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When comparing test or questionnaire scores between groups, an important assumption is that the ques-
tionnaire or test items are measurement invariant: that they measure the underlying construct in the
same way in each group. The main goal of tests for measurement invariance is to establish whether sup-
Keywords: . . . . . . R X
. . . port exists for the null hypothesis of invariance. Bayesian hypothesis testing enables researchers to in-
Bayesian hypothesis testing . R . . . . . . ; .
IRT vestigate this null hypothesis, where evidence in favor of invariance is quantified using the Bayes factor.
A Bayes factor for the investigation of measurement invariance assumptions of test items for randomly
selected groups was developed by Verhagen and Fox (2013a). For specific groups or measurement occa-
sions, a different Bayes factor test is proposed here, which directly evaluates item parameter differences
between groups. This test is compared to recently developed frequentist measurement invariance tests
based on the Wald test in a simulation study. The close-comparison with the Wald-test performance val-
idates the proposed Bayes factor and shows the advantages of the additional information given by the
Bayes factor. Both tests are applied to the investigation of measurement invariance of a geometry test
(CBASE) to illustrate the use of the Bayes factor test for measurement invariance.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction from each group with the same true value on the measured
construct have the same probability of endorsing, or correctly
answering, an item or question. If, for example, the aim of a test is
to compare American and Chinese students on their mathematical

ability, American and Chinese students with equal math ability

Increasingly, test and questionnaire administration (cognitive
tests, psychological questionnaires, consumer surveys, attitude
questionnaires) facilitates the comparison of scores between

groups (e.g. english/spanish native, countries, ethnic groups,
male/female students). To make these comparisons valid, the
scores of the compared groups should be on the same scale. This
can be achieved by ensuring that the measurement instrument
(e.g. test, questionnaire) used to determine the scores is at least
partially measurement invariant. That is; some of the test items
(questions) should be measurement invariant such that persons
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should have the same probability of answering each of the items
correctly. If some items are more difficult for either Chinese or
American students with the same mathematical ability (because
of the cultural context of the question, or because the math
curriculum in these countries covers different topics), these items
are considered measurement variant. If measurement variance is
unaccounted for, the results of group-wise comparisons of scores
between groups can be biased. Also, measurement variant items
are a signal to the test makers that their test does not function
equally in different groups, which raises questions about the
validity of the test (e.g. Borshoom, Mellenbergh, & van Heerden,
2004). Therefore, before scores are compared between groups,


http://dx.doi.org/10.1016/j.jmp.2015.06.005
http://www.elsevier.com/locate/jmp
http://www.elsevier.com/locate/jmp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmp.2015.06.005&domain=pdf
mailto:josineverhagen@gmail.com
mailto:Roy.Levy@asu.edu
mailto:g.j.a.fox@utwente.nl
http://dx.doi.org/10.1016/j.jmp.2015.06.005

172 J. Verhagen et al. / Journal of Mathematical Psychology 72 (2016) 171-182

itis crucial to test whether the characteristics of the measurement
instrument are invariant.

Many methods have been developed for testing measurement
invariance, also known as the absence of differential item function-
ing (see for an overview: Millsap, 2011). However, there are limi-
tations of these current (frequentist) invariance tests. First, it is not
possible to gather evidence in favor of the invariance hypothesis.
Second, (except for the alignment method, Muthén & Asparouhov,
2013b) some invariant (anchor) items need to be identified before-
hand, which means not all items can be tested for invariance simul-
taneously. Tests for measurement invariance are specifically aimed
at collecting evidence in favor of the hypothesis of invariance. The
Bayes factor is especially well suited for this purpose. Contrary
to frequentist tests, which can only gather evidence to reject in-
variance, the Bayes factor weighs evidence in favor of both the
invariance and non-invariance hypotheses. In addition, by using
a different restriction on the item parameters, invariance can be
evaluated for all items simultaneously, without the need for an-
chor items.

Verhagen and Fox (2013a) proposed a Bayes factor test based on
the variance of item parameters over groups to compare the nested
hypotheses of invariance and non-invariance for a relatively large
number of randomly selected groups (i.e. schools, countries). This
test is not suitable for a small number of not randomly selected
groups of specific interest (fixed groups, i.e. males/females),
however, as it requires a valid estimate of the variance of an item
parameter over groups. Therefore, we will propose a different
Bayes factor test to evaluate measurement invariance given a small
number of fixed groups, which is easy implemented.

First, the measurement model will be explained for the situa-
tion where respondents are randomly selected from a few specific
groups, and interest is in the comparison of item and latent-mean
parameters for the selected groups. Then, the proposed method
for Bayesian hypothesis testing and its advantages for testing mea-
surement invariance are explained. Subsequently, simulation stud-
ies will compare the performance of the proposed Bayes factor
tests with Wald tests (Woods, Cai, & Wang, 2012), as implemented
in IRTPRO (Cai, Thissen, & du Toit, 2011). To show the wide use of
Bayesian invariance tests and its advantages over the Wald tests,
the Bayes factors for the fixed group setting will be evaluated with
an example concerning geometry items from the College Basic Aca-
demic Subjects Examination (CBASE).

2. Bayesian multiple group IRT models

2.1. Introducing the measurement model

Item response theory (IRT) models are a common choice as
measurement models for tests and questionnaires, especially in
case of discrete responses. In a mathematics test, for example, the
probability of a correct response is modeled as a function of math-
ematical ability and the difficulty of a test item. The mathematical
ability of a person is inferred by comparing the responses on a set
of test items to the difficulty of those items.

The one parameter logistic model (1PL), will be used to intro-
duce the concepts of the Bayesian framework for measurement
variance modeling. In the 1PL model, the probability of a dichoto-
mous response of personi = 1,...,Nonitemk = 1,...,K is
modeled as a function of the threshold or difficulty of an item k,
by (item parameter), and the score of a person on the underlying
construct being measured 6; (person parameter):

e0i—br)
1+ e@i—bo " (1)

The result is a logistic function, where the probability of a correct
response is a function of the difference between the ability of a per-
son and the difficulty of an item (Fig. 1). The model assumes unidi-
mensionality and local independence of the item responses.
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Fig. 1. An illustration of the 1PL IRT model.
2.2. Bayesian IRT models

Recently, Bayesian versions of the well-known IRT models have
been developed (Albert, 1992; Fox & Glas, 2001; Patz & Junker,
1999a,b). The priors for the item parameters specify the variation
among item characteristics. Bayesian IRT models known as random
item effects models (e.g. De Boeck, 2008; Glas & Van der Linden,
2003; Janssen, Tuerlinckx, Meulders, & De Boeck, 2000) model the
items in a test as a random sample from an item population. The
prior for the item parameters is therefore specified as a normal
distribution, with a common mean and variance for all items:

by ~ N(bo, 7.). 2)

The posterior distributions of the separate item parameters are a
combination of a function of the average percentage correct on
this item averaged over all groups and the parameters for the
prior distribution by and abzk. As a prior distribution for the person
parameters a standard normal prior N (0, 1) is usually chosen. More
details on the estimation of Bayesian IRT models can be found in
Fox (2010).

2.3. Bayesian IRT models for multiple groups

To investigate measurement invariance, it is necessary to model
the responses on a test or questionnaire using an IRT model which
allows group differences in both test scores and item charac-
teristics. So-called multiple-group IRT models (for an overview,
see Bock & Zimowski, 1997), in which each group has a specific
latent trait distribution, can be used to account for the nesting of
respondents in groups and the item characteristics that vary across
groups.

In this paper, multiple group IRT models are considered with
group-specific item parameters to model variation in item func-
tioning over groups, besides the variation across items. Bayesian
IRT models are easily extended in this way to form a multiple-
group IRT model. Although group-specific random item param-
eters were originally used to model the nesting of items within
testlets or item families (Bradlow, Wainer, & Wang, 1999; Glas
& Van der Linden, 2003; Glas, van der Linden, & Geerlings, 2010;
Janssen et al., 2000; Sinharay, Johnson, & Williamson, 2003), re-
cently they have been extended to model the nesting of persons in
groups while allowing measurement variant item parameters, re-
sulting in multiple-group measurement models (De Boeck, 2008;
De Jong & Steenkamp, 2010; De Jong, Steenkamp, & Fox, 2007; Fox,
2010; Fox & Verhagen, 2010; Frederickx, Tuerlinckx, De Boeck, &
Magis, 2010; Verhagen & Fox, 2013a,b). Azevedo, Andrade, and Fox
(2012) developed a generalized multiple group IRT model to han-
dle response data from heterogenous groups with different latent
means and variances, accounting for incomplete designs, and using
more flexible population distributions when the normal distribu-
tion assumptions do not hold.
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Letj = 1,...,J] denote the groups, then the probability of a
correct response of person i in group j according to a multiple-
group 1PL model is given by

B e(eij*Bkj)
P(Yi = 1] 63, by) = ————, 3
( ijk | ij k]) 1+ e(Qij*bkj) ( )
with group-specific item (threshold) parameter Ekj.

A common model for the group-specific person parameters ¢;; in
this model is a hierarchical model, in which the individual person
parameters 6; are normally distributed around group means u;:

05 ~ N(u;, o). (4)
As a hyperprior for w;, a normal N(0, 1) distribution and as
hyperprior for oj, an inverse gamma IG(1, .1) distribution can be
chosen, representing the expectation that the means will be on
a standard normal scale. The next section will go deeper into the
model for the group-specific item parameters Bkj.

2.4. Modeling the group-specific item parameters

When groups are considered a sample from a larger population,
amultilevel or hierarchical structure can be assumed for the group-
specific item parameters, to model measurement variance (De Jong
et al., 2007; Fox, 2010; Fox & Verhagen, 2010; Verhagen & Fox,
2013a). For each item, group-specific deviations are assumed to
be normally distributed with mean zero and variance abzk. This
variance component defines the variability in item functioning
over groups in the population. If an item is invariant over groups,
this variance component equals zero.

However, when there is interest in measurement invariance for
specific groups, or if the number of groups is very small (creat-
ing difficulties in the estimation of the random item effect vari-
ances), a fixed instead of random group model is more useful. In
fixed group models, all the group-specific parameters (group mean
scores, group-specific item parameters) are estimated as separate
parameters. The group-specific parameters in different groups are
assumed to be independent and uninformative about each other,
and there is no pooling of information across the groups. A pos-
sible prior distribution for the group means in this situation is a
normal prior with a large variance parameter.

However, the group-specific item characteristics in the differ-
ent groups are related when they refer to the same item. Items
which are more difficult in one group will probably be among the
more difficult items in other groups as well. Therefore, a multivari-
ate normal model is imposed on the group-specific item character-
istics, similar to the models for two groups proposed by De Boeck
(2008) and Frederickx et al. (2010), in which the covariance matrix
is used to model the correlation between item parameters from dif-
ferent groups. The group-specific item parameters are specified as:

bkj = H’bj + ekjs
where b is the average item difficulty in group j, which is in our
approach restricted to zero due to the choice of identification re-
strictions (Appendix A). The error ey; represents the deviation of
item difficulties from the general mean in groupj. These deviations
are assumed to be multivariate normally distributed with covari-
ance X

This covariance matrix for the item difficulty parameters con-
sists of the item parameter variance within each group (osz) on the

diagonal, and the covariance of item parameters between each pair
of groups Obyy » j # j on the off-diagonal:
e | Xp ~ N(0, Xp)
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Fig. 2. An illustration of the Bayesian IRT model for fixed groups. The lines
represent the item characteristic curves associated with the item difficulties for
group 1 (black) and group 2 (gray) of three different items.

where e, = (e, ..., ey). The variance of the item parameters
over items (asz) can differ over groups, indicating that there is more
variation in item difficulties in one group than in the other. The
prior for the covariance structure X}, is of influence on our Bayes
factor test, and we will therefore discuss the choice of this prior in
Section 3.3.

As separate item difficulty parameters are estimated for each
of the selected groups, measurement invariance can be tested by
comparing group-specific difficulty parameters directly. To facil-
itate this comparison, a difference parameter dkjj, can be defined
as the difference between two group-specific item parameters in
groupjandj (j <j):
dkﬂ-/ = bkj — bkj/, ] < j/.

In the following, the description of invariance tests will be limited
to a situation with two groups, which results in a single difference
parameter d; per item K. The resulting prior distribution for this
difference is described in Section 3.3. The result can be extended
to more groups, however, as is described in Appendix E.

The structure of the item parameters is illustrated in Fig. 2.
Presented are the item characteristic curves of three hypothetical
items for two groups, indicating how the probability of endorsing
an item (answering the item correctly) changes as a function of the
ability parameter. The gray and black lines represent the group-
specific item characteristic curves with difficulty parameters Bkj,
which are random but correlated deviations from the average
difficulty parameter (set to zero). The item characteristic curves
differ due to between-item and between-group differences in item
difficulty. Item 3 in the figure is invariant, as the groups have equal
difficulty parameters for this item, and the item characteristic
curves overlap. A test of the difference between the difficulty
parameters would support the null hypothesis of invariance. The
item difficulty of Item 1 in group 1 is higher than the difficulty in
group two, while the item difficulty of item 2 is lower in group 1
than in group 2, indicating measurement variance.

To make sure the parameters in the model are identified, the
group-specific item parameters are restricted to sum to zero within
each group (for each group j, >, Ekj = 0). The underlying
assumption is that for each group, the test as a whole has the
same difficulty level, where individual items can deviate from this
average within groups. An advantage is that no specific parameters
need to be fixed, implicating that no invariant items or reference
groups have to be specified beforehand. This makes the anchoring
more robust in case no information is known about anchor items
beforehand. The absence of individually fixed parameters also
makes it easy to include explanatory variables to account for group
differences in latent means and item parameters. It is possible,
however, to replace this restriction with an anchor item restriction
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in the presented models when anchor items are known. More
information about the identification of multiple-group IRT models
can be found in Appendix A. The WinBugs specification for the
model in this section can be found in Appendix B.

3. Testing for measurement invariance

An item is measurement invariant when persons from each
group with the same true value on the measured construct have
the same probability of endorsing that item. When testing an item
for measurement invariance in two groups, the null hypothesis of
invariance corresponds to equality of the item parameter in both
groups (Hp : di = 0), while the alternative hypothesis states that
the item parameters in the two groups differ (H; : di # 0).

Many methods have been developed to assess whether items
within a test exhibit measurement invariance, or, equivalently,
whether the items are free of differential item functioning (dif).
Well-known methods are based on nonparametric analysis, lin-
ear regression, factor analysis and item response theory (IRT) (see
for an overview: Millsap, 2011). The focus here will be on mea-
surement invariance for IRT models. One widely used parametric
method to test for measurement invariance is the likelihood ra-
tio test for measurement invariance (Thissen, Steinberg, & Wainer,
1993), based on maximum likelihood estimation methods (f.e. EM
algorithm, Bock & Aitkin, 1981). To establish which item parame-
ters are invariant, multiple models with varying numbers of items
restricted to invariance are compared with respect to their good-
ness of fit. Recently, invariance tests based on the Wald test (Lord,
1980) to test the equality of item parameters were developed
(Woods et al., 2012) by improved estimates of the covariance ma-
trix (Cai, 2008) and extension of the test to allow for compari-
son between more than two groups at a time (Kim, Cohen, & Park,
1995). These tests are implemented in the software package IRT-
pro (Cai et al.,, 2011). A very different method to test measure-
ment invariance was recently implemented in Mplus (Muthén &
Muthén, 2012), introduced as the alignment method (Muthén &
Asparouhov, 2013b). After estimating a solution in which all pa-
rameters are allowed to vary over groups, a rotation (similar to ro-
tations in exploratory factor analysis) is applied aimed at either
small or large differences between groups in item parameters.
Testing for invariance proceeds by examining significant differ-
ences between individual item parameters.

There are two main limitations of these current invariance tests.
First, It is not possible to gather evidence in favor of the invari-
ance hypothesis (Hp : d, = 0). Second, some invariant (anchor)
items need to be identified beforehand (except for the alignment
method).

Bayesian hypothesis testing using the Bayes factor has many
advantages in measurement invariance testing. Assume a situation
in which a sample of American and a sample of Chinese students
are compared on mathematics ability, measured by twenty
mathematics items. Beforehand, there is no information about
the invariance of any of these items. To investigate measurement
invariance of this instrument, the ideal invariance test would
evaluate the hypothesis of invariance directly, for all items
simultaneously, and without the need to specify invariant items
in advance. The combination of these characteristics can only be
achieved through Bayesian hypothesis testing using identification
restrictions on the item parameters.

After outlining the advantages of the Bayes factor test, a new
Bayes factor test for group-specific differences will be introduced,
which can be used when selected groups are of specific interest. In-
formed prior choices for the variance components will be discussed
in the last part of this section.

3.1. Advantages of Bayesian tests for measurement invariance

3.1.1. Evidence favoring invariance

Current measurement invariance tests for IRT models are based
on frequentist statistical theory. A sampling distribution is as-
sumed for the test statistic of interest (e.g. Wald, x?) under the
null hypothesis, representing the distribution of this test statistic
if the item parameters were invariant. The null hypothesis is re-
jected when it is very unlikely (for example, p < .05) that the
observed value of the test statistic or a more extreme value is
found in a sample from a population in which the null hypothe-
sis holds. In case of measurement invariance testing, however, the
evidence in favor of the invariance hypothesis is of main interest.
Furthermore, it has been shown that evaluating evidence only with
regard to the null hypothesis without taking evidence about the
alternative hypothesis into account leads to results which over-
state the evidence against the null hypothesis (Rouder, Speckman,
Sun, Morey, & Iverson, 2009; Sellke, Bayarri, & Berger, 2001; Wa-
genmakers et al., in press) especially in low powered studies (Wa-
genmakers et al., 2014).

Using a Bayesian approach to hypothesis testing enables re-
searchers to investigate invariance directly. The amount of evi-
dence in favor of invariance is quantified by a Bayes factor (Jeffreys,
1961; Kass & Raftery, 1995). Instead of focusing on rejecting one
hypothesis, the Bayes factor evaluates evidence for both the null
and the alternative hypothesis given the data. The result of the test
can indicate convincing support for either the null or alternative
hypothesis, or evidence can be inconclusive about which hypoth-
esis is preferred.

In tests of invariance the null hypothesis can be specified as
a point hypothesis (the difference between two item parameters
is zero), and the alternative hypothesis as an area (the difference
between two item parameters is not zero). The marginal likelihood
of the alternative hypothesis given the data can be defined as
the average likelihood over all plausible values of the alternative
hypothesis, weighted by the prior probability assigned to these
values. This average likelihood equals the integral of the likelihood
function weighted by the prior density function over the parameter
space contained by the hypothesis. The ratio of the marginal
likelihoods for both hypotheses results in the Bayes factor. For
inference about the difference d, based on data Y, with null
hypothesis Hy : d, = 0, and alternative hypothesis Hy : d; # 0,
the Bayes factor can be expressed as:

=P(Y|Ho)= P(Y | d, =0)
P(Y |Hi)  [P(Y | dopi(doddy’

where p1(dy) is the prior distribution under the alternative hypoth-
esis. The prior distribution for d; will be further discussed in Sec-
tion 3.3. It follows that the Bayes factor gives a direct measure of
the relative evidence in favor of the null and the alternative hy-
pothesis.

BFo;

(6)

3.1.2. Avoiding anchor items

Each measurement model used for invariance testing which
contains both latent group means and/or variances and group-
specific item parameters has an identification problem. There are
several ways to resolve this problem, which are described in more
detail in Appendix A. Most current measurement invariance tests
need at least one invariant “anchor” item to link the scales of the
groups under comparison. Unless prior knowledge exists about the
invariance of certain items, one has to resort to empirical anchor
selection methods, which can be tedious, especially if items have
to be invariant over a large number of groups. Furthermore, the
accuracy of the selection will influence the results of the invariance
test. Langer (2008) introduced a two-step procedure in which first
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Fig. 3. Illustration of the Bayes factor test for the difference d, between the item parameters of two groups for item k. The dots indicate the density of the prior (dotted line)
and posterior (solid line) at the null hypothesis dy = 0, for an item with no difference d;, = 0 and for an item with a large difference dy = —.7 between the item parameters
of two groups.

group means are estimated under a fully invariant model, and then
invariance tests are performed with group means fixed to these
values. This can lead to biased estimates, however, when there is a
substantial amount of DIF (e.g. Woods et al., 2012).

Replacing invariance restrictions with restrictions on the sum of
the difficulty parameters eliminates the need to fix model param-
eters. The underlying assumption is that for each group, the test as
a whole has the same average level of difficulty. An advantage is
that no model parameters need to be fixed, implicating that no in-
variant items or reference groups have to be specified beforehand,
and between-group differences in item characteristics are allowed.
This makes the test anchoring more robust in case there are no
anchor items known beforehand (Appendix A), which makes the
restriction particularly useful for exploratory analyses. The result
of this different restriction is that measurement invariance can be
evaluated for all K items simultaneously.

3.2. Bayes factor for measurement invariance

Bayes factors are not always easy to compute. In case of nested
models, however, it can be shown that the Bayes factor in favor
of the null hypothesis reduces to the ratio of the density (or den-
sity region) of the null hypothesis under the posterior and prior
distribution of the most complex model, the Savage-Dickey den-
sity ratio (see e.g. Dickey, 1971; Verdinelli & Wasserman, 1995).
The Savage-Dickey density ratio can be used to construct a test for
measurement invariance. The null hypothesis of invariance of an
item for any two groups in the fixed groups model can be defined
as the difference between the item parameters of two groups (d, =
bx1 — byo) being equal to zero. To evaluate the relative support for
the null hypothesis over the alternative hypothesis, the Bayes fac-
tor reduces to the ratio of the density of the null hypothesis (d, =
0) under the posterior p(dy | H, Y) and prior p;(dy | Hy) distri-
bution of the difference d, under the alternative hypothesis H;:
BFy, = pi(dy =0 | Hy, Y)'

p1(de = 0| Hy)
The invariance of all K items can be evaluated simultaneously, as
the Bayes factors are computed based on the marginal prior and
posterior distributions of the differences in item parameters. The
prior distribution p;(dy | Hy) is discussed further in 3.3.

Within an MCMC sampling scheme, there are several ways to
compute these Bayes factors for nested models. One relatively easy
computation method is to sample from the posterior distribution
for d, under the alternative hypothesis, for example using Win-
BUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000). Subsequently
the density at the null hypothesis under both models can be com-
puted using for example R (Wagenmakers, Lodewyckx, Kuriyal,

(7)

& Grasman, 2010; Wetzels, Raaijmakers, Jakab, & Wagenmakers,
2009) (Appendix C).

The interpretation of the Bayes factor tests for measurement
invariance is straightforward. The Bayes factor indicates how much
more likely the data are given the null hypothesis than given the
alternative hypothesis. The categorization proposed by Jeffreys
(1961) provides a guideline to decide whether there is substantial
evidence for either hypothesis. Following this categorization, a
Bayes factor (BFpq) larger than three, implying that the data are
three times more likely under Hy than under Hy, is considered
substantial support for the null hypothesis Hy, while a Bayes
factor larger than 10 is considered strong support for Hy. A Bayes
factor smaller than .33 is considered as substantial support for
the alternative hypothesis Hy (BFio = 1/BFy; is larger than 3)
and a Bayes factor smaller than .01 as strong support for Hy. This
categorization is arbitrary, however, and can be replaced by more
or less conservative criteria based on what is considered “strong
evidence” in light of the hypothesis under investigation.

Fig. 3 gives an illustration of the way the Savage-Dickey density
ratio works. In the figure on the left (for the situation in which data
are simulated for d, = 0), the density of the posterior distribution
(solid line) at the null hypothesis d;, = 0 is higher than the density
of the prior distribution (dotted line) at Hy. The Bayes factor is
9.42, indicating substantially more evidence for Hy than for Hy. In
the figure on the right, where the data have been simulated with
dy = .7, the prior density at the null hypothesis is higher than
the posterior density at that point. The Bayes factor less than .001
indicates strong support for the alternative hypothesis Hy.

3.3. Choosing priors

The ratio of the density of the null hypothesis under the poste-
rior and prior distributions, and therefore the result of the Bayes
factor test, depends on the priors chosen for the parameters under
evaluation. Priors can be chosen, however, to reflect reasonable as-
sumptions about the parameter values.

The prior distribution for the difference in item parameters dy
results from the prior distributions of the separate item parame-
ters. The prior for the separate group-specific item parameters is
set to a normal distribution, with mean pp, = 0 (as is part of the
restriction discussed in Appendix A) and a covariance matrix X.
Therefore, the prior specified for X, is important for the results of
the Bayes factor. Two different priors for this covariance matrix will
be compared.

The first prior under consideration takes the identity matrix,
which has diagonal ones, as the prior covariance matrix. As the
off-diagonal zero’s represent a covariance of zero between the
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Fig. 4. Illustration of the marginal prior distributions for the difference between
item parameters using a standard multivariate normal prior or a multivariate
Cauchy prior on the item parameters.

item parameters, the marginal prior distributions of the two item
parameters are independent standard normal distributions. Hence,
the distribution of the difference between the item parameters is a
univariate normal distribution with a mean of zero and a variance
of two: N (0, 2). This prior represents the assumption that the item
parameters will be approximately standard normally distributed,
which corresponds to the usual range of item parameters observed
in 1PL models.

A conjugate prior for the covariance of a multivariate normal
distribution is an Inverse Wishart prior IW(S,J). This results
in a multivariate Cauchy prior on the item parameters Ekj, a
multivariate normal distribution with mean zero and an Inverse
Wishart prior on the variance. When an S matrix with ones on the
diagonal and zeros elsewhere is chosen, the resulting distribution
of dy is a non-standardized univariate t distribution with 1 degree
of freedom and a scale parameter of 2. This result can be extended
to comparisons between more than two groups (see Appendix E).

Fig. 4 shows the distribution of the difference between item
parameters for two groups with this multivariate Cauchy prior on
the group-specific item parameters, and how it compares to the
multivariate normal prior on the group-specific item parameters.
Although both distributions cover a similar range of plausible
values for d;, the multivariate Cauchy distribution has wider tails
and lower prior density around zero. The prior is less informative
about the difference, as the density is more equally spread.
Therefore, the Bayes factor will be more likely to favor invariance
under the multivariate Cauchy prior than under the multivariate
normal prior on the item parameters.

4. Simulation study: Evaluation of the Bayes factor test for item
parameter differences

A simulation study was performed to evaluate the Bayes factor
test for item parameter differences. Two different priors were
evaluated for the variance of the item parameters (see 3.3). A
comparison is made with invariance tests based on the Wald test
(Lord, 1980) to test the equality of item parameters (Woods et al.,
2012) as implemented in IRTPRO (Cai et al., 2011). In this test,
all other items are considered anchor items while testing each
item for invariance. The Bayes factors were computed using a
procedure in R based on WinBUGS output (Wetzels, Grasman, &
Wagenmakers, 2010; Wetzels et al., 2009) (Appendix C). The Bayes
factors (BFy;) compare the null hypothesis of invariance (Hy : dy =
0) to the alternative hypothesis that there is a difference between
the item parameters of two groups (H; : di # 0).

Data were generated consistent with two sets of assumptions:
for each group j, the sum of the item thresholds )", by equaled
zero, the mean for the reference group Mo, equaled zero and two
(anchor) items were invariant. Data for two groups both consisting

of 250, 500 or 750 subjects answering ten items were generated,
with the ten items containing five pairs of items with an increasing
difference d, between the item parameters of the two groups
(0, .1, .3, .5 and .7). The combined measurement invariance test
results of the analysis of 50 simulated data sets are presented in
Table 1. The results for estimation accuracy are in Appendix D.

The right-hand part of Table 1 shows results of the Bayes factor
test using a Cauchy prior on the item difficulties, and the middle
columns show results of the Bayes factor test using a Normal prior
(see Section 3.3). Although some prefer a higher cut-off (e.g. 10) for
substantial evidence, or a continuous interpretation of the Bayes
factor, we chose a minimal cut-off of 3 for the invariance and .33
for the non-invariance hypothesis to indicate sufficient evidence to
support the hypotheses. In the left-hand part of the table, results
acquired with the maximum likelihood based EM algorithm in
IRTPRO (Cai et al., 2011) are shown, using a Wald test to evaluate
each item for invariance, with all other items as anchors. Cut-off
p-values («) for rejection of the null hypothesis of both .01 and .05
are shown.

Of main interest is whether the Bayes factor test will identify
the invariant items (d, = 0) by high support in favor of the
null hypothesis. Using a multivariate Cauchy prior on the
item difficulties, for 91%-97% of the invariant items there was
substantial evidence for the null hypothesis of invariance, as
indicated by a Bayes factor larger than three. None of the invariant
items were incorrectly identified as non-invariant items (indicated
by a Bayes factor lower than .33), leaving three to nine percent of
the items undecided (not enough evidence for either hypothesis).
As expected, the more informative multivariate standard normal
prior on the item difficulties rendered the support for invariance
less convincing, especially for the smaller group sizes. Under this
prior, 78%-91% of the invariant items were identified as invariant.
Also, one percent of the invariant items was wrongly indicated
as non-invariant using this prior, leaving 9%-22% of the invariant
items with no clear support for invariance or non-invariance. The
Wald test rejected the null hypothesis incorrectly for one to two
percent of the invariant items at « = .05, and for none of the items
ata = .01. While the performance of the Wald test is similar to the
performance of the Bayes factor with regard to falsely reporting
non-invariance (or type I errors), the Wald test misses the ability
to evaluate the strength of evidence in favor of invariance.

Overall, the percentage of Wald tests which reject the null
hypothesis of invariance corresponds closely to the percentage
of Bayes factor tests (based on the Cauchy prior) confirming the
hypothesis of variance in item parameters (given that a Bayes
factor of 3 is considered strong enough evidence to support a
hypothesis). The Wald tests show an increasing percentage of
null hypothesis rejections when the difference between item
parameters grows, and near perfect detection of non-invariant
items with a difference in item parameters of .7, especially with
larger sample sizes. The Bayes factors, however, give information
about both hypotheses by being more often indecisive for small
differences in item parameters (dy = .1 or dy = .3) and
clearly favoring measurement variance for large differences initem
parameters (dy = .5 or d, = .7). Comparing the two priors, the
Bayes factor based on the Normal prior is more conservative in
its support for the invariance hypothesis, as the prior has higher
density at the null hypothesis.

As the Wald test can only reject invariance but not support vari-
ance, and the Bayes factor is the ratio of the amount of support
for either hypothesis, the results should be compared with cau-
tion. Both tests perform very well in identifying large differences
(dy > .5) between item parameters, especially with larger sam-
ple sizes. The Bayes factors are more conservative when invariance
decisions would be made based on substantial evidence for Hy, but
less conservative when decisions would be made based on whether
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Table 1

Results for the Bayes factor test for item parameter differences with two different priors and the
Wald test for five pairs of items with increasing amounts of DIF between two groups, over 50

replicated data sets.

BFy; Cauchy prior BFy; Normal prior Wald test

750 subjects per group

dy %BFo1 > 3  %BFp; < .33 %BFp1 > 3  %BFy; < .33 %p < .05 %p < .01
0.00 094 0.00 0.91 0.01 0.01 0.00
0.10 0.81 0.01 0.75 0.06 0.08 0.01
030 0.23 0.38 0.23 0.44 0.61 0.31
050 0.00 0.94 0.00 0.91 0.99 0.94
070  0.00 1.00 0.00 1.00 1.00 0.99
500 subjects per group

d %BFo1 > 3 %BFy; < .33 %BFy1 > 3 %BFo1 < .33 %p < .05 %p < .01
0.00 0.91 0.00 0.86 0.01 0.02 0.00
0.10 0.90 0.01 0.74 0.01 0.05 0.00
030 0.33 0.25 0.22 0.31 0.49 0.19
050 0.02 0.71 0.08 0.73 0.85 0.67
0.70  0.00 0.95 0.00 0.96 0.98 0.95
250 subjects per group

d %BF()] >3 %BFm < .33 %BF()] >3 %BF[)] < .33 %p < .05 %p < .01
0.00 0.97 0.00 0.78 0.01 0.01 0.00
0.10 0.81 0.04 0.74 0.03 0.11 0.02
030 0.42 0.17 0.39 0.19 0.38 0.18
050 0.14 0.68 0.12 0.43 0.85 0.71
070 0.02 0.93 0.04 0.88 0.99 0.95

or not there is substantial evidence for Hy, especially when the « for
the rejection of the null hypothesis would be .05. For the smaller
differences (dy = .1, dy = .3), the Bayes factor is undecided for a
percentage of items, which is desirable as it represents the uncer-
tainty of the situation. Overall, the tests produced practically simi-
lar results, given that the assumptions were met for all models. An
advantage of the Bayes factor is that it gives more detailed infor-
mation about the support for both hypotheses. When the goal is to
identify which items are anchor items, the possibility to evaluate
the evidence in favor the null hypothesis is exactly what is desired.

5. Analyzing geometry items for males and females (CBASE)

To illustrate the use of the multiple-group IRT model and Bayes
factor tests for measurement invariance in real test situations,
geometry items from the College Basic Academic Subjects Exami-
nation (CBASE) for males and females are analyzed (Flowers, Oster-
lind, Pascarella, & Pierson, 2001; Millsap, 2011; Osterlind, Robin-
son, & Nickens, 1997). CBASE is an exam intended for students en-
rolled in college, assessing knowledge and skills in mathematics,
English, science and social studies. The analysis will focus on mea-
surement invariance for 11 items from the geometry subtest of
the mathematics test, comparing females (N = 4452) and males
(N = 1034). Bayesian IRT models for fixed groups will be estimated
and the corresponding Bayes factors to test measurement invari-
ance will be computed. As the Cauchy prior showed better results
in the simulation study, only this prior was used to analyze these
example data. The results will be compared to results from a tradi-
tional analysis based on maximum likelihood estimates, in which
the scales are linked with anchor items instead of by equal average
thresholds in both groups.

After 5000 iterations, with a burn in of 500 iterations, conver-
gence of the MCMC chains was reached, as all lag 50 autocorrela-
tions were below .1 and all Geweke Z statistics (Cowles & Carlin,
1996) below 2. Table 2 shows the results for this model.

The Bayes factor tests convincingly identify item 6 and 7 as non-
invariant items, whereas for item 2, 3, 4,5 and 9 there is substantial
evidence that they are invariant over groups. Item 7 is easier for
male students, while item 6 is easier for female students.

The same CBASE data set was analyzed with standard maximum
likelihood based procedures (EM algorithm, Bock & Aitkin, 1981)
with anchor item and reference group restrictions as implemented
in IRTPRO (Cai et al, 2011). First, all items were tested for
invariance, using all other items as anchors. Column 8 in Table 2
shows the results of this Wald test. Even though the restrictions
on which the parameters and parameter differences for these tests
are based were different from the restrictions for the Bayes factor
test, the results are remarkably similar. For item 6 and 7, invariance
would be rejected based on p-values < .01, and additionally for
items 1 and 11 based on a p-value < .05, while for items 3, 4, 5
and 9 the p-values are highest.

Next, the items for which invariance was clearly not rejected
were used as an anchor set to estimate item parameters for all
items. Comparing these parameter estimates with the estimates
from the Bayesian IRT model (Table 2), it is clear that the mean and
variance of the scales are different, and as a result, the maximum
likelihood item parameter estimates are higher and less spread out.
This is a direct result of the identification restrictions: the sum of
the item parameters was set to zero in the Bayesian IRT model,
while the mean of the 6 scale for males was set to zero in the
maximum likelihood method.'

The last columns of the table show the parameters rescaled
to the scale of the Bayesian IRT estimates, by subtracting within
each group the mean difficulty from each group-specific item
parameter, and multiplying by the ratio of the standard deviations
of 6 in that group. When compared, the rescaled parameters are
almost equal to the Bayesian IRT model estimates. This shows that
the large amount of data dominates the posterior information and
the priors are not influential. The rescaled anchor items are not
exactly equal for males and females anymore, however, and this
is a direct consequence of the point at which the scales are linked,
reflecting either a set of anchor items or an equal overall difficulty
of the test. As there are many items and a relatively large amount
of invariant items in this example, the invariance tests give exactly
the same result.

1 Another difference is that the discrimination parameter is set to 1 in the
Bayesian IRT models but is estimated in IRTPRO, resulting in the different variances.
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Table 2
Bayesian and ML Item parameter estimates and results for the Bayes factor test and Wald test for item parameter differences (CBASE example).
Item Bayesian IRT Maximum Likelihood Rescaled ML
beM b F DIF BFo; beM b F DIF x2(df) p beM beF DIF
1 —0.27 —0.03 —0.24 0.43 —-1.17 —0.95 —-0.22 5.20(1) 0.02 —0.28 —0.04 —0.24
2 0.78 0.67 0.11 7.25 —0.45 —0.45 0 2.30(1) 0.13 0.72 0.67 0.05
3 —0.66 —-0.77 0.11 9.16 —1.46 —1.46 0 1.20(1) 0.28 —0.68 —0.76 0.09
4 0.68 0.63 0.05 18.04 —0.48 —0.48 0 0.70(1) 0.40 0.68 0.63 0.05
5 —-1.09 —1.25 0.16 4.82 —-1.79 -1.79 0 1.90(1) 0.17 —-1.14 —1.23 0.10
6 0.46 0.16 0.30 0.07 —0.63 —0.81 0.18 12.20(1) 0.00 0.47 0.16 0.31
7 0.85 1.21 —0.36 0.02 —0.36 —0.07 -0.29 13.50(1) 0.00 0.85 1.22 —0.37
8 1.11 1.28 -0.17 2.17 —0.05 —0.05 0 2.40(1) 0.12 1.28 1.24 0.04
9 —0.61 —0.68 0.07 14.48 —1.40 —1.40 0 0.50(1) 0.47 —0.59 —0.68 0.08
10 —0.87 —1.06 0.19 2.52 —1.66 —1.66 0 3.20(1) 0.07 —0.96 —1.05 0.09
11 —0.38 -0.17 —0.21 1.10 —1.24 —1.04 -0.20 3.90(1) 0.05 —0.37 -0.17 —0.21
Mo 1.36 0.62 0.00 —0.49
0y 1.47 1.28 1.06 0.90

There are situations, however, in which different linkage rules
can lead to different test results. In this case, in which there
are often many non-invariant items, the equal overall difficulty
restriction creates the possibility to paint an overall picture of
differences in item parameters between groups independent of the
chosen anchor items, and the possibility of including explanatory
information directly into the model (see also Verhagen & Fox,
2013a). When the aim is to identify and use anchor items, the
average difficulty restricted Bayesian IRT models can be used as a
base to start exploring which items are invariant. Parameters can
then be restricted to invariance in a second step. In this example,
items 4 and 9 are clearly indicated to be invariant, and could be
used as anchor items in a second estimation round for Bayesian IRT
models, using an anchor item restriction instead of or in addition
to the equal average difficulty restriction.

6. Discussion

A Bayes factor was developed to test for measurement invari-
ance in IRT models. Using a Bayesian multiple-group IRT model
for fixed groups, in which the group-specific item parameters are
assumed to be multivariate normally distributed, measurement
invariance is tested by evaluating differences in group-specific
difficulty parameters.

The Bayes factor test for measurement invariance was evalu-
ated and compared to the Wald test as implemented in IRTPRO.
The simulation study showed results for the Bayes factor similar to
the results from the Wald tests (assuming a Bayes factor of 3 to be
substantial evidence to support a hypothesis). The results should
be compared with some caution, however, as the Wald test ad-
vises whether or not to reject the null hypothesis, while the Bayes
factor evaluates the relative evidence for the null and alternative
hypotheses. The Bayes factor is more conservative in indicating in-
variance than the Wald test when decisions would be made based
on substantial evidence for Hy, but less conservative when deci-
sions would be made based on whether or not there is substan-
tial evidence for Hy. Especially when the goal is to identify anchor
items, the possibility of evaluating evidence in favor of invariance
is desired. Another advantage of the Bayes factor is that all param-
eters can be tested for invariance simultaneously, which makes the
test especially useful for exploratory purposes.

The CBASE example illustrated the use of the Bayes factor tests
for invariance. The Bayesian IRT models produced approximately
the same Bayes factor test results as the maximum likelihood based
estimation and Wald tests. This showed that the amount of data
dominated the posterior information and the priors are not very
influential in the estimation process. As the scales are linked at a
different point, choice for one or the other linkage rule can result in

different parameter estimates and therefore can point to different
items as non-invariant items. However, in situations with many
(invariant) items and groups, the differences are often minor. Both
linkage rules can be used in the Bayesian IRT models. It is up to the
researcher to determine which rule to choose, based on theoretical
as well as practical arguments. When interest is in identifying
invariant items, a two-step procedure can be implemented. First,
the equal threshold restriction in combination with the Bayes
factor test can be used to indicate which items are most likely to
be invariant. Then, in a second step, the anchor item restriction can
be used to estimate the item parameters in the final model.

Another Bayesian two-step procedure was proposed by Muthén
and Asparouhov (2013a) as implemented in Mplus (Muthén &
Muthén, 2012). Following an initial Bayesian estimation using very
broad priors on free parameters and very narrow priors on fixed
parameters, models with “approximate” measurement invariance
are estimated. They do not use a Bayes factor to identify variance
in parameters over groups, however, but a significant ratio of the
difference between two individual parameters and its standard
error, which is similar to null hypothesis significance testing.

Future research could extend the framework further, with for
example multi-dimensional IRT models or to measurement instru-
ments with a mixed number of answer categories. Issues which
have been encountered while investigating these models, like the
prior sensitivity of the Bayes factors and the effect of linkage rules
under different conditions (the size of differences between param-
eters, the number of non-invariant items, the amount of groups)
could be investigated in more detail.

This paper showed that the Bayes factor is a valid alternative to
current measurement invariance tests. The advantages of evidence
in favor of the null, the possibility to test all items simultaneously
and the average threshold restriction makes the Bayes factor espe-
cially useful for exploratory research in the absence of knowledge
about anchor items, and in cases where explanatory information
can be included to explain differences in item parameters between
groups.

Appendix A. Identification of multiple-group IRT models

Each measurement model containing both latent person pa-
rameters and item threshold parameters has an identification
problem. Several combinations of item parameters and latent vari-
able values result in identical likelihood values, complicating pa-
rameter estimation. In single group settings, this identification
problem is generally solved by fixing the latent variable to have a
mean of zero. As the mean of the scale is arbitrary, this restriction
has no implications for the interpretation of the model.

In a multiple group setting, however, this identification prob-
lem exists within each group. In addition, the scores of the different
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groups have to be estimated on the same scale. There are several
ways in which the multiple-group 1PNO IRT model can be iden-
tified. First, the scale has to be identified for one group by fixing
at least one group-specific parameter. This can either be the group
mean (g, = 0) of the person parameters, the sum of the item

thresholds for that group (), ba = 0), or one (or more) of the

group-specific threshold parameters (e.g. by; = 0). Once the scale
for one group has been identified, the scales of the other groups
can be linked as well as identified by defining either at least one
group-specific item parameter (e.g. by = Bkj), the sum of the item

parameters within the group (), by = Yok Bkj), or the person pa-
rameter mean (ug, = f4q;) to be equal to that of the first group.

Traditional methods to estimate multiple-group IRT models and
test for measurement invariance (e.g. likelihood ratio test (Thissen
et al.,, 1993) or Wald test (Lord, 1980; Woods et al., 2012)), based
on maximum likelihood estimates of the item parameters, are
usually identified based on a fixed person parameter mean gy
for a reference group and at least one anchor item with equal
item parameters in all groups. Although easily implemented in an
ML estimation procedure, there are some disadvantages to these
identification restrictions. Restricting the mean and variance for
one group complicates the modeling of person parameters for
the measured construct, like explanatory covariates or multilevel
(longitudinal) structures. Unless prior knowledge exists about the
invariance of certain items, one has to resort to empirical anchor
selection methods, which can be tedious, especially if items have
to be invariant over a large number of groups. Furthermore, the
accuracy of the selection will influence the results of the invariance
test. Langer (2008) introduced a two-step procedure in which first
group means are estimated under a fully invariant model, and then
invariance tests are performed with group means fixed to these
values. This can lead to biased estimates, however, when there is a
substantial amount of DIF (e.g. Woods et al., 2012). In addition, if
the wrong items are chosen as anchor items, or if none of the items
is invariant, this causes bias in the estimated latent scores and in
the estimated group differences.

In the Bayesian random item parameter framework, restricting
the mean of the threshold parameters to zero within all groups
is a natural choice, which reflects the assumption of equal test
difficulty across groups. This leaves the variance components
free to be estimated in a very flexible modeling framework. The
restrictive assumption is spread out over all the item parameters,
which leads to more robust anchoring in case there are no anchor
items known beforehand. In case the assumption is wrong, and
there is for example only one item which is not measurement
invariant, this leads to less bias than when an item is falsely
restricted to be an anchor item. When there is only one item
variant, that item will show a deviation in one direction in one
or more groups, while all the other (invariant) items are forced
to make a small deviation in the other direction in these groups
to preserve the overall constraint. The deviations of the invariant
items become smaller when the number of items increases and will
always be relatively small in comparison with the real variant item.
Once the real variant item is identified, it is possible to anchor the
other items and estimate the item parameters accurately.

Appendix B. Model specification in WinBUGS
Fixed multiple-group IRT models

This section will present the WinBUGS (Lunn et al., 2000) code
of the fixed manifest groups model for a data set Y with J groups j,
K items k, and N persons i, stacked in such a way that njl[1] is the
first person for group j and njh[]] is the last person for group j.

1. Basic model

for (j in 1:]J){
for (i in njl{j]:njh[j]){
for (k in 1:K){
logit(p[i,k]) <— theta[i]—Rbeta[k,j]
Y[i,k] ~ dbern(p[i,k])

theta[i] ~ dnorm(mut[j],prec[j])

1)

2. Priors for group means

for (j in 1:]){
mut[j] ~ dnorm(0,1)
prec[j] ~ dgamma(1,.1)
sigmat[j] <— 1/prec[j]
}

3. Item parameters

for (k in 1:K){
beta[k,1:]J] ~ dmnorm(mu[],Prec|,])
priorbeta[k,1:]] ~ dmnorm(mu[], Precprior|[,])

}

4. Rescale item parameters to the accommodate the restriction
that for each group j, Y by = 0.

for (j in 1:]J){

meanb[ j] <— mean(beta[1:K,j])
for (k in 1:K){

Rbeta[k,j] <— beta[k,j] — meanb]j]
1}

5. Model DIF for Bayes Factor, 2 groups

for (k in 1:K){
dif12[k] <— Rbeta[k,1]— Rbeta[k,2]
}

6. Priors for the item parameters: multivariate Cauchy prio
(Section 3.3),R= [(1) ?]
for (j in 1:]J){mu[j] <— 0}

Prec[1:],1:]] ~ dwish(R[1:],1:]
Sigma[1:],1:]] <— inverse(Prec|

=

1.])

1:],1:1])
7. Priors for the item parameters: multivariate Normal prior (see
Section 3.3), R= [(l, 0]

1

for (j in 1:]J){mu[j] <— 0}
Sigma[1:],1:]J] <— R[1:],1:]]

Appendix C. Bayes factor computation based on WinBUGS
output in R

Bayes factor test for item parameter differences

The Bayes factors comparing nested models with regard to the
difference in item parameters for all items simultaneously can be
specified in R based on the index (index) and coda (coda) files of
WinBUGS (Lunn et al., 2000) output with XG iterations and BURN as
the number of burn in iterations. The sampled prior and posterior
values of the differences in item parameters are specified in the
variable “difchains”, after which the density at d, = 0 under both
distributions under the logspline approximation of the density is
computed similar to Wagenmakers et al. (2010).
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# Define K (the number of items) , XG (the number of iterations)

# and BURN (the number of burn in samples)

K =10
XG = 5000
BURN = 1000

# index: matrix with indices which indicate the start and end of the chains
# for the parameters in the coda matrix (Read WinBUGS Index file )
# coda =the matrix with the MQVIC chains (Read WinBUGS coda file)

(L]

index <— read.table(file=tindex, sep=".",
row.names=2)
coda <— read.table(file=tcoda , sep="")

# Read the MOMC chains for the difference in item parameters

lo <— which(rownames(index) == "dif12[1]")

hi <— lo+K-1

it <— XG-BURN

difchains <— matrix(0,it ,K)

difchains[,1:K] <— matrix(coda[ind[lo,2]:
ind[hi,3],2],it,)

# set the
if (whichprior == "CP") {
prior <—(1/(sqrt(2)*pi)) }

# value of the prior density at HO: multivariate normal prior on the item parameters

if (whichprior == "NP") {
prior <— dnorm(0,0,sqrt(2)) }

# Use polspline to calculate the density of the posterior at HO
# and compute the Bayes factor (see also paragraph 3.2)

posterior <— matrix(0,K,1)
BFO01 <— matrix(0,K,1)

for (k in 1:K){

fit.posterior <— logspline(difchains|[,k])
posterior[k] <— dlogspline (0, fit.posterior)
BFO1[k] <—posterior[k]/prior

}

value of the prior density at HO: Cauchy prior on the item parameters

Appendix D. Simulation results: estimation accuracy
See Table 3.

Appendix E. Marginal prior specification of differences in item
difficulties

The prior distribution of the group-specific differences in item
difficulty will be derived under the multiple-group IRT model.
The prior for the group-specific item parameters is assumed to be
multivariate normal, where the average item difficulty per group
is fixed to zero due to the identification restrictions. The prior
distribution of the group-specific difficulty parameters of item k
given the covariance matrix X is given by

-1 1 -1
p(ba,....by | £, Hi) o |Z|"2 exp —ETrbkbkE )

When assuming the identity matrix I, as the hyper prior scale
matrix, the Inverse Wishart prior for the covariance matrix X is
given by

1

>t 1 1
p(X) x| X|7 2 exp —ETrE .

The marginal prior distribution of by, is obtained by integrating out
the covariance matrix X. It follows that

1
p (b | Hy) / |Z1 7 Texp <—5Tr (bkb} + 1)) 2*1> dx1.

The integral is equal to the normalizing constant of the Wishart
distribution,

==t
p (b | Hy) o [l + bybj | 2,

which does not depend on the item difficulty parameters, such
that the joint prior density function of the group-specific difficulty
parameters is the multivariate student t with one degree of
freedom and covariance matrix I;. Therefore, the joint distribution
can be expressed as

I +1)/2 (=t
pib 1) = O [+ bt
_ T+ o

t 2
(172 0 [1+ bib]

where a matrix lemma (Press, 2003, p. 208) was used to obtain the
kernel of the multivariate t-distribution. A linear transformation
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Table 3

Average estimation accuracy results (average parameter estimates, BIAS, MSE) for
five pairs of items with increasing amounts of DIF between two groups, over 50
replicated data sets.

Cauchy Prior Normal Prior MML/EM

750 subjects per group

d EAP BIAS MSE EAP BIAS MSE d, BIAS  MSE
dk bkj bkj dk bkj bkj bkj bkj

000 001 009 003 002 009 003 002 010 0.14
0.10 011 009 003 011 0.11 003 0.10 009 0.14
030 030 009 003 032 0.11 003 028 009 0.11
050 051 010 003 049 009 003 050 009 0.20
070 069 0.11 003 070 0.10 003 067 0.12

0.28
500 subjects per group
dy EAP  BIAS MSE EAP BIAS MSE Ezk BIAS MSE
d by by dy by by b b

000 000 0.12 004 000 O0.11 005 0.00 0.12 0.07
0.10 000 010 004 000 0.12 004 007 0.11 0.08
030 015 012 005 018 013 005 029 0.13 0.08
050 056 012 004 057 014 006 048 0.14 0.10
070 092 0.11 004 091 0.12 004 067 0.13 0.10

250 subjects per group
dy EAP  BIAS MSE EAP  BIAS MSE ak BIAS MSE
dy by by dp by by by by

0.00 0.00 O0.11 005 001 0.16 008 0.02 0.13 0.17
0.10 000 0.12 006 000 0.14 007 011 0.13 0.49
030 0.10 0.12 005 013 0.14 007 029 0.14 013
050 057 013 006 033 016 008 050 0.15 0.16
070 087 012 005 080 0.16 008 066 0.11 0.23

of the group-specific difficulty parameters is again multivariate
t-distributed. Consider a contrast matrix C, then dy = Cb,
is multivariate t-distributed with one degrees of freedom and
covariance matrix CI;C".

In the situation of two groups (J = 2) and a linear contrast,C =
[—1, 1]%, the distribution of d;, = by; — by is the univariate Student
t-distribution with one degrees of freedom and scale parameter 2.
Subsequently,

@
(/22

andp(dy =0 | Hy) = ﬁ

p(d | Hy) [1+d2/2]"

Appendix F. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jmp.2015.06.005.
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