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Introduction Feedback Behavior Study

Formative Computer-Based Assessment

I Two-stage testing: Ability - feedback use

I Observe response times (speed) and feedback times (reading)

I Dutch study: Differential use of feedback in test assessment
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Introduction Feedback Behavior Study

Bayesian Modeling of Multivariate Count Data

A Bayesian Modeling Approach:

I Hierarchical Structured Data, uncertainty/sampling error at
different levels

I Use Powerful Simulation Techniques

I Use Prior Knowledge
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Complex Multivariate Count Data

Feedback-Use and Feedback-Time Data
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Complex Multivariate Count Data

Feedback-Use and Feedback-Time Data
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Complex Multivariate Count Data

Modeling Multivariate Count Data

Count Data

Subjects

No. Pages Total Times
2 7
0 0
...

...

yfi yti

Summary Statistics

Mean SD % Zeros Mean | No Zeros
Feedback Use 2.35 5.35 .43 4.11
Feedback Times 2.75 6.19 .43 9.35
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Complex Multivariate Count Data Multivariate Zero-Inflated Poisson Modeling

Feedback-Use No. Pages

The idea is to model feedback use (yes or no), feedback pages (count
pages), feedback times (count seconds)

Mixture of Observed Feedback Pages
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Complex Multivariate Count Data Multivariate Zero-Inflated Poisson Modeling

Feedback Times

Mixture of Observed Feedback Times
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Complex Multivariate Count Data Multivariate Zero-Inflated Poisson Modeling

Feedback Use

Identify (non-)users of feedback pages using explanatory subject
information

Observed Feedback Use

Zi | λ(t)i , λ
(f)
i ∼

 0, with probability (1− φi)P
(
Y f
i = 0, T fi = 0

)
1, with probability φi

(
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))

Feedback Use

φi = P (Zi = 1) =
exp

(
xtiα

)
1 + exp (xtiα)
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Complex Multivariate Count Data Multivariate Zero-Inflated Poisson Modeling

Population Model Subjects

Respondents are sampled independently and identically distributed.

Stage 2: Prior Expected Counts

log λ
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∼ N (xβ,Σλ)
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Complex Multivariate Count Data Multivariate Zero-Inflated Poisson Modeling

Population Results

Joint Model (No Predictors)
Component Parameter Mean HPD

Feedback Use (Bernoulli part)

Use Feedback Intercept, α0 .30 (.13,.45)
No Feedback 1− φ .43 (.38,.46)

Feedback Behavior (Poisson part)

No. Pages Intercept, µ1 3.06 (2.69,3.46)
Time Intercept, µ2 7.09 (6.35,7.92)

Correlation,Σ12 .20 (.13,.27)

– HPD: 95% Highest Posterior Density interval
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Complex Multivariate Count Data Feedback Behavior Study: Use (Latent) Predictors

Ability-Speed Model

Collection of Responses and Response Times, N persons and K items

Measuring Ability

P (Y a
ik = 1 | θi, ak, bk) = Φ(akθi − bk) IRT Model

Measuring Speed of Working

log T aik | ζi, ck, dk ∼ N
(
dk − ckζi, σ2ε

)
RT Model
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Complex Multivariate Count Data Feedback Behavior Study: Use (Latent) Predictors

Joint Model Results

Joint Model (Latent Predictors Speed and Ability)
Component Parameter Mean HPD

Feedback Use (Bernoulli part)

Intercept, α0 .32 (.15,.47)
1− φ .42 (.36,.48)
Ability, α1 .68 (.33,1.00)
Speed, α2 -.95 (-1.32,-.50)

– Latent predictors are grand-mean centered
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Complex Multivariate Count Data Feedback Behavior Study: Use (Latent) Predictors

Feedback-Use
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Complex Multivariate Count Data Feedback Behavior Study: Use (Latent) Predictors

Joint Model Results

Joint Model (latent Predictors Speed and Ability)
Component Parameter Mean HPD

Feedback Behavior (Poisson part)

Feedback
Intercept, β0 1.13 (3.09) (1.00,1.25)
Ability, β1 -.40 (-.69,-.11)
Speed, β2 -.16 (-.52,.16)

Feedback-Time
Intercept, β0 1.97 (7.17) (1.85,2.08)
Ability, β1 -.33 (-.59,-.07)
Speed, β2 -.32 (-.63,-.03)

Correlation Σ12 .18 (.11,.24)

– Latent predictors are grand-mean centered
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Complex Multivariate Count Data Feedback Behavior Study: Use (Latent) Predictors

Feedback Page Counts
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Complex Multivariate Count Data Feedback Behavior Study: Use (Latent) Predictors

Feedback Times
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Complex Multivariate Count Data Feedback Behavior Study: Use (Latent) Predictors

Model Fit
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Discussion

Discussion

I Flexible joint model for multivariate zero-inflated discrete count
data

I Use (higher-level) latent predictor variables

I Feedback Behavior Study

I Heterogeneity in feedback-use versus feedback to improve learning
I Ability positively and speed negatively related to feedback use
I Ability and speed negatively related to feedback counts and times
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Discussion
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