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Many standardized tests are now administered via computer rather than paper-

and-pencil format. In a computer-based testing environment, it is possible to

record not only the test taker’s response to each question (item) but also the

amount of time spent by the test taker in considering and answering each item.

Response times (RTs) provide information not only about the test taker’s ability

and response behavior but also about item and test characteristics. This study

focuses on the use of RTs to detect aberrant test-taker responses. An example

of such aberrance is a correct answer with a short RT on a difficult question.

Such aberrance may be displayed when a test taker or test takers have preknow-

ledge of the items. Another example is rapid guessing, wherein the test taker dis-

plays unusually short RTs for a series of items. When rapid guessing occurs at

the end of a timed test, it often indicates that the test taker has run out of time

before completing the test. In this study, Bayesian tests of significance for

detecting various types of aberrant RT patterns are proposed and evaluated.

In a simulation study, the tests were successful in identifying aberrant response

patterns. A real data example is given to illustrate the use of the proposed

person-fit tests for RTs.

Keywords: response times; aberrant behavior; person fit

Introduction

Many standardized tests rely on computer-based testing (CBT) because of its

operational advantages. CBT reduces the costs involved in the logistics of

transporting the paper forms to various test locations, and it provides many

opportunities to increase test security. CBT also benefits the candidates. It

enables testing organizations to record scores more easily and to provide
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feedback and test results immediately. In computerized adaptive testing (CAT),

a special type of CBT, the difficulty level of the items is adapted to the response

pattern of the candidate; this advantage also holds for multistage testing. Multi-

media tools can even be included, and automated scoring of open-answer ques-

tions and essays can be supported. CBT can be used for online classes and

practice tests.

An advantage of CBT is that it offers the possibility of collecting response

time (RT) information on items. RTs provide information not only about test

takers’ ability and response behavior but also about item and test characteristics.

With the collection of RTs, the assessment process can be further improved in

terms of precision, fairness, and minimizing costs.

The information that RTs reveal can be used for routine operations in testing,

such as item calibration, test design, detection of cheating, and adaptive item

selection. In general, once RTs are available, they could be used both for test

design and diagnostic purposes.

In general, two types of test models can be recognized: (a) separate RT models

that only describe the distribution of the RTs given characteristics of the test

taker and test items; in other words, RTs are modeled independently of the cor-

rectness of the response. Examples of this approach are as follows: Maris (1993)

modeled RTs exclusively, whereas accuracy scores are not taken into con-

sideration. Schnipke and Scrams (1997) estimated rapid guessing with assump-

tion that accuracy and RTs are independent given speed and ability. (b) Test

models that describe the distribution of RTs as well as responses. This approach

takes correctness of the response and RTs into account; the correct responses

reflect both speed and accuracy. With respect to the second one, Thissen

(1983) defined the timed testing modeling framework, where item response the-

ory (IRT) models are extended to account for speed and accuracy within one

model. However, these types of models have been criticized because problems

with confounding were likely to occur.

Recently, there is another approach introduced by van der Linden (2006,

2007) who advocated the first type of modeling and proposed a latent variable

modeling approach for both processes. He defined a model for the RTs and a sep-

arate model for the response accuracy, where latent variables (person level and

item level) explain the variation in observations and define conditional indepen-

dence within and between the two processes. The RT process is characterized by

RT observations, speed of working, and labor intensity, which are in a compara-

ble way defined in the RT process by observations of success, ability, and item

difficulty. This framework has many advantages and recognizes two distinct pro-

cesses: It adheres to the multilevel data structure, and it allows one to identify

within, between, and cross-level relationships.

Unfortunately, not all respondents behave according to the model. Besides

random fluctuation, aberrant response behavior also occurs due to, for example,

item preknowledge, cheating, or test speededness. Focusing on RTs might have
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several advantages in revealing various types of aberrant behavior. RTs are con-

tinuous and therefore more informative and easier to evaluate statistically. One

other advantage, especially for CAT, is that RTs are insensitive to the design

effect in adaptive testing, since the selection of test items does not influence the

distribution of RTs in any systematic way. RT models are defined to separate

speed from time intensities; this makes it possible to compare the pattern of time

intensities with the pattern of RTs.

Different types of aberrant behavior have been introduced and studied. van der

Linden and Guo (2008) introduce two types of aberrant response behavior: (a)

attempts at memorization, which might reveal themselves by random RTs, and

(b) item preknowledge, which might result in an unusual combination of a correct

response and RTs. RT patterns are considered to be suspicious when an answer is

correct and the RT is relatively small while the probability of success on the item

is low. Schnipke and Scramms (1997) studied rapid guessing, where part of the

items show unusually small RTs. Bolt, Cohen, and Wollack (2002) focused on

test speededness toward the end of a test. For some respondents who run out

of time, one might observe unexpected small RTs during the last part of the test.

For all of these types, it holds that response behavior either conforms to an RT

model representing normal behavior or it does not (i.e., it is aberrant behavior).

We propose using a lognormal RT model to deal with various types of aberrant

behavior. Based on this lognormal RT model, a general approach to detect aber-

rant response behavior can be considered in which checks can be used to flag

respondents or items that need further consideration. Checks could be used rou-

tinely in order to flag test takers or items that may need further consideration or to

support observations by proctors or other evidence.

After introducing the lognormal RT model, an estimation procedure is

described to estimate simultaneously all model parameters. Then, person-fit sta-

tistics are defined under the lognormal RT model, which differ with respect to

their null distribution. It will be shown that given all information, each RT pat-

tern can be flagged as aberrant with a specific posterior probability, to quantify

the extremeness of each pattern under the model. In a simulation study, the power

to detect the aberrancies is investigated by simulating various types of aberrant

response behavior. Finally, the results from a real data example and several direc-

tions for future research are presented.

RT Modeling

van der Linden (2006) proposed a lognormal distribution for RTs on test

items. In this model, the logarithm of the RTs is assumed to be normally distrib-

uted. The model is briefly discussed since it is used to derive new procedures for

detecting aberrant RTs. The lognormal density for the distribution of RTs is spec-

ified by the mean and the variance. The mean term represents the expected time

the test taker needs to answer the item, and the variance term represents the
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variance of measurement errors. In lognormal RT models, each test taker is

assumed to have a constant working speed during the test. Let p ¼ 1, . . . , N be

an index for the test takers, i ¼ 1, . . . , I be an index for the items, �p denote the

working speed of test taker p, �i denote the time intensity of item i, Tip denote the

RT of test taker p to item i. Subsequently, the logarithm of Tip has mean

mpi ¼ �i � �p (see also van der Linden, 2006). The lower the time intensity of

an item, the lower is the mean. In the same way, the faster a test taker operates,

the lower is the mean. This model can be extended by introducing a time-

discrimination parameter to allow variability in the effect of increasing the work-

ing speed to reduce the mean. Let fi denote the time discrimination of item i.

With this extension, the mean is parameterized as mpi ¼ fi �i � �p

� �
, such that

the reduction in RT by operating faster is not constant over items. The higher the

time discrimination of an item, the higher is the reduction in the mean when oper-

ating faster. For example, when a test taker operates a constant C faster, the mean

equals mpi ¼ fi �i � �p þ C
� �� �

¼ fi �i � �p

� �
� fiC; such that the item-

specific reduction is defined by fiC:
Observed RTs will deviate from the mean term (i.e., expected times), and the

errors are considered to be measurement errors. The response behavior of test

takers can deviate slightly during the test, leading to different error variances

over items. Test takers might stretch their legs or might be distracted for a

moment, and so on. These measurement errors are assumed to be independently

distributed given the operating speed of the test taker, the time intensities, and

time discriminations. Let s2
i denote the error variance of item i.

In the lognormal RT model, s2
i can vary over items. The errors are expected to

be less homogenous, when, for example, items are not clearly written, when

items are positioned at the end of a time-intensive test, or when test conditions

vary during an examination and influence the performance of the test takers

(e.g., noise nuisance).

With this mean and variance, the lognormal model for the distribution of Tip

can be represented by

p tip �p; �i;fi;
�� s2

i

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�s2
i tip

p exp � 1

2s2
i

ln tip � fi �i � �p

� �� �2

� �
: ð1Þ

We will refer to the time-intensity and time-discrimination parameters as the

item’s time characteristics in order to stress their connection with the definition

of item characteristics (i.e., item difficulty and item discrimination) in IRT.

With the introduction of a time-discrimination parameter, differences in

working speed do not lead to a homogeneous change in RTs over items. A dif-

ferential effect of speed on RTs is allowed, which is represented by the time-

discrimination parameters. The idea is that working speed is modeled by a latent

variable representing the ability to work with a certain level of speed. Further-

more, it is assumed that this construct comprehends different dimensions of

Marianti et al.

429

 at Universiteit Twente on November 5, 2015http://jebs.aera.netDownloaded from 

http://jebs.aera.net


working speed. Depending on the item, this construct can relate, for example, to a

physical capability, a cognitive capability, or a combination of both. For exam-

ple, consider 2 items with the same time intensity, where 1 item concerns writing

a small amount of text and the other doing analytical thinking. Differences

between the RTs of two test takers can be explained by the fact that one works

faster. However, differences in RTs between test takers are not necessarily homo-

genous over items. One item appeals to the capability of writing faster and the

other to thinking or reasoning faster, and it is unlikely that both dimensions influ-

ence RTs in a common way.

Identification

The observed times have a natural scale, which is defined by a unit of mea-

surement (e.g., seconds). However, the metric of the scale is undefined due to our

parameterization. First, the mean of the scale is undefined due to the speed and

time intensity parameters in the mean, �i � �p. To identify the mean of the scale,

the mean speed of the test takers is set to zero. Note that this value of zero cor-

responds to the population-average total test time, which corresponds to the sum

of all time intensities. Second, the variance of the scale is also undefined due to

the time-discrimination parameter and the population variance of the speed para-

meter. The variance of the scale is identified by setting the product of discrimi-

nations equal to one. It is also possible to fix the population variance of speed

(e.g., to set it equal to one).

A Bayesian Lognormal RT Model

Prior distributions can be specified for the parameters of the distribution of

RTs in Equation 1. The population of test takers is assumed to be normally dis-

tributed such that

� p � N m� ;s
2
�

� 	
; ð2Þ

where m� ¼ 0 to identify the mean of the scale. An inverse g hyper prior is spec-

ified for the variance parameter. The prior distribution for the time intensity and

discrimination parameters give support to partial pooling of information across

items. When the RT information for a specific time intensity leads to an unstable

estimate, RT information from other items is used to obtain a more stable esti-

mate. This partial pooling of information within a test is based on the principle

that the items in the test have an average time intensity and an average time dis-

crimination. Each individual item can have characteristics that deviate from the

average depending on the information in the RTs.

Partial pooling of information is also defined for item-specific parameters.

The time intensity and discrimination parameter in Equation 1 relate to the same
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item and are allowed to correlate. A bivariate normal distribution is used to

describe the relationship between the parameters,

fi

�i


 �
� N

m�
mf

� �
;

s2
f r
r s2

�

� �
 �
: ð3Þ

The mean time intensity of the test is denoted by m� and represents the average

time it takes to complete the test. The mean time discrimination is denoted by mf
and represents the effect of reducing the mean test time when increasing the

working speed. The common covariance parameter r across items represents for

each item the linear relation between both parameters. For example, items that

are more time intensive might discriminate better between individual perfor-

mances. The hyper priors will be normal distributions for the mean parameters

and an inverse Wishart distribution for the covariance matrix. Although the mod-

eling approach supports partial pooling of information, the hyper priors are spec-

ified in such a way that partial pooling of information is diminished and the

within-item RT information is the most important source of information to esti-

mate the time-intensity and time-discrimination parameters.

The measurement error variance parameters, s2
i , are assumed to be indepen-

dently inverse g distributed. The errors of a test taker are assumed to be indepen-

dently distributed, given the speed of working and the item’s time characteristics.

The specification of the lognormal model leads to the following random

effects model to model the logarithm of RTs:

log Tip ¼ fi �i � �p

� �
þ eip

�
Modeling time observation

fi ¼ mf þ r1i

�i ¼ m� þ r2i



Item specification

�p ¼ m� þ ep

�
Test� taker specification;

ð4Þ

where three levels can be recognized. At Level 1, time observations are modeled

using a normal distribution for the logarithm of RTs and three random effects to

address the influence of the test taker’s speed of working and of the item’s time

characteristics. The test item’s properties are modeled as multivariate normally

distributed random effects and are modeled at the level of items. Finally, the test

taker’s working speed is modeled at the level of persons.

The Estimation Procedure for Lognormal RT Models

The model parameters and the test statistics are computed using a Bayesian

estimation procedure. With the Markov chain Monte Carlo (MCMC) method

referred to as Gibbs sampling, samples are obtained from the posterior distribu-

tions of the model parameters. Gibbs sampling is an iterative estimation method

where, in each iteration, a sample is obtained from the full conditional distribu-

tions of the model parameters. To apply Gibbs sampling, the full conditional
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distributions of the model parameters need to be specified. For the lognormal

model, the technical details of the estimation method are given by Klein Entink,

Fox, and van der Linden (2009), van der Linden (2007), and Fox, Klein Entink,

and van der Linden (2007).

Test for Aberrant RT Patterns

One of the most popular fit statistics in person-fit analysis is the lz statistic

(Drasgow, Levine, & Williams, 1985), which is the standardized likelihood-

based person-fit statistic lo of Levine and Rubin (1979). This person-fit statistic

has received much attention in educational measurement. Studies have shown

that it almost always outperforms other person-fit statistics, and it is commonly

accepted as one of the most powerful person-fit statistics to detect aberrant

response patterns. With this in mind, we propose a person-fit statistic for aberrant

response behavior for RT patterns.

The log likelihood of the RTs is used to evaluate the fit of a response pattern

consisting of RTs. We will use t�ip ¼ ln tip

� �
to denote the logarithm of the RT of

test taker p on item i. Our likelihood-based person-fit statistic for RTs requires

knowledge of the density of the response pattern. This follows directly from the

normal model for the logarithm of RTs; that is,

lo �p; λ;f;σ2; t�p

� 	
¼ �2 log p t�p �p; λ;f;σ2

��� 	
¼
XI

i¼1

loi: ð5Þ

The lo statistic can be evaluated over all items in the test, but it is also possible

to consider a subpart of the test. An unusually large value indicates a misfit, since

it represents a departure of the RT observations from expected RTs under the

model. The posterior distribution of the statistic can be used to examine whether

a pattern of observed RTs is extreme under the model.

Given the model specification in Equation 1, the probability density function

of a response pattern is represented by the product of individual RTs. The prob-

ability density of response pattern t�p ¼ t�1p; . . . ; t�Ip

� 	
is given by:

�2 log p t�p �p; λ;f;σ2
��� 	

¼ �2
PI

i¼1 log p t�ip �p; �i;fi;s
2
i

��� 	

¼
PI

i¼1

t�
ip
�mip

si

� 	2

þ log 2�s2
i

� �
 �

¼
PI

i¼1 Z2
ip þ log 2�s2

i

� �� 	 ; ð6Þ

where Zip is standard normally distributed, since it represents the standardized

error of the normally distributed logarithm of RT.

The test statistic lo depends on various model parameters. It is possible to

compute statistic values, given values for the model parameters or given poster-

ior distributions of the model parameters. In the last case, the posterior mean
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statistic value is estimated by integrating over the posterior distributions of the

model parameters.

In the person-fit literature, the standardized person-fit statistic, which is usu-

ally denoted as lz, receives much attention because it has an asymptotic standard

normal distribution. Drasgow et al. (1985) showed that for tests longer than 80

items, the lz statistic is approximately normally distributed. Other studies (e.g.,

Meijer & Sijtsma, 1995; Molenaar & Hoijtink, 1990) showed that for shorter tests

the distribution of the test statistic was negatively skewed, violating the assump-

tion of symmetry of the normal distribution. Snijders (2001) proposed an adjust-

ment to standardize the lz statistic, thereby accounting for the fact that parameter

estimates are used to compute the statistic value.

The standardized version of the lt
0 for RTs, denoted as lt

z, requires an expres-

sion for the expected value and the variance of the statistic in Equation 5. In the

Appendix, it is shown that the conditional expectation is given by:

E lo �p; λ;f;σ2
� �

t�p;
��� �p; λ;f;σ2

h i
¼
X

i

1þ ln 2�s2
i

� �� �
; ð7Þ

and the variance is given by:

Var lo �p; λ;f;s2
� �

t�p;
��� �p; λ;f;s2

h i
¼ 2I ; ð8Þ

where I is the total number of test items. Subsequently, the standardized version,

l
t
z, is derived by standardizing the statistic in Equation 5 using the terms in Equa-

tions 7 and 8. It follows that

lt
z �p; �;f;σ2; t�p

� 	
¼

PI
i¼1

Z2
ip þ log 2�s2

i

� �
 �
�

PI
i¼1

1þ log 2�s2
i

� �
 �
ffiffiffiffiffi
2I
p ¼

PI
i¼1

Z2
ip � I

ffiffiffiffiffi
2I
p :

ð9Þ

To ease the notation, the statistic’s dependency on the model parameters is

ignored, leading to lt
z �p; λ;f;σ2; t�p

� 	
¼ lt

z t�p

� 	
. In the computation of lt

z, model

parameters are assumed to be known, or the posterior expectation is taken over

the unknown model parameters.

The Null Distribution

In order to come to a person-fit statistic, the null distribution of l
t
z has to be

derived. First, we introduce some notation. The logarithm of RTs is represented

by a random variable T �pi, which is normally distributed, where the observed val-

ues are denoted by t�pi. An RT pattern of test taker p is represented by T�p. Given

this notation, the null distribution of lt
z T�p

� 	
can be derived in three different
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ways, resulting in three different person-fit statistics for T�p under the lognormal

model.

First, the null distribution of the lt
z T�p

� 	
follows from the fact that the errors

Zip (see Equation 9) are standard normally distributed. The sum of squared errors,

which are standard normally distributed, is known to be w2 distributed with I

degrees of freedom. Box, Hunter, and Hunter (1978, p. 118) showed that a w2 dis-

tributed variable T with I degrees of freedom, the distribution of T � Ið Þ=
ffiffiffiffiffi
2I
p

is

approximately standard normal. Therefore, the null distribution of the lt
z T�p

� 	
can

be considered to be approximately standard normal.

Second, an exact null distribution can be obtained by considering a nonstan-

dardized version of the lt
z T�p

� 	
, which is the sum of squared standardized errors:

lt T�p

� 	
¼
XI

i¼1

Z2
ip: ð10Þ

This sum of squared errors, which are standard normally distributed, is known

to be w2 distributed with I degrees of freedom.

Third, the Wilson–Hilferty transformation can be used to standardize the

person-fit statistic lt T�p

� 	
in such a way that it is approximately standard normal

distributed. This leads to

lt
s T�p

� 	
¼

PI
i¼1

Z2
ip=I


 �1=3

� 1� 2=ð9IÞð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð9IÞ

p : ð11Þ

Summarized, three person-fit statistics for RTs are considered that differ

in the way the null distribution is derived. An overview of the tests is given

in Table 1.

Bayesian Testing of Aberrant RT Patterns

To assess the extremeness of the pattern of RTs, the posterior probability can

be computed such that the estimated statistic value, say lt t�p

� 	
, is greater than a

certain threshold C. This threshold C defines the boundary of a critical region,

which is the set of values for which the null hypothesis is rejected if the observed

statistic value is located in the critical region. The critical value C can be deter-

mined from the null distribution; that is,

P lt T�p

� 	
> C

� 	
¼ P w2

I > C
� �

¼ a; ð12Þ
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since the null distribution is a w2 distribution with I degrees of freedom, where a

is the level of significance. When the observed statistic value, lt t�p

� 	
, is larger

than C, the RT pattern will be flagged.

Given the sampled parameter values in each MCMC iteration, it is also pos-

sible to compute a function of the model parameters (e.g., a probability state-

ment). To illustrate this, consider the tail-area event as specified in Table 1.

Given sampled values from the posterior distribution of the model parameters,

the posterior probability can be computed as

P lt T�p

� 	
> C

� 	
�

PM
m¼1

P lt T�p

� 	
> C

� 	
p �

mð Þ
p ; λ mð Þ

t�p

���� 	

¼
PM
m¼1

F lt T�p

� 	
> C

� 	
p �

mð Þ
p ; λ mð Þ

t�p

���� 	 ; ð13Þ

where m denotes the MCMC iteration number. The terms to standardize the test

statistic depend on the model parameters. In each iteration, the test statistic is

computed using the sampled model parameters, and the average posterior prob-

ability approximates the marginal posterior probability of obtaining a test statis-

tic larger than a criterion value C. The uncertainty in the parameters is taken into

account in the computation of the posterior probability.

Note that in Equation 13, draws are used from the posterior distribution to

compute the marginal posterior probability. When using posterior draws, the pos-

terior distribution of the model parameters might be distorted by RT data that do

not fit the model. An alternative would be to use draws from the prior distribu-

tion. Then, most often, a much larger number of draws will be required to obtain

an accurate estimate of the marginal posterior probability. Moreover, a misspe-

cification of the priors might lead to a biased posterior probability estimate.

Besides testing whether a pattern of RTs is in a critical area defined by a

threshold C, it is also possible to quantify the extremeness of the observed RT

pattern by computing the right-tail area probability under the model. This

right-tail probability represents the posterior probability of observing a more

TABLE 1

Person-Fit Statistics for RT Data Under the Lognormal Model

Statistic

Type Null

Distribution

Exact or

Approximation Probability of Significance

lt
z Normal Approximation P lt

z T�p

� 	
> C

� 	
� F lt

z T�p

� 	
> C

� 	

lt w2 Exact P lt T�p

� 	
> C

� 	
¼ P w2

I > C
� �

lt
s Normal Approximation P lt

s T�p

� 	
> C

� 	
� F lt

s T�p

� 	
> C

� 	

Marianti et al.

435

 at Universiteit Twente on November 5, 2015http://jebs.aera.netDownloaded from 

http://jebs.aera.net


extreme statistic value under the model. The estimated statistic value is con-

structed from the sum of squared errors, and an extreme statistic value indicates

that the RT pattern is not likely to be produced under the lognormal model. When

the posterior probability is close to zero, it can be concluded that the pattern is

unlikely under the posited lognormal model and the pattern is considered to be

aberrant given the observed data.

Note that the decision to flag an RT pattern as extreme depends on the size of

the statistic value but also on the posterior uncertainty. When the distribution of

the test statistic is rather flat, it is less likely to conclude with high posterior prob-

ability that an RT pattern is extreme in comparison to a highly peaked distribu-

tion. Given accurate information, a more definitive decision can be made about

the extremeness of the RT pattern.

Dealing With Nuisance Parameters

The test statistic depends on the model parameters, which follows directly

from the definition of Zpi. To compute the marginal posterior probability of

observing a more extreme value than the observed one, an integration needs to

be performed over all model parameters:

P lt T�p

� 	
> C

� 	
¼
Z
�

Z
�p

P lt T�p

� 	
> C �p; λ

��� 	
p �p; λ
� �

d�pdλ: ð14Þ

The marginal posterior probability is obtained by integrating over the model

parameters. MCMC can be used to obtain draws from the posterior distribution of

the model parameters. For each draw, the probability that the computed statistic

value is above a threshold value C can be computed. The average posterior prob-

ability over MCMC iterations is an estimate of the marginal posterior probability

as specified in Equation 12.

In Equation 14, the distribution of the statistic is assumed to be known, and the

assessment of the test statistic is known as a prior predictive test (Box, 1980).

Given prior distributions for the model parameters, it is assessed how extreme

the observed statistic value is. Prior predictive testing is usually preferred, since

the double use of the data in posterior predictive assessment is known to bias the

distribution of estimated tail-area probabilities. When the data are used to esti-

mate the model parameters and to assess the distribution of the test statistic, the

tail-area probabilities are often not uniformly distributed. This makes it more dif-

ficult to interpret the estimated probabilities. In the prior predictive assessment

approach, as stated in Equations (12) and (14), the double use of the data is

avoided and the tail-area probability estimates can be correctly interpreted.

To assess whether an RT pattern is extreme, a classification is made based on

the value of the test statistic. The exact or an accurate approximation of the null

distribution of the statistic is known but depends on unknown model parameters.

Testing for Aberrant Behavior

436

 at Universiteit Twente on November 5, 2015http://jebs.aera.netDownloaded from 

http://jebs.aera.net


When the statistic is computed by plugging in parameter estimates, the corre-

sponding tail-area probability might be biased. Therefore, the probability that

an RT pattern will be flagged as extreme is evaluated in each MCMC iteration.

An accurate decision can be made in each MCMC iteration, given values for the

model parameters. Let random variable Fp take on a value of 1 when the RT pat-

tern of test taker P is flagged, or a value of 0 otherwise. Thus,

Fp ¼
1 if P lt T�p

� 	
> lt t�p

� 	� 	
< a

0 if P lt T�p

� 	
> lt t�p

� 	� 	
� a

8<
: : ð15Þ

Interest is focused on the marginal posterior probability that the RT pattern of

test taker P will be flagged, which is computed by:

P Fp ¼ 1 t�p

���� 	
¼

R
�

R
�p

I Fp ¼ 1 t�p

��� ; �p; λ
� 	

p �p; �
� �

d�pdλ

�
PM
m¼1

I F
mð Þ

p ¼ 1 �
mð Þ

p ; λ mð Þ
���� 	

=M

; ð16Þ

where in MCMC iteration m, F
mð Þ

p ¼ 1 when P w2 > lt t�p

� 	
�

mð Þ
p ; λ mð Þ
���� 	

< a. So

the probability that a pattern will be flagged is evaluated in each iteration. The

average probability over iterations approximates the marginal probability of a

flagged RT pattern. The extremeness of the pattern can be quantified, since the

posterior probability in Equation 16 states how likely it is that the pattern will be

flagged under the lognormal model. It can be decided that only patterns that have

a posterior probability of .95 or higher will be flagged under the model. This

reduces the probability of making a Type I error, since the posterior probability

quantifies the extremeness of each RT pattern, instead of classifying the pattern

based on a chosen significance level a.

The posterior probability of the extremeness of the response pattern in Equa-

tion 14 can also be defined from a posterior predictive perspective. Given the

model parameters, the posterior probability of the test statistic is evaluated given

its sampling distribution. When the distribution of the statistic is unknown, the

posterior predictive distribution of the data can be used to assess the distribution

of the test statistic. In that case, the extremeness of the estimated test statistic is

evaluated using the posterior predictive distribution of the data. This is shown by:

P lt T�rep
p

� 	
> lt t�p

� 	� 	
¼
Z

t
�rep
p

P lt T�rep
p

� 	
> lt t�p

� 	� 	
p T�rep

p �p; λ
��� 	

dT�rep
p ; ð17Þ

where T�rep
p denotes the replicated data under the model and the left-hand side of

Equation 17 represents the posterior predictive probability of observing a statistic

value that is greater than the statistic value based on the observed data.
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Posterior predictive tests have been suggested in many different applications

to evaluate the fit of models. Rubin (1984), among others, advocated the use of

posterior predictive assessment to evaluate the compatibility of the model to the

data. Box (1980) recommended the use of the marginal predictive distribution of

the data to evaluate the fit of the model, which is also known as prior predictive

assessment.

van der Linden and Guo (2008) also suggested using a predictive distribution

to evaluate RTs. In their approach, a cross-validation predictive residual distribu-

tion is used to evaluate the extremeness of the remaining RTs. Furthermore, the

predicted response is compared to the observed response in an adaptive test

application. The normal distribution of the logarithm of RTs is used to calculate

the power of identifying aberrant RTs. They also used a less accurate method,

which was based on classifying estimated residuals. Ignoring the uncertainty

of the estimates, RTs were flagged as aberrant when the corresponding estimated

standardized residuals were larger than 1.96 or smaller than�1.96. In the present

approach, the posterior uncertainty is taken into account, and RTs are flagged to

be aberrant with a certain posterior probability.

Results

Through simulation studies, the performance of the person-fit statistics for RT

patterns is evaluated. A comparison is made between three different programs for

estimating the model parameters. The detection rates of the lt statistic are eval-

uated for different types of misfit. Different conditions are simulated to investi-

gate the performance of the statistic. The MCMC method for estimating the

model parameters of the lognormal model was implemented in R and is referred

to as log normal response times (LNRT).1

Investigation of Detection Rates

Data sets were generated under different types of response behavior to simu-

late aberrant responses. Different data specifications were considered: sample

sizes of 500 and 1,000 test takers, and test lengths of 10 and 20 items. For each

type of aberrant response behavior, 5%, 10%, or 20% of the test takers responded

in this way. The remaining response patterns were generated according to the

lognormal model. The specification of the lognormal model was equal to the set-

ting in the parameter recovery study, except that time-discrimination parameters

were generated from a normal distribution with mean ¼ 1 and variance ¼ .17.

Three types of aberrant behavior were simulated:

Random response behavior. The first type of aberrant RTs represented test takers

who responded to the test items with random RTs on a subset of items. The simu-

lated aberrant RTs did not correspond with the time intensities of the items. Much

faster or slower times were simulated given the time intensities of the items. For
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half of the test items, aberrant RTs were generated from a lognormal distribution

with the mean equal to the average item time and 3 times the average standard

deviation of the RTs. The average test times for the aberrant RT patterns were

similar to those for the nonaberrant RT patterns. This corresponds to the strategy

that a test taker might know the average time to complete the test but not the aver-

age time to complete each item.

Test speededness or variant working speed. Test takers with an invariant working

speed will work with a constant level of speed. The assumption of conditionally

independently distributed RTs given working speed is violated when the working

speed is variant. This can occur when, for example, the test taker is not concen-

trating, has preknowledge of some items, or operates under higher time pressure

than others. In this second type of aberrant pattern, half of the test items were

answered much faster than expected under the lognormal model. For half of the

test items, working speed of (aberrant) test takers with a variant working speed

was simulated to be 1.5 standard deviations faster than the population average

working speed.

One extreme RT. Test takers are assumed to work with a constant speed, such that

the total test time is assumed to reflect the total amount of time required to pro-

duce all answers. The total test time will be biased when test takers are inter-

rupted or distracted while taking the test. When a test taker is taking a break

(e.g., getting coffee) and is not working on the test, the next observed RT will

not reflect the time spent on producing an answer. This will also bias the total

test time. In this third condition, extreme RTs were simulated from a lognormal

distribution with a mean equal to at least twice the maximum time intensity of the

items in the test. Each aberrant RT pattern consisted of only one extreme RT.

The detection and false alarm rates were investigated under the lognormal

model for the different types of violations. In this study, item parameters were

assumed to be known, but the working speed and other model parameters were

estimated from the data using the LNRT program. Note that the posterior uncer-

tainty in the model parameters was taken into account in the estimation of the test

statistics and the flagging of RT patterns. RT patterns were flagged to be aberrant

in different ways. First, following Equation 16, each test taker’s probability of a

flagged pattern was computed. Subsequently, the average posterior probability

was computed from the individual posterior probabilities of a flagged pattern,

thus representing the average posterior probability of flagged patterns in the pop-

ulation. Under the model, this average probability of flagged patterns represents

the Type I error. Furthermore, for RTs generated under the model, patterns were

approximately flagged to be aberrant with probability .05, when using the signifi-

cance level a ¼ :05. Second, patterns were flagged to be aberrant when the pos-

terior probability of an aberrant pattern was at least .80 or .90 (according to

Equation 16), which will be referred to as the classification probability.
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Comparing Three Statistics

Before looking into detail at the false alarm rates and detection for the various

conditions, the three statistics in Table 1 were compared. For data simulated under

the lognormal model, the classification probability of being assigned to the class of

patterns included in the estimation of item parameters (according to Equation 19)

and the probability of a flagged pattern (according to Equation 16) were computed

for the three statistics. In Figure 1, for each statistic, the probabilities of each pat-

tern are plotted against each other and a smoothing curve is drawn through the

points to represent the relationship. For the curve of lt and lt
s, patterns with a clas-

sification probability less than 5% are most likely to be flagged as aberrant, since a

significance level of 5% was used. Both statistics give a similar picture, and the

curves are almost equal. Therefore, it can be concluded that the approximate null

distribution of lt
s is nearly as accurate as the exact null distribution of lt.

The curve of the approximate null distribution of lt
z shows a shift to the left for

low classification probabilities. These posterior classification probabilities are

too conservative, which leads to lower probabilities of being flagged for lt
z com-

pared to lt. This makes lt
z not very useful for the detection of aberrant patterns.

For each RT pattern, a probability of being flagged and a classification prob-

ability are computed. In Figure 1, each point of the curve represents an RT pat-

tern. The location of the point in the curve shows whether it is a regular or a

suspicious pattern. The Type I error is equal to the expected probability of being

flagged in the population. Subsequently, patterns can be marked as aberrant with

a specific posterior probability, which represents the accuracy of making the

right decision. However, increasing the accuracy of correctly identifying an aber-

rant pattern is accompanied with a decrease in the probability of identifying all

aberrant patterns.

Since lt
z is not very useful for the detection of aberrant patterns and the approx-

imate null distribution of lt
s is nearly as accurate as the exact null distribution of lt,

attention will be focused on lt in the simulation study.

Model-Fitting Responses and Random Response Behavior

In Table 2, the false alarm rates and detection rates, averaged over 50 repli-

cated data sets, are given for the lt statistic for different sample sizes and for

model-fitting responses and responses with 5%, 10%, and 20% of the RT patterns

generated under random response behavior.

In the model-fitting condition, differences in false alarm rates were found. The

false alarm rate is slightly lower for a population size of 500 compared to a size of

1,000. When flagging patterns with a posterior classification probability of at

least .80, the false alarm rate is much lower than the results for the average pos-

terior probability flagging and decreases slightly more for a classification prob-

ability of .95. In that case, only the most extreme patterns are classified.
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With respect to aberrant response types, the aberrant patterns were

detected in all cases under all classification probabilities (under the heading

Aberrant in Table 2). Given the specifications of random response behavior,

the patterns were detected as significantly different from patterns that can be

expected under the model. When 5% was simulated to be aberrant, then this

5% was also identified in the population (under the heading Aberrant). Under

the different percentages, the percentage of aberrant patterns was still

detected in the population.

Test Speededness

In Table 3, detection rates are given for the lt statistic for different sample

sizes and responses simulated under test speededness or variant working speed.

In the same way, data sets were simulated with 5%, 10%, and 20% of the RT pat-

terns generated under test speededness, and patterns were flagged to be aberrant

with a significance level of .05.

For different percentages, with patterns showing test speededness, the detec-

tion rate is around .90 for a test of 10 items and approximately .99 for a longer

test of 20 items. The detection rates are only somewhat smaller when they are

computed using a classification probability of at least .80 or .90. In the worst

case of 20% aberrant patterns, the detection rate is around 77% of the simulated

aberrant patterns. When looking at the percentage of detections in the popula-

tion, slightly more patterns are flagged than the simulated percentage of aber-

rant patterns.

FIGURE 1. Classification probability versus probability of being flagged for the three dif-

ferent statistics (N ¼ 1,000, I ¼ 10).
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One Extreme Response

In Table 4, averaged over 50 replicated data sets, detection rates are given for

the lt statistic for different sample sizes and RT patterns including an extreme

response for the first item. The detection rates are somewhat acceptable when only

5% of the patterns include an extreme response. When the test length increases, the

detection rates decrease, since it becomes more difficult to identify the longer RT

patterns with just one extreme RT. When the sample size increases, the detection

rates also increase. A distortion in detection rates became visible when the percent-

age of aberrant patterns increased. In that case, the measurement error variance

increased, which simply adjusted the range of possible RTs. Thus, the variability

in RTs for the first item was increased by an increase in the estimated measurement

error variance for the first item. The detection rates were much better when the

extreme response was randomly assigned across patterns to one of the test items.

In Figure 2, the receiver operating characteristic (ROC) curves of the lt test

illustrate the performance for artificial data generated for 1,000 students and

10 items, where 10% of the students show aberrant behavior on 5 items. The

x-axis, referred to as the false alarm rate, represents the percentage of incorrectly

identified aberrant RT patterns and the y-axis, referred to as the hit rate (i.e., sen-

sitivity), represents the percentage of correctly identified aberrant RT patterns.

For the left plot, random RTs were generated for 5 items, where the variability

in random RTs was equal to or 1½ or 2 times larger than the variability in RTs

generated under the lognormal model. It follows that for small threshold values,

accurate decisions can be made when the variance of random RTs is larger than

the variance of the model generated RTs. In that case, with a significance level of

.1, more than 80% of the patterns can be correctly classified.

For the speededness condition, the performance of the lt test was less good. In

this condition, 10% of the students worked slower on the first 5 items. Their speed

levels were one, two, or three standard deviations lower compared to the last

5 items of the test. An increase of one standard deviation in working speed means

for a student who was working with a population average speed level increased

his or her speed level to work faster than 84% of the students in the population.

It follows from the ROC curves that even in the extreme situation, only 75% of

the RT patterns of students who increased their speed levels with three standard

deviations were detected, given a false positive rate of less than 10%.

The difference in test performance between the two conditions can be

explained by the fact that the two conditions, random RTs and speededness,

induce misfit at different levels of analysis. The condition random RTs induce

a misfit at the level of observations, and the lt test is designed to detect misfits

at this level. The speededness condition implies a violation at the level of stu-

dents, since students were assumed to work with a constant speed level. Thus,

the lt test can only pick up the implied residual deviations due to a change in

working speed at Level 2, and this decreased the performance of the test.
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Real Data Example

The data of Wise, Pastor, and Kong (2009) was investigated using the lt

person-fit statistic. The data set included 329 test takers who each answered

65 items of a computer-based version of the Natural World Assessment test

(NAW-8). This test is used to assess the quantitative and scientific reasoning

proficiencies of college students. Wise et al. tried to identify item and exam-

inee characteristics to identify rapid guessing behavior of test takers with

motivation problems. van der Linden (2009) investigated the data for a pos-

sible collusion between RT patterns of test takers. However, the main pur-

pose of this study is to investigate the extremeness of RT patterns under

the general lognormal RT model using the proposed person-fit statistic. This

example will illustrate the ease of computing person-fit statistics, given RT

patterns and further relevant quantities.
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FIGURE 2. The receiver operating characteristic (ROC) curve of the lt test for simulated

data (1,000 persons, 10 items) with 10% aberrant (response times) RTs according to

degrees of random RTs (left subplot) and speededness (right subplot).
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First, the lognormal RT model was fitted using 15,000 MCMC iterations and

5,000 iterations as the burn-in. The average time intensity was around 2.70 on a

logarithmic scale (around 14.88 seconds), with a posterior standard deviation of

.08. The variability in time intensities was around .39. The variability in test

takers’ working speed was around .08, where the average level of working speed

in the population was fixed at 0. So most of the variability between RTs was

explained by the differences in time intensities.

For each test taker, a person-fit statistic value of lt and posterior probability of

the extremeness of the RT pattern was computed. In Figure 3, the estimated sta-

tistic values (x-axis) are plotted against the posterior probability of significance.

The statistic values were assumed to be w2 distributed with 65 degrees of free-

dom, which marks the point of an observing statistic value with 50% probability.

When considering a significance level of .05, estimated statistic values higher

than 84.82 were located in the critical region. The estimated number of aberrant

patterns was around 20%, which means that one of the five patterns was flagged

as aberrant, and when including variable time discriminations around 34% was

identified as aberrant. The students in the test had no stakes whatsoever in the

test and were not motivated to give their best effort. Wise et al. (2009) estimated

the proportion of rapid guessing to be around 10%. Around 25% of the students

showed rapid-guessing behavior on more than 10% of the items. However, only

7% of the rapid-guessers were also flagged by the lt test. Our test accounts for

variable working speed and item characteristics, where the diagnostic of Wise

et al. is based on a known item time threshold to identify rapid guessing. Further-

more, other types of aberrant response behavior might be responsible for the 20%
RT patterns that were flagged in this study.

This study stresses the importance to identify noneffortful responses, which

would otherwise undermine the success of low-stakes achievements tests. A

good test is of little value when students are not willing to cooperate and to put
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FIGURE 3. Natural world assessment (NAW)-8 test; estimated statistic values and corre-

sponding posterior significance levels.
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effort in their work. Therefore, it is important to have a person-fit test for RTs

that can be used to check patterns and to identify aberrant response behavior.

Discussion

The response behavior of test takers needs to be checked in order to assess the

quality of tests. Aberrant response behavior will bias the test results, represented by

biased parameter estimates and incorrect statistical inferences. RT patterns can be

checked by evaluating the residuals, given a model that explains the variability of

patterns of a population of regular test takers. As an analogue to the likelihood-

based statistic in person-fit testing to evaluate response patterns, usually denoted

as lz, a likelihood-based person-fit statistic for RT patterns was proposed, denoted

as lt. In total, three versions of this statistic were considered: lt
z and lt

s have approx-

imately normal sampling distributions, and lt has an exact w2 distribution.

RT checks are meant to identify aberrant patterns, which can appear for several

reasons. The proposed checks can be used to flag patterns, and adjustments can be

made to flag items as well. Further investigations are required to analyze flagged

patterns more thoroughly using possibly additional information. Other types of

residual checks can be defined. For example, statistics based on residuals can be

used to investigate RT differences between groups of test takers. Item-specific

between-group differences in RTs can indicate differential item functioning; that

is, an item’s time intensity differs across groups. Between-group differences in

RTs can also indicate group-specific distributions of working speed.

More research is needed to include response information in the detection of

aberrant response behavior. The connection of RT patterns with patterns of accu-

racy (correct/incorrect) will certainly increase the power of detecting aberrant

behavior (van der Linden & Guo, 2008).

Appendix

The marginal distribution of the RT data is used to evaluate the fit of an RT pat-

tern. This lo statistic as defined in Equation 5 can be standardized to derive the

null distribution. The standardized version is denoted as lt
z, which requires the

computation of the expected value and the variance.

The lo follows from the independently normally distributed logarithm of RTs

as stated in Equation 6. Then the expected statistic value as a function of the RT

is given by:

E l0ð Þ ¼ E
P

i

T �
pi
�mpið Þ2
s2
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þ log 2�s2
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� �
 �
¼
P

i
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Tpi�mpi
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þ log 2�s2
i

� �
 �
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P
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E Z2
pi
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þ log 2�s2
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since the Zpi is standard normally distributed and the expected value of a squared

standard normally distributed variable equals one E Z2
pi

� 	
¼ Var Zpi

� �
¼ 1

� 	
.

The variance of the statistic value as a function of the RT is given by:

Var l0ð Þ ¼
P

i

Var
T�pi�mpi

si

� 	2

 �

¼
P

i

E
T�

pi
�mpi

si

� 	2

 �2

� E
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�mpi
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� 	2

 �
 �2

¼
P

i

E Z4
pi

� 	
� E Z2

pi

� 	� 	2

¼
P

i

3� 1ð Þ ¼ 2I :

ðA2Þ

The expected value of the fourth power of a standard normally distributed

variable follows from a variable transformation. Let y ¼ Z2
pi. Then,

E Z4
pi

� 	
¼ E y2ð Þ, which can be expressed as a g distribution with shape Para-

meter 5/2 and scale Parameter 2. The value 3 follows from the fact that the g den-

sity integrates to 1 over the range of positive numbers.
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