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A Bayesian Modeling Approach:
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Complex Multivariate Count Data

Feedback-Use and Feedback-Time Data
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Complex Multivariate Count Data

Feedback-Use and Feedback-Time Data
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Modeling Multivariate Count Data

Count Data
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Modeling Multivariate Count Data

Count Data

No. Pages Total Times
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v
Summary Statistics

Mean SD % Zeros Mean | No Zeros
Feedback Use 2.35 5.3 43 4.11
Feedback Times 2.75 6.19 43 9.35
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Complex Multivariate Count Data

Feedback-Use No. Pages

Multivariate Zero-Inflated Poisson Modeling
pages), feedback times (count seconds)

v/

The idea is to model feedback use (yes or no), feedback pages (count
Mixture of Observed Feedback Pages

with probability 1 — ¢;
Poisson ()\l(f )) , with probability ¢;,
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Feedback-Use No. Pages

The idea is to model feedback use (yes or no), feedback pages (count
pages), feedback times (count seconds)

Mixture of Observed Feedback Pages

v/
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Model Feedback Count Data
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Feedback Times

Complex Multivariate Count Data

Multiv

n Modeling

Mixture of Observed Feedback Times
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Feedback Times

Mixture of Observed Feedback Times
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Model Feedback Time Count Data
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Feedback Use

Identify (non-)users of feedback pages using explanatory subject
information

Observed Feedback Use
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Feedback Use

Identify (non-)users of feedback pages using explanatory subject
information

Observed Feedback Use
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Population Model Subjects

Respondents are sampled independently and identically distributed
Stage 2: Prior Expected Counts
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Population Model Subjects

Respondents are sampled independently and identically distributed.

Stage 2: Prior Expected Counts
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Complex Multivariate Count Data  Multivariate Zero-Inflated Poisson Modeling

Population Results

J.-P. Fox

Joint Model (No Predictors)

Component Parameter Mean HPD
Feedback Use (Bernoulli part)

Use Feedback Intercept, g .30 (.13,.45)
No Feedback 1-—¢ 43 (.38,.46)
Feedback Behavior (Poisson part)

No. Pages Intercept, puq 3.06 (2.69,3.46)
Time Intercept, puo 7.09 (6.35,7.92)

Correlation, X2 .20 (.13,.27)

— HPD: 95% Highest Posterior Density interval
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Complex Multivariate Count Data

Ability-Speed Model

Feedback Behavi

tudy: Use (Latent) Predictors

Collection of Responses and Response Times, N persons and K items )
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Complex Multivariate Count Data

Ability-Speed Model

Feedback Behavior Study: Use (Latent) Predictors

Measuring Ability

P(-Y:L% =1 ’ eiaalﬁbk)

Collection of Responses and Response Times, N persons and K items J
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Complex Multivariate Count Data Feedback Behavior Study: Use (Latent) Predictors

Ability-Speed Model

Collection of Responses and Response Times, N persons and K items J

Measuring Ability

P(Yi=1|6;a,,b) = ®(ard;—by) IRT Model

Measuring Speed of Working

log T4 | Givcrnd; ~ N (dg — cxGi,02) RT Model
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Complex Multivariate Count Data Feedback Behavior Study: Use (Latent) Predictors

Joint Model Results

Joint Model (Latent Predictors Speed and Ability)
Component Parameter Mean HPD
Feedback Use (Bernoulli part)

Intercept, ap .32 (.15,.47)
1—¢ 42 (.36,.48)
Ability, o .68 (.33,1.00)
Speed, ao -.95 (-1.32,-.50)

— Latent predictors are grand-mean centered
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mplex Multivariate Count Data Feedback Behav sudy: Use (Latent) Predictors
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Complex Multivariate Count Data

Joint Model Results

Feedback Behavior Study: Use (Latent) Predictors

Joint Model (latent Predictors Speed and Ability)
Component Parameter Mean HPD
Feedback Behavior (Poisson part)
Feedback
Intercept, By 1.13 (3.09) (1.00,1.25)
Ability, 81 ~.40 (-.69,-.11)
Speed, B -.16 (-.52,.16)
Feedback-Time
Intercept, By 1.97 (7.17) (1.85,2.08)
Ability, 81 -.33 (-.59,-.07)
Speed, (3o -.32 (-.63,-.03)
Correlation 319 18 (.11,.24)
— Latent predictors are grand-mean centered
J.-P. Fox Advances in Bayesian Item Response Modeling



mplex Multivariate Count Data Feedback Behav sudy: Use (Latent) Predictors

Feedback Page Counts
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mplex Multivariate Count Data Feedback Behav sudy: Use (Latent) Predictors

Feedback Times
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Complex Multivariate Count Data

Model Fit

Feedback Behavior

sudy: Use (Latent) Predictors
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Discussion

Discussion

» Flexible joint model for multivariate zero-inflated discrete count
data

» Use (higher-level) latent predictor variables
» Feedback Behavior Study

» Heterogeneity in feedback-use versus feedback to improve learning
» Ability positively and speed negatively related to feedback use
» Ability and speed negatively related to feedback counts and times
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