) p(\mathbf{\Omega}) d\mathbf{\eta} d\mathbf{\Omega}$$
  
= 
$$\int \int p(\mathbf{t} \mid \mathbf{\eta}, \mathbf{\Omega}, \mathbf{x}) p(\mathbf{y} \mid \mathbf{\eta}) p(\mathbf{\eta} \mid \mathbf{\Omega}, \mathbf{x}) p(\mathbf{\Omega}) d\mathbf{\eta} d\mathbf{\Omega}$$

• Define  $v_i = \min(t_i, c_i)$ ,

$$D_i = \begin{cases} 1 & \text{Event observed} \\ 0 & \text{Censored observation} \end{cases}$$

Bayesian Item Response Modeling

<ロト < 四ト < 三ト < 三ト

• Define 
$$v_i = \min(t_i, c_i),$$

$$D_i = \begin{cases} 1 & \text{Event observed} \\ 0 & \text{Censored observation} \end{cases}$$

• Density Function:

$$f(v_i, d_i \mid \boldsymbol{\eta}, \boldsymbol{\Omega}) = h(v_i \mid \boldsymbol{\eta}, \boldsymbol{\Omega})^{d_i} S(v_i \mid \boldsymbol{\eta}, \boldsymbol{\Omega})$$
  
=  $h(v_i \mid \boldsymbol{\eta}, \boldsymbol{\Omega})^{d_i} \exp\left[-\int_0^{v_i} h(u \mid \boldsymbol{\eta}(u), \boldsymbol{\Omega}) du\right]$ 

<ロト < 四ト < 三ト < 三ト

• Define 
$$v_i = \min(t_i, c_i),$$

$$D_i = \begin{cases} 1 & \text{Event observed} \\ 0 & \text{Censored observation} \end{cases}$$

• Density Function:

$$f(v_i, d_i \mid \boldsymbol{\eta}, \boldsymbol{\Omega}) = h(v_i \mid \boldsymbol{\eta}, \boldsymbol{\Omega})^{d_i} S(v_i \mid \boldsymbol{\eta}, \boldsymbol{\Omega})$$
  
=  $h(v_i \mid \boldsymbol{\eta}, \boldsymbol{\Omega})^{d_i} \exp\left[-\int_0^{v_i} h(u \mid \boldsymbol{\eta}(u), \boldsymbol{\Omega}) du\right]$ 

• Define subject-specific time-intervals,  $t_{il} - t_{i(l+1)}$ ;

$$f_{il}(d_i, t_{i(l+1)}, t_{il} \mid \eta_l) = \frac{S(t_{i(l+1)} \mid \eta_l)^{1-d_i} f(t_{i(l+1)} \mid \eta_l)^{d_i}}{S(t_l \mid \eta_l)}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

• For subject i

$$f_{i}(d_{i}, \boldsymbol{t}_{i} \mid \boldsymbol{\eta}) = \prod_{l=0}^{l=L_{i}-1} f_{il}(d_{i}, t_{il}, t_{i(l+1)} \mid \eta_{l})$$
  
$$= \prod_{l=0}^{l=L_{i}-1} \frac{S(t_{i(l+1)} \mid \eta_{l})^{1-d_{i}} f(t_{i(l+1)} \mid \eta_{l})^{d_{i}}}{S(t_{l} \mid \eta_{l})}$$

Bayesian Item Response Modeling

æ
# Overview

Introduction Cross-classified Response Data

Longitudinal Response Data Mini-Mental State Examination (MMSE)

#### Survival Analysis

Joint Modeling of Latent Developmental Trajectories and Survival

Joint (Response, Survival) Analysis Outcomes

Discussion

< A > < A > >

# Estimated Parameters Mixture Model

|                             | Decline |      | Stable |      |
|-----------------------------|---------|------|--------|------|
|                             | EAP     | SD   | EAP    | SD   |
| Fixed Effects               |         |      |        |      |
| $\gamma_{00}$ Intercept     | 709     | .031 | .776   | .036 |
| $\gamma_{01}$ Time Slope    | 112     | .012 | 009    | .006 |
| Variance Components         |         |      |        |      |
| $\tau^2$ Between Individual | .244    | .124 | .134   | .118 |
| $\sigma^2$ Residual         | .219    | .029 | .219   | .029 |
| Mixture Proportion          |         |      |        |      |
| π                           | .432    | .020 | .568   | .020 |

Bayesian Item Response Modeling

(日) (圖) (필) (필) (필)

# Results: Comparing Models

| Model  | Density     | Covariates              | Groups | DIC    |
|--------|-------------|-------------------------|--------|--------|
|        |             |                         |        |        |
| $M_1$  | Exponential | 1                       | 2      | 2146.0 |
| $M_2$  | Weibull     | 1                       | 2      | 1872.3 |
| $M_3$  | Lognormal   | 1                       | 2      | 1905.4 |
| $M_4$  | Exponential | 1, 	heta                | 2      | 2041.7 |
| $M_5$  | Weibull     | 1, 	heta                | 2      | 1836.0 |
| $M_6$  | Lognormal   | 1, 	heta                | 2      | 1816.1 |
| $M_7$  | Weibull     | $1, \theta$ , Male, Age | 2      | 1775.0 |
| $M_8$  | Lognormal   | $1, \theta$ , Male, Age | 2      | 1768.1 |
| $M_9$  | Weibull     | $1, \theta$ , Male, Age | 1      | 1856.3 |
| $M_10$ | Lognormal   | $1, \theta$ , Male, Age | 1      | 1858.3 |

Bayesian Item Response Modeling

# Stratified Lognormal Survival Model $M_{10}$

|                                  | Decline (g=2) |      | Stable (g=1) |      |
|----------------------------------|---------------|------|--------------|------|
|                                  | EAP           | SD   | EAP          | SD   |
|                                  |               |      |              |      |
| Fixed Effects                    |               |      |              |      |
| $\beta_{0,g}$ Intercept          | 1.986         | .072 | 2.561        | .081 |
| $\beta_{1,g}$ Male               | 270           | .064 | 282          | .076 |
| $\beta_{2,g}$ Age (standardized) | 179           | .080 | 212          | .090 |
| $\Lambda_g$ Cognitive Function   | .369          | .041 | .254         | .046 |
| 0                                |               |      |              |      |
| Variance Components              |               |      |              |      |
| $\sigma_S^2$ Residual            | .362          | .031 | .362         | .031 |
| $\sim$                           |               |      |              |      |

Bayesian Item Response Modeling

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Э



Bayesian Item Response Modeling

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三面

590



Bayesian Item Response Modeling

▲□ > ▲母 > ▲目 > ▲目 > 目 の <



**Bayesian Item Response Modeling** 

・ロト ・四ト ・ヨト ・ヨト

э

#### Discussion

• Mental health (individual trajectory of cognitive impairment) serves as a time-varying covariate

**Bayesian Item Response Modeling** 

・ロト ・ 一下・ ・ 日 ト

# Discussion

- Mental health (individual trajectory of cognitive impairment) serves as a time-varying covariate
- Making inferences at the level of individuals (patients) and their disease trajectories

Bayesian Item Response Modeling

4 ∰ ► < ∃ ►</p>

# Discussion

- Mental health (individual trajectory of cognitive impairment) serves as a time-varying covariate
- Making inferences at the level of individuals (patients) and their disease trajectories
- Combine cognitive test outcomes with other indicators to serve as a diagnostic tool