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The present study concerns a Dutch computer-based assessment, which includes an assessment
process about information literacy and a feedback process for students. The assessment is con-
cerned with the measurement of skills in information literacy and the feedback process with
item-based support to improve student learning. To analyze students’ feedback behavior (i.e.
feedback use and attention time), test performance, and speed of working, a multivariate hier-
archical latent variable model is proposed. The model can handle multivariate mixed responses
from multiple sources related to different processes and comprehends multiple measurement
components for responses and response times. A flexible within-subject latent variable struc-
ture is defined to explore multiple individual latent characteristics related to students’ test
performance and feedback behavior. Main results of the computer-based assessment showed
that feedback-information pages were less visited by well-performing students when they re-
late to easy items. Students’ attention paid to feedback was positively related to working speed
but not to the propensity to use feedback.

Different advantages of computer-based assessment (e.g.,
improved reliability, adaptive testing, use of multimedia tech-
nology) have been exploited the last 2 decades (e.g., van der
Linden & Glas, 2010). Recently, the possibility of providing
students instant feedback has been further explored. Dif-
ferent computer-based assessment studies have investigated
the effects of feedback on student learning (e.g., Hattie &
Timperly, 2007; van der Kleij, Eggen, Timmers, & Veld-
kamp, 2012). Individual homogeneity in the use of feed-
back is generally assumed, but it can be expected that stu-
dents differ in their feedback use. For example, Timmers &
Veldkamp (2011) showed that the attention paid to feedback
differs over students, where student characteristics such as
study motivation and a positive attitude may influence the
time spent reading feedback (Aleven, Stahl, Schworm, Fis-
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cher, & Wallace, 2003; van der Kleij, Eggen, & Timmers,
2011). Heterogeneity in feedback use should be taken into
account to obtain accurate effects of feedback on student
learning. Furthermore, differential effects of feedback on
student learning can be studied by conditioning on feedback
behavior.

In the present computer-based assessment study, 1st-year
bachelor students of a university of applied sciences could
consult elaborate feedback after completing an information
literacy test. After they finished the test, a knowledge-of-
result page was automatically generated, which showed the
correctness of each response and links to pop-up pages with
additional feedback per item. Each feedback page showed
the correct response and an explanation of various concepts
used in the item and answering categories. Besides the re-
sponses and response times to the test items, the system
stored whether or not a pop-up page was opened. Further-
more, the time from opening to closing a pop-up page was
also recorded.
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The assessment is carried out to measure students’ profi-
ciency level and to identify where specific deficiencies exist.
When missing skills are identified, relevant feedback can
be provided to help students build necessary skills. This is
arranged by the process that generates feedback using an in-
formation retrieval system (e.g., Cool & Belkin, 2011), where
students can obtain relevant information by clicking through
the system.

The information retrieval system supports information-
seeking behavior of the student, where the object is to satisfy
the information need of the student. However, it contains all
stored feedback information for all students, and optionally
with a search engine such as Google, an enormous amount of
feedback can be provided. This makes it difficult for students
to obtain easily relevant feedback information. Furthermore,
although assessment results may show a lack of knowledge,
the explicit information needs can still be vague. Interpreta-
tion problems with the obtained assessment results can also
complicate the search for relevant feedback.

To better understand students’ information-seeking be-
havior, implicit feedback measures such as click-through
rates and pop-up opening times are observed. The idea is
that by learning about preferences of students using an in-
depth analysis of students’ seeking behavior, the efficiency
and accuracy of the system’s feedback information can be
further improved and used to individuate system responses.
Therefore, a latent variable modeling approach is carried out
to analyze students’ seeking behavior using implicit feed-
back measures: (a) feedback use given click-through data
and (b) attention given the pop-up opening times. It is typ-
ically assumed that students open feedback pages that are
relevant and time spent viewing a page reveals the time to
process the feedback information and the selective attention
of the students.

Although seemingly easy to monitor, implicit feedback
observations are difficult to interpret and potentially ambigu-
ous. Therefore, latent variables are used to model unobserved
within- and between-student heterogeneity in feedback use
and attention time, to estimate variance components, and to
account for measurement error. Furthermore, latent variables
feedback use and attention are related to the assessment mea-
surements ability and working speed to explore and validate
the usefulness of the feedback behavior measurements in
providing relevant feedback information.

The proposed Bayesian joint modeling framework cap-
tures the cross-classified structure of the data, where two
different levels can be defined because responses are nested
in persons and items. This approach is based on recent work
in joint modeling of item responses and response times (e.g.,
Fox, 2010; Klein Entink, Fox, & van der Linden, 2009; van
der Linden, 2007; C. Wang, Chang, & Douglas, 2013; T.
Wang & Hanson, 2005). In the present approach, four dif-
ferent measurement models are considered for four differ-
ent latent variables using different observed response types.
A joint modeling approach is pursued, where item obser-

vations are clustered within latent variables. Subsequently,
the four latent variables are assumed to be multivariate
normally distributed and allowed to correlate within the
student.

The item characteristics of the measurement models are
also allowed to correlate. For example, item thresholds re-
lated to feedback use may correlate with thresholds related
to student achievement and also with time intensities related
to speed of working. As a specific case, item difficulties can
be negatively correlated with thresholds for feedback use,
which indicates that difficult items induce positive feedback
behavior.

Note that the joint model can handle multiple different
types of responses, which are collected for each student from
both processes. The assessment data consist of discrete test
scores and continuous response times, which are indicators of
ability and speed of working, respectively. The feedback be-
havior data represent click-through data and attention times
and an indicator variable is defined indicating the use or dis-
use of feedback. This supports a manifest mixture modeling
approach such that the feedback behavior data are condition-
ally modeled on feedback use.

The article is organized as follows: After the description of
the multivariate measurement model, a Markov chain Monte
Carlo (MCMC) algorithm is proposed, which represents the
sampling steps related to the different measurement com-
ponents. A small simulation study illustrates the parameter
recovery of the algorithm. Subsequently, the model is applied
to the Dutch feedback data. Finally, the last section provides
a discussion and outlines directions for further research.

STUDENT PERFORMANCE AND FEEDBACK
BEHAVIOR

The computer-adaptive process consists of two stages. In
stage one, students are assessed and test results are used to
construct a knowledge-of-results page. This page contains
links to additional feedback information such that students
can search and retrieve elaborate feedback information from
the system. In this second stage, the system, which provides
the feedback, can be informed about students’ feedback-
seeking behavior.

The click-through data consisting of zeros and ones, items
for which feedback is not and is consulted, respectively, are
indicators of the latent variable feedback use. This latent
variable represents the propensity of consulting feedback.
For each item, the time that an elaborated feedback page
is opened is considered the reading or attention time and is
used to measure the latent variable attention. The attention
times relate to the ability to attend and to process specific
information and to discard irrelevant information. This
corresponds to the psychological concept of executive
attention, which governs selected actions and order of the
actions. Students with high attention levels can more easily
focus on specific shortcomings and process the feedback
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FIGURE 1 Computer-based assessment with automatically generated feedback: a schematic overview of the joint hierarchical modeling framework (solid
lines).

information, and they show lower attention times than those
with low attention levels.

The processes are displayed in Figure 1. The left-hand
side shows the latent variable framework concerning the as-
sessment, where ability and working speed are underlying
the test results. The test results are used to generate feed-
back information, where links are given to more elaborate
feedback. Students are given the opportunity to search the
information retrieval system. The click-through data and at-
tention time data are stored as implicit feedback observations,
which represent students’ feedback behavior. The attention
times are conditionally modeled on positive feedback use
observations.

The latent variable framework is meant for an exploratory
analysis, where interest is focused on between-student con-
struct variability and relationships between constructs. First,
it is investigated to what extent students seek information
when they are invited to use the information retrieval system.
Subsequently, interest is focused on the difference in inten-
sity to search feedback between low- and high-performing
students. Furthermore, attention levels of high-performing
students and low-performing students are compared. Sec-
ond, the variability in student feedback behavior (i.e., feed-
back use and attention) is explored to investigate differences
in the use of automatically generated feedback and whether

student ability and working speed influence feedback behav-
ior. The developed information retrieval system is probably
not the optimal support tool for all students. Therefore, it
is investigated who are actively searching for relevant feed-
back. It might also be possible to identify atypical individuals
with respect to their ability, speed, and/or feedback behavior.
Third, interest is focused on the differential use of feed-
back given students’ overall test performance and working
speed. When feedback behavior correlates with student per-
formance, it can be expected that the feedback behavior can
be used to define more efficiently and accurately student-
specific feedback, which is represented via dotted lines in
the schematic overview in Figure 1. Then, in a more interac-
tive way, automatically generated feedback can be improved
by taking into account the feedback behavior of students.

MULTIVARIATE MULTILEVEL LATENT
VARIABLE MODELING

Each item, index k = 1, . . . , K , refers to a test item k but
also to its feedback page. A total of four observations are as-
sociated with item k: the response observation, feedback use,
time to solve the item, and the feedback attention time. The
four blocks of multivariate item response data are assumed
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to be indicators of four different latent variables all defined
at the person level. Student ability and speed of working are
measured using the assessment data consisting of discrete
binary responses and continuous response times.

In the proposed multivariate latent variable approach, it is
assumed that within-subject observations are conditionally
independently distributed given the latent variable. There-
fore, two item response theory models describe the distri-
butions of the binary responses related to the achievement
test and feedback items. Furthermore, two item response
time models define the distribution of the log response times
associated with the responses to the achievement test and
feedback items.

At a higher level, two covariance structures are defined
to model dependencies between the Level 1 model param-
eters. Within a student, the latent variable ability, speed of
working, feedback use, and attention are assumed to be cor-
related. The covariance structure is assumed to be common
across students. A speed-accuracy trade-off is assumed such
that accuracy is influenced when changing the speed of work-
ing (e.g., van der Linden, 2009). The constructs feedback use
and attention do not follow a trade-off, where attention times
are also conditionally modeled on feedback use. The task
of retrieving relevant information from a system requires
different skills, and different strategies are possible to suc-
ceed. For example, retrieving relevant information can be
accomplished by opening many feedback pages (high level
of feedback use) and detailed reading of the material (high
level of attention). It is also possible that an organized stu-
dent effectively opens relevant feedback pages (low level of
feedback use) and processes the relevant information quickly
(low level of attention).

A second covariance structure is defined at the level of
items. The item characteristics of the test items and the feed-
back items are assumed to be correlated. This means that
the item characteristics related to the test and speed perfor-
mances can correlate. An item characteristic analysis can be
used to explore relationships between item difficulties and
feedback thresholds. For example, characteristics of popular
feedback items can be related to specific test item characteris-
tics. Furthermore, the feedback-time intensities, representing
the average attention time, can be related to the item difficul-
ties and the feedback thresholds. The characteristics of items,
from response and response time information, that stimulate
feedback use are of interest. These items can be used to con-
struct a test that supports the use of feedback and/or feedback
learning.

Recently, survival models have been proposed to mea-
sure latent traits using response times (e.g., Ranger & Ort-
ner, 2011). C. Wang et al. (2013) proposed the general lin-
ear transformation model, which includes Cox proportional
hazards model and other parametric models, among others.
Bianconcini & Cagnone (2012) proposed a multivariate la-
tent growth model to analyze mixed multivariate individual
responses from different sources but all related to student

performance. This approach is based on the generalized lin-
ear latent variable model of Moustaki & Knott (2000) for
mixed responses in the exponential family. From a Bayesian
modeling and joint estimation perspective, it turns out to be
convenient to use the log-normal model for response times. In
the response time modeling literature, the log-normal model
for response times on test items is widely accepted, which
allows for a speed-accuracy trade-off and item-specific time-
intensive parameters (van der Linden, 2006).

Measurement Models Related to Ability
and Speed of Working

Let the person parameters of a student indexed i = 1, . . . , N ,
for ability and speed be denoted as θa

i and ζ a
i , respectively,

where the superscript a refers to the achievement test. The
two other person parameters, propensity to use feedback and
feedback attention, are denoted as θ

f
i and ζ

f
i , respectively,

where the superscript f refers to the feedback process.
Item response models are defined to measure the latent

variables ability and feedback use. For the achievement test
items, the probability of student i answering item k correctly
(Y a

ik = 1) is assumed to follow the three-parameter item re-
sponse model:

P
(
Y a

ik = 1 | θa
i , ak, bk, ck

)
= ck + (1 − ck)�

(
ak

(
θa
i − bk

))
, (1)

where �(.) denotes the normal cumulative distribution func-
tion and ak , bk , and ck the discrimination, difficulty, and
guessing parameters of item k, respectively.

For the feedback component, the probability that student i
opens item k’s feedback page (Y f

ik = 1) is assumed to follow
the two-parameter item response model:

P
(
Y

f
ik = 1 | θ

f
i , αk, βk

) = �
(
αk

(
θ

f
i − βk

))
, (2)

where αk and βk are the discrimination and threshold param-
eters of feedback item k, respectively. The two-parameter
model is used because guessing does not play a role in feed-
back use.

The response times are restricted to be positive. There-
fore, the log-response time of student i on item k of the
achievement test, denoted as T a

ik , is assumed to be normally
distributed:

T a
ik ∼ N (

hk − gkζ
a
i , σ

2(a)
k

)
, (3)

where hk and gk are the time intensity and the time discrimi-
nation parameters. The mean log-response time is a function
of the speed of working, which is represented by the latent
variable ζ a

i . An increase in working speed is represented by
an increase in the latent variable, which leads to a lower re-
sponse time. When the time intensity is increased the item
is expected to consume more time. The time discrimination
parameter makes it possible that, without violating the sta-
tionary speed assumption, a faster working student may need
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less time for an item than would be expected on the basis
of his or her speed of working. This effect corresponds to
the discriminative character of items between students with
different abilities.

Mixture Measurement Models Related
to Feedback and Attention

Observed attention times are fixed to zero for those items for
which feedback pages were not consulted. Therefore, atten-
tion times are conditionally modeled on observed feedback
use using a mixture model, which is represented by

p
(
Tik | ζ

f
i , λk, φk, Y

f
ik

) = P
(
Y

f
ik = 0

)
P (Tik = 0)

+ P
(
Y

f
ik = 1

)
p
(
Tik | λk, φk, ζ

f
i

)
.

Conditional on using feedback, the attention times are mod-
eled conditional on the propensity to use feedback, and the
time dealing with feedback is naturally restricted to be pos-
itive. In the same way, student i’s log attention time of item
k’s feedback, denoted as T

f
ik , is assumed to be normally dis-

tributed:

T
f
ik | Y

f
ik = 1 ∼ N

(
λk − φkζ

f
i , σ

2(f )
k

)
, (4)

where λk and φk are the time intensity and the time discrimi-
nation parameters of the feedback item k. The latent variable,
ζ

f
i , represents the student’s level of attention. The time inten-

sity parameter represents the average logarithm of attention
time when the student’s attention level equals zero. The time
discrimination parameter captures the variability in attention
times over items given a constant level of attention.

The mean structures in Equation (3) and Equation (4) are
defined in such a way that a high level of speed of working
leads to low response times and a high attention level leads
to low attention times.

The data augmentation scheme of Albert (1992) and
Albert & Chib (1993) was used to augment the binary re-
sponse observations with latent continuous responses Za

ik and
Z

f
ik . The augmented data are independently and normally dis-

tributed with variance one and truncated to be positive when
Y a

ik and Y
f
ik are greater than zero, respectively. This supports

a straightforward implementation of an MCMC algorithm,
where mean structure parameters can be easily sampled from
normal distributions (see Appendix). Given the augmented
data, the vector of normally distributed outcomes of student
i to test and feedback item k can be represented as⎡
⎢⎢⎢⎣

Za
ik

Z
f
ik

T a
ik

T
f
ik | Y

f
ik = 1

⎤
⎥⎥⎥⎦

∼ N

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

ak(θa
i − bk)

αk(θf
i − βk)

gk − hkζ
a
i

λk − φkζ
f
i

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 σ
2(a)
k 0

0 0 0 σ
2(f )
k

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ , (5)

when the student used the feedback of item k and did not
guess the response to test item k. The within-student out-
comes are assumed to be independently distributed given the
person parameters. Students might also guess. Therefore, a
latent response variable Sik can be introduced, which is equal
to one when the student i knows the response and zero when
the item is guessed correctly. In that case, the distribution
of Za

ik will depend on the value of Sik (e.g., Béguin & Glas,
2001; Fox, 2010).

To account for respondents who will not consult any of the
feedback pages, a mixture model is defined for the distribu-
tion of feedback-use data. Let the random variable Gi define
whether participant i belongs to the group who consult feed-
back by opening a least one feedback page (Gi = 1), referred
to as the feedback group, or will not open any of the feedback
pages (Gi = 0), referred to as the nonfeedback group. The
feedback-use data of respondent i are distributed as

p
(
yf

i | α,β, θ
f
i

) = P (Gi = 1) p
(
yf

i | α,β, θ
f
i

)
+ P (Gi = 0) p

(
yf

i = 0
)
. (6)

To avoid the complex modeling task, where the distribu-
tional parameters of continuous latent variables depend on
latent class parameters, a manifest mixture approach is pur-
sued. When at least one feedback page is consulted, student
i is classified to the feedback group with probability one.
Otherwise, student i is classified with probability one to the
nonfeedback group. As a result, the measurement parameters
related to feedback are based on observations from partici-
pants using feedback, where the measurement parameters
related to ability are based on all participant information.

Multivariate Model for the Person Parameters

At the level of students, the four person parameters
(θa

i , θ
f
i , ζ a

i , ζ
f
i ) are assumed to be multivariate normally dis-

tributed. A common mean μP and covariance structure is
assumed over persons �P . The components of the mean vec-
tor represent the average level of achievement, feedback use,
working speed, and attention in the population.

The diagonal terms of the covariance matrix �P are de-
noted as σ 2

θa , σ 2
θf , σ

2
ζ a , and σ 2

ζ f , respectively. Each component
describes the variation of a latent student characteristic in the
population. The nondiagonal terms represent the covariances
between the latent student characteristics. At Level 2, the
multivariate latent variable model for the person parameters
is represented by[ (

θa
i , ζ a

i

)t(
θ

f
i , ζ

f
i

)t

]
∼ N

([
μa

P

μ
f
P

]
,

[
�P11 �P12

�P21 �P22

])
, (7)

where μa
P and μ

f
P denote the latent population means of abil-

ity and speed of working and of feedback use and feedback
attention time, respectively. The covariance matrix �P is par-
titioned to define the covariance matrix of ability and speed,
�P11 ; the covariance matrix of feedback use and reading,
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�P22 ; and the covariance matrix between these two blocks,
�P12 .

Multivariate Model for the Item Parameters

A multivariate normal distribution for the item characteristics
is complicated due to the fact that the guessing parameters
are restricted to the interval [0, 1]. Therefore, define c̃k =
�−1(ck) such that c̃k is the normal deviate with �−1(.) the
inverse of the cumulative normal distribution function. The
monotone transformation function defines a real-valued c̃k in
a one-to-one correspondence with ck (Fox, 2010).

A multivariate normal prior distribution can be specified
for the set of item parameters of test and feedback item k;
that is,⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ak

bk

c̃k

αk

βk

gk

hk

φk

λk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼ N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μa

μb

μc̃

μα

μβ

μg

μh

μφ

μλ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣∣∣
τ 2
a σab σac̃

σab τ 2
b σbc̃

σac̃ σbc̃ τ 2
c̃

∣∣∣∣∣∣ . . . . . . . . .

. . .

∣∣∣∣ τ 2
α σαβ

σαβ τ 2
β

∣∣∣∣ . . . . . .

. . . . . .

∣∣∣∣ τ 2
g σgh

σgh τ 2
h

∣∣∣∣ . . .

. . . . . . . . .

∣∣∣∣ τ 2
φ σφλ

σφλ τ 2
λ

∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The four blocks represent the covariance structure of the
item characteristics of the four measurement models. The
first within-item block structure specifies the covariance be-
tween the item characteristics related to the test items for
measuring achievement. The other blocks correspond to the
measurement of feedback use, speed of working, and level
of attention, respectively. The elements within a block are
allowed to correlate but also between blocks. Although the
off-diagonal blocks were not specified in the aforementioned
equation, a full covariance matrix is assumed that allows for
within-block and between-block correlations.

The multivariate model for the parameters of item k can
be represented as the vector ξ a

k = (ak, bk, c̃k, αk, βk)t related
to the achievement test and ξ

f
k = (gk, hk, φk, λk)t related to

the feedback test. Subsequently, the vectors are multivariate
normally distributed,

[
ξ a

k

ξ
f
k

]
∼ N

([
μa

I

μ
f
I

]
,

[
�I11 �I12

�I21 �I22

])
, (8)

where μa
I and μ

f
I denote the item parameter population

means of the component ability and the component feedback,
respectively. The covariance matrix of all item parameters,
�I , is partitioned to define the covariance matrix of the item
parameters for the ability part, �I11 ; for the feedback part,
�I22 ; and the covariance matrix between the two blocks, �I12 .

The covariance structure can provide meaningful insights.
It may be expected that easy items require less time to be
solved than more difficult items. Then, the time intensity
parameter correlates positively with the item difficulty pa-
rameter of the test item. The relationship between the item
characteristics of feedback use and times may show a posi-
tive relation between time intensity and difficulty. But cross-
correlations with the characteristics of the test items are also
possible. The guessing parameter of the response model for
the test items has no analogous parameter in the other mea-
surement models (because there is no guessing aspect for
response time or feedback use).

Model Identification and Parameter Estimation

The joint model representing the measurement of four la-
tent variables together with a higher level latent covariance
structure can be characterized as a multivariate Response
Time Item Response Theory (RTIRT; Klein Entink et al.,
2009; van der Linden, 2007). Two blocks (assessment and
feedback component) of responses and response times are
modeled, which leads to the multivariate extension of the
RTIRT model.

The multivariate latent variable model is identified by fix-
ing the latent multiple scales. In the present approach, the co-
variance matrix of the latent person parameters is restricted,
where the variance parameter of ability and of feedback use
is set to one. The variance restrictions identify the variance
of the ability and feedback-use scale. It is also possible to set
each product of discriminations equal to one. For each scale,
the sum of the item difficulties are set to zero to identify the
mean of each scale.

The mean population level of speed of working and of
reading is set to zero. Furthermore, for each response time
model, the product of time discrimination parameters is set
to one to identify the variance of the scale. The total set of
restrictions identifies the metric of the four different scales.
The four latent scales are linked using a joint estimation
procedure.

MCMC is used to estimate the model parameters. A sum-
marized description is given in the Appendix. The scheme
contains the full conditional posterior distributions from
which samples are drawn consecutively. References are given
to well-known sampling steps.

The MCMC algorithm is programmed in R and is freely
available via the authors’ website. In the program, the
inverse-Wishart hyperprior for the covariance parameters
(�P and �I ) has a diagonal scale parameter and minimum
degrees of freedom. The normal hyperpriors for the mean
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parameters (μP and μI ) have zero means. The hyperpriors
for the discriminations and time discriminations have a mean
of one. Large variances are specified, which represent vague
prior information.

PARAMETER RECOVERY STUDY

A simulation study was performed to investigate parameter
recovery and sample size sensitivity. Different simulation
conditions were considered, where special focus was thereby
on the accuracy of the covariance between person parameter
estimates.

Item parameters were simulated from independent normal
distributions, where all discrimination and time discrimina-
tion parameters were drawn from an N (1, .10) distribution
and all difficulty and intensity parameters from a standard
normal distribution. The guessing parameters for the mea-
surement model for ability were all set to zero in this simu-
lation.

Each set of person parameters, (θa, ζ a, θf , ζ f ), were gen-
erated from a multivariate normal distribution with μP = 0
and correlation matrix

�P =

⎡
⎢⎢⎣

1 0 ρ1 ρ2

0 1 0 0
ρ1 0 1 ρ3

ρ2 0 ρ3 1

⎤
⎥⎥⎦ . (9)

Zero to moderate correlations were specified and data
sets of moderate size were generated and correspond to the
setting of the real data study. Despite the moderate data sam-
ples, it is shown that still reasonably accurate parameter esti-
mates were obtained. Therefore, different correlation struc-
tures were simulated using the restriction ρ1 = −ρ2 = −2ρ3

with ρ1 = 0 and ρ1 = −.50. Subsequently, generated item
and person parameters were used to simulate responses, re-
sponse times, feedback use, and feedback times. This was
done for K = 10 and K = 20 items and for N = 300 and
N = 500 persons. For each combination, 50 replications
were generated.

The MCMC algorithm was run for 3, 000 iterations and
the first 500 draws were discarded as the burn-in period.
In Table 1, the estimated correlations (ρ1, ρ2, ρ3) and stan-
dard deviations are presented. As can be seen from Table
1, the simulated correlations are accurately estimated under
different conditions. Also, the estimation of item and per-
son parameters was investigated and showed a good corre-
spondence between simulated and estimated parameters (not
shown for reasons of space requirements).

COMPUTER-BASED ASSESSMENT:
MODELING FEEDBACK BEHAVIOR

At a Dutch university of applied sciences, a computer-based
assessment of 23 items was used to measure information
literacy of 1st-year bachelor students of Law (N = 218),

TABLE 1
For Different Design Conditions, Estimated

Correlations Between Person Parameters and
Standard Deviations Averaged Over 50 Replications

ρ1 ρ2 ρ3

K N True EAP SD True EAP SD True EAP SD

10 300 .00 .00 .04 .00 .00 .04 .00 .01 .04
500 .00 .03 .00 .04 −.00 .04
300 −.50 −.45 .05 .50 .47 .06 −.25 −.24 .05
500 −.47 .03 .45 .06 −.22 .05

20 300 .00 .00 .04 .00 .00 .03 .00 −.01 .04
500 .00 .02 .00 .02 .00 .03
300 −.50 −.47 .03 .50 .45 .05 −.25 −.22 .05
500 −.47 .02 .48 .05 −.24 .04

Note. True denotes the simulated value, EAP the Expected a Posteriori
estimate, and SD the standard deviation.

Health (N = 151), and Business Administration (N = 241).
The information literacy represents the ability to identify
information needs such as locating corresponding informa-
tion sources, extracting and organizing relevant information
from each source, and synthesizing information from differ-
ent sources (Walraven, Brand-Gruwel, & Boshuizen, 2008).
An incomplete test design was used, where the selected Law,
Health, and Business Administration students completed 15,
20, and 15 items of the test, respectively. At the start of
the assessment, a brief instruction was given and a written
instruction was also handed out. Almost every student com-
pleted the test within 45 min, and after this time students
were allowed to leave the examination room.

After finishing the test, students obtained a knowledge-of-
results page showing which items were answered correctly
and which were not. Then, students were allowed to use
the information retrieval system and to open links to more
elaborate feedback pages.

A total of 41% of the students did not consult any of the
feedback pages and were classified to the group of nonfeed-
back users (Gi = 0) according to Equation (6). The response
data of the other 59% of the students (Gi = 1) concern-
ing feedback use were used to estimate the item character-
istics and person parameters. The parameters of the joint
model were estimated using MCMC, where a run of 15,000
iterations was made, with a burn-in period of 5,000 itera-
tions. Well-known MCMC convergence criteria such as the
Gelman-Rubin diagnostic, the Geweke diagnostic for sta-
tionarity, the Heidelberger-Welch stationarity and run-length
diagnostic, and the Raftery-Lewis run-length diagnostic (all
defined in the R-package CODA) showed acceptable results.

The data were not sufficient to support stable item discrim-
ination and time discrimination estimates. Note that around
41% of the students did not consult feedback, which se-
riously reduced the total amount of data information con-
cerning the time discrimination parameters. Therefore, the
discrimination and time intensity parameters were restricted
to be common across items. Furthermore, the model was
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identified by restricting the mean of the item difficul-
ties/thresholds to zero in each measurement model.

Posterior predictive checks for Bayesian item response
models were used to evaluate the fit of the different item re-
sponse model components (e.g., Fox, 2010; Levy, Mislevy, &
Sinharay, 2009; Li, Bolt, & Fu, 2006; Patz, Junker, Johnson,
& Mariano, 2002; Zhu & Stone, 2011). Comparable poste-
rior predictive checks were used to assess the fit of response
time models (e.g., van der Linden, 2006; van der Linden,
Klein Entink, & Fox, 2010). When considering the person-
fit analysis, a discrepancy measure of replicated sum-scores
versus observed sum-scores was used. Only 2 students had an
extreme p value, using over 1,000 replicated data sets under
the model. One person had a p value of .979, which implies
an overprediction by the model. Upon inspection this person
had only two items correct. The other person’s score was
slightly underpredicted. This person scored all items correct
and had a p value of .021. The average p value for the response
model was .41. This, together with only two extreme obser-
vations, indicates a reasonable model fit. For the feedback
response model the fit was even better because there were no
extreme p values at all, and the average p value was .40. A
graphical analysis of model fit for both response time mod-
els, using a qq-plot for each item, showed no serious model
deviations.

For the joint data analysis with a common covariance
structure for the feedback and nonfeedback group, the covari-
ance between ability and speed of working was less than .01.
However, when modeling a group-specific covariance struc-
ture (feedback and nonfeedback group), a significant positive
covariance was found between ability and speed of working
for the feedback group (σθaζ a = .10) and a significant nega-
tive covariance for the nonfeedback group (σθaζ a = −.11). In
the feedback group, high-performing students worked faster
than less performing students. In the nonfeedback group,
high-performing students took their time to maximize their
results and worked more slowly than less performing stu-
dents. Due to this difference in strategy, the covariance struc-
ture between latent variables was defined to be group specific.

In Table 2, the posterior mean item difficulties (bk) and
time intensities (hk) are given under the headings “Ability”
and “Speed,” respectively. Under the headings “Use” and
“Attention,” the posterior means of the item thresholds (βk)
and time intensities (λk) of the feedback behavior assessment
are given, respectively. The number of observations and the
posterior standard deviations vary across items because an
incomplete test design was used. The most difficult items of
the information literacy test are related to low threshold val-
ues concerning feedback use, which shows that the feedback
pages of difficult items are more often consulted than those
of easier items. Students most often consulted feedback of
items that were answered incorrectly, which were also the
more difficult items.

Some of the most difficult items (1, 15, 16, and 18) took
apparently on average less time to solve because the cor-

TABLE 2
Item Difficulty and Time Intensity Estimates of the
Information Literacy Test, and Item Threshold and
Time Intensity Estimates of the Feedback Behavior

Assessment

Information Literacy Feedback

Ability (bk) Speed (hk) Use (βk)
Attention

(λk)

Item M SD M SD M SD M SD

1 .56 .06 −.27 .27 −.61 .08 −.08 .23
2 −.11 .05 .54 .26 −.33 .08 .25 .23
3 −.26 .05 −.00 .30 .07 .09 .26 .24
4 .02 .05 −.06 .36 −.19 .08 .12 .23
5 −.17 .06 .12 .27 .14 .10 −.07 .26
6 −.03 .05 .17 .27 .20 .09 −.05 .24
7 −.16 .05 .73 .23 .05 .09 .05 .23
8 .10 .05 −.71 .25 −.03 .09 −.11 .24
9 −.24 .07 .72 .34 .30 .10 .17 .26
10 −.48 .05 −.11 .25 .45 .09 .03 .25
11 .16 .05 −.07 .24 .01 .09 .04 .24
12 .07 .05 .18 .25 −.02 .09 .02 .24
13 .10 .05 −.12 .27 −.10 .08 −.26 .24
14 −.35 .06 −.15 .30 .05 .10 −.06 .24
15 .52 .09 −.32 .43 −.54 .12 .12 .25
16 .32 .07 −.35 .28 −.44 .10 .39 .23
17 −.37 .07 −.28 .28 .27 .10 −.24 .25
18 .36 .10 −.13 .47 .05 .13 .14 .27
19 .55 .11 .29 .57 −.18 .13 −.27 .26
20 −.55 .10 .19 .56 .35 .14 −.47 .28
21 .22 .10 −.27 .44 −.10 .13 −.17 .26
22 −.31 .10 −.26 .54 .27 .13 .31 .28
23 .03 .10 .18 .54 .33 .13 −.11 .27

responding time intensities are relatively low. Often more
difficult items require more time to complete (e.g., van der
Linden, 2007). However, the corresponding time intensi-
ties related to level of attention, λk , are relatively high,
which indicates that the average attention or processing time
was relatively high. On average the difficult items did not
appear to require more time to complete, but the correspond-
ing feedback pages were more likely to be consulted and led
to higher attention times.

The variability in attention thresholds shows that feedback
pages are associated with different processing times, and the
variability cannot be directly explained from the associated
difficulty or time intensity of the information literacy test
items. More research is needed to identify factors explaining
differences in attention times and their relationships with test
item characteristics.

The estimated population covariance matrix of item pa-
rameters given in Table 3, �I , shows the variation in item
parameters and their covariance structure. The item param-
eters vary almost equally in difficulty and time intensity.
Overall the item parameters do not correlate much because
the estimated covariances are around zero. It follows that the
highest nonzero covariance σbβ = −.07 (i.e., correlation of
–.13) between item difficulty and feedback-use threshold is
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TABLE 3
The Estimated Population Covariance Matrix of the

Information Literacy Test and Feedback Assessment
Parameters

Par. M SD

Information literacy, �I11

τ 2
b .57 .18

τ 2
h .72 .24

σbh −.02 .14
Feedback, �I22

τ 2
β .55 .18

τ 2
λ .57 .18

σβλ −.01 .12
Covariance, �I12

σbβ −.07 .12
σbλ .00 .12
σhβ .02 .14
σhλ .00 .14

not significant. In Figure 2, the item difficulties are plotted
against the feedback-use thresholds, which shows that the
most popular feedback pages (with the lowest thresholds)
correspond to the most difficult items.

In Table 4, the estimated mean population parameters are
represented for the group of students using feedback and
not using feedback. The average item difficulty and time-
intensity parameters were fixed to zero. For the feedback
groups, the average ability level in information literacy is
close to zero, which makes the test suitable for the sample
of students. The students of the nonfeedback group score on
average lower, with an average value of –.11. The difference
in average latent scores is significantly different from zero,
where the 95% HPD (Highest Posterior Density) interval

FIGURE 2 Item difficulties of the information literacy test against the
item thresholds of using feedback.

TABLE 4
The Estimated Population Means and Covariance

Matrix of the Group of Students That Used Feedback
and Did Not Use Feedback

Feedback Use No Feedback Use All

Par. M SD Cor M SD Cor Cor

μa
P μθa 0.04 .03 −.11 .04

μζa −3.85 .03 −3.67 .04

μ
f
P μθf −.46 .04 –

μζf −2.21 .04 –
�P11

σ 2
θa .16 .02 1 .19 .02 1 1

σ 2
ζ a .19 .02 1 .33 .03 1 1

σθaζa .02 .01 .10 −.03 .02 −.11 .01
�P22

σ 2
θf

.44 .05 1 0 0 0 1

σ 2
ζf

.33 .04 1 0 0 0 1

σθf ζf −.04 .02 −.08 0 0 0 −.04
�P12

σθaθf −.04 .02 −.14 0 0 0 −.09
σθaζf −.02 .02 −.09 0 0 0 −.08
σζaθf −.03 .02 −.10 0 0 0 −.08
σζaζf .04 .02 .15 0 0 0 .10

Note. Par. denotes the parameter, and Cor denotes the correlation.

equals [.067, .242] and excludes zero. As a result, the average
performance of students who consulted at least one feedback
page is higher than those who did not consult any of the
feedback pages.

The average level of working speed is around –3.85 and
–3.67, which means that the expected response time is around
exp(3.85) = 47 and exp(3.67) = 39 s for the feedback and
nonfeedback group, respectively. For the feedback group, the
average propensity to use feedback is –.46, which leads to
the average probability of 32% of opening a feedback page.
The average level of attention equals –2.21, which leads to
an average time of exp(2.21) = 9.12 s of processing item’s
feedback information.

The population covariance components of the feedback
group and the nonfeedback group show that the relationship
between ability and speed of working parameter differs over
both groups. For the feedback group, there is positive cor-
relation of .10 between ability and speed of working, which
means that the more able students work faster. For the non-
feedback group, the relationship is negative with a correlation
of –.11, where the able students work more slowly than the
less able students. The common correlation estimates under
the heading “All” show that the average relation between
working speed and ability is close to zero.

In Figure 3, for each student the estimated ability is plot-
ted against the speed of working, where filled circular dots
represent students from the feedback group. For the nonfeed-
back group, it can be seen that many less proficient students
worked faster than proficient students. They were also not
interested in any of the feedback pages and clearly showed a
lack of motivation, which could explain the differences.
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FIGURE 3 Student ability (information literacy) against speed of work-
ing for members of the nonfeedback and the feedback group (color figure
available online).

In Figure 4, in the left subplot student ability is plotted
against the student’s propensity of using feedback. The es-
timated correlation is σθaθf = −.14, and a pattern is visible
that shows that the more able students were less likely to con-
sult feedback. In fact, the high-ability students did not consult
feedback of correctly scored items. This linear relationship
was weakened due to the behavior of the less able students,
where some of them consulted almost all feedback pages and

FIGURE 4 Student ability against the student’s propensity of using feed-
back (left plot) and the feedback attention levels (right plot).

others consulted only a few pages. That is, some low-ability
students requested feedback for all incorrect answers and
others for only a few of the incorrect answers. Here, differ-
ences in study motivation could also explain the observed
differences in feedback behavior of low-ability students.

The right subplot shows student ability against the level of
attention. It can be seen that the reading times differ substan-
tially over students, where high-ability students took slightly
more time to process the feedback, σθaζ f = −.09. Students’
attention correlates negatively with students’ propensity to
use feedback, σθf ζ f = −.08. Students who were likely to
consult feedback took on average more time to process the
feedback information than students who were less likely
to consult feedback. Furthermore, the positive correlation
σζaζ f = .15 shows that the fast-working students also pro-
cessed the feedback information faster.

DISCUSSION

With the introduction of computer-based assessments, auto-
matic feedback systems can be developed to improve student
learning. Together with tests for learning using a formative
assessment, there are opportunities to provide feedback on
learning work in a constructive way. This comes with learn-
ing and assessment environments that are able to provide
student-specific feedback, preferably in an automatic way.
New advanced psychometric methods are required to handle
associated multiple sources of different types of data on stu-
dent learning and are capable of measuring student learning
and student feedback behavior. In this light, a multivariate
hierarchical latent variable model is proposed that provides
a way to combine student performance data with feedback
behavior data.

The proposed modeling framework can account for the
different sources of variation and different types of observed
data (i.e., discrete responses and continuous response times).
The total variation consists of variation due to the sampling
of persons and items and the nesting of responses and times
within persons and items. It is also shown that the latent
variable approach can handle incomplete test designs. Fur-
thermore, a manifest mixture distribution of the propensity
to use feedback can address the subset of students who are
not interested in any of the feedback pages.

In the present study, background information was not col-
lected. However, the joint model allows incorporation of
student-level variables to explain differences in test perfor-
mances and feedback behavior. This can be accomplished
by modeling the mean structure in Equation (7), which al-
lows multivariate modeling of the latent student variables.
In the same way, item-level information can be included in
Equation (8) to model differences in item characteristics.

A novel MCMC algorithm is developed to estimate si-
multaneously all model parameters given unbalanced mul-
tivariate mixed response data. At the level of observations,
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the incomplete test design leads to unbalanced response and
response time data, where students complete different sub-
sets of items. At the level of students, although finishing
the test, a subset of students did not open any of the feed-
back pages. This leads to an unbalanced multivariate latent
variable structure, which seriously complicates the sampling
of the covariance components. The entire covariance matrix
cannot be sampled at once and different blocks are sampled
in a stepwise way using properties of the multivariate normal
distribution. The drawn blocks constitute a new draw of the
entire covariance matrix as described in the Appendix.

The MCMC algorithm supports model evaluation via pos-
terior predictive checks. The posterior predictive checks de-
veloped by Sinharay, Johnson, & Stern (2006) can be used to
check the assumption of local independence. In this context,
van der Linden & Glas (2010) proposed lagrange multiplier
tests for different local independence assumptions of the re-
sponse time item response model.

The item characteristics can be informative in different
ways for different applications. The construction of informa-
tive feedback can be improved when using the item charac-
teristic information. Feedback items with high time-intensive
parameters can identify elaborate feedback pages, which
are difficult to comprehend but reflect relevant information.
These feedback pages can be adjusted to make the displayed
material more easily accessible for students. In an adaptive
test situation, the automatically generated feedback informa-
tion can also be adaptive. For example, proficient students
may be offered more profound feedback information than
less proficient students based on their test results and the
characteristics of the feedback items. When test items are
constructed according to a rule-based item design (Geerlings,
Linden, & Glas, 2013) or by means of item cloning (Geer-
lings, Glas, & van der Linden, 2011; Glas & van der Linden,
2003), the items may adopt a specific learning strategy, for
example. Then, the related feedback information can support
the learning strategy and inform students in an adaptive and
stepwise way when this is required. One of the goals can be to
develop an intelligent tutoring system (Polson & Richardson,
1988), which encourages the students to diagnose their learn-
ing status (see also Rupp et al., 2012), to learn by assessment,
and to be assisted by an adaptive feedback system. Another
application area might be psychological assessment and di-
agnosis (Templin & Henson, 2006). However, more research
is needed to fully control the specification of automatically
generated feedback information.
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APPENDIX

Parameter Estimation

The following MCMC scheme is written in R, and the pro-
gram is available via the authors’ website. This MCMC
scheme accounts for the mixture distribution of feedback
use according to Equation (6). To ease the notation, without
explicitly mentioning that Gi = 1, the model parameters are
sampled given the data of the group that uses feedback (i.e.,
at least one feedback page is consulted).

RTIRT ability component. The first block of the
MCMC algorithm describes the sampling of the RTIRT
model parameters. In iteration m, the first step is defined as
the sampling of the latent explanatory values of ability and
speed, denoted as θ

a(m)
i and ζ

a(m)
i , respectively. These sam-

pling steps, and the steps for simulating the other RTIRT pa-
rameters, are completely described in van der Linden (2007);
Klein Entink, Fox, and van der Linden (2009); and Fox
(2010). However, the multivariate normal priors for the item
parameters and latent variables ability and speed of working
are different due to higher level correlation with parameters
of the feedback component.

The conditional normal prior p(θa
i , ζ a

i | θ
f
i , ζ

f
i ,μP ,�P )

follows from the multivariate normal prior distribution in

Equation (7),

θa
i , ζ a

i | θ
f
i , ζ

f
i ,μP ,�P

∼ N (
μa

P + �P12�
−1
P22

((
θ

f
i , ζ

f
i

)t − μ
f
P

)
,

�P11 − �P12�
−1
P22

�P21

)
. (10)

The prior for the item parameters can be deduced from the
multivariate normal prior in Equation (8). The multivariate
normal prior for the item parameters ξ a

k given ξ
f
k is given by

ξ a
k | ξ

f
k ,μI ,�I ∼ N (

μa
I + �I12�

−1
I22

(
ξ

f
k − μ

f
I

)
,

�I11 − �I12�
−1
I22

�I21

)
.

RTIRT feedback component. For the latent variable
θ

f
i , the conditional normal prior follows from the multivariate

normal prior distribution for the latent person parameters by
partitioning the mean μP and covariance matrix �P accord-
ingly. Let μθf and σθf denote the prior mean and variance
parameter of the conditional normal prior distribution for θ

f
i .

The conditional posterior distribution is normal,

θ
f
i | zf

i ,�P ,μP , θa
i , ζ a

i , ζ
f
i , ξf

∼ N
(
E

(
θ

f
i | zf

i

)
, V ar

(
θ

f
i | zf

i

))
,

with

E
(
θ

f
i | zf

i ,�P ,μP

) = (
(αtα)−1 + σ−1

θf

)−1

×
(
αt (zf

i + β) + μθf /σθf

)
and

Var
(
θ

f
i | zf

i ,�P ,α
) = (

1/αtα + 1/σθf

)−1
.

For the latent variable ζ
f
i , the conditional normal prior

also follows from the multivariate normal prior distribution
for the latent person parameters. Partition the mean μP and
covariance matrix �P and let μζf and σζf denote the prior
mean and variance parameter of the conditional normal prior
distribution for ζ

f
i . It follows that the conditional posterior

distribution is normal with parameters

E
(
ζ

f
i | yf

i , tfi ,�P ,μP , ξf
)

=
⎛
⎝∑

k|i
dik/φ

2
k + σ−1

ζ f

⎞
⎠

−1

×
⎛
⎝∑

k|i
dikφk(tfik + λk) + μζ f /σζf

⎞
⎠

and

Var
(
ζ

f
i | tfi ,�P ,φ

) =
⎛
⎝∑

k|i
dik/φ

2
k + 1/σζf

⎞
⎠

−1

.
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Note that the attention is conditionally modeled given feed-
back use where dik = 1 when Y

f
ik = 1 and zero otherwise.

The prior for the item parameters of the feedback com-
ponent can be deduced from the multivariate normal prior.
Therefore,

ξ
f
k | ξ a

k ,μI ,�I ∼ N (
μ

f
I + �I21�

−1
I11

(
ξ a

k − μa
I

)
,

�I22 − �I21�
−1
I11

�I12

)
,

Another partitioning can be made to define the conditional
prior for the item parameters (αk, βk) and (φk, λk). The item
parameters (αk, βk) are the coefficients of the regression of
zf
k on HI = (θf ,−1N ). It follows that this leads to a multi-

variate normal conditional posterior distribution for the item
parameters (αk, βk).

In the same way, the parameters (φk, λk) are the coeffi-
cients of the regression of T f

k on HI = (ζ f ∗,−1N
f
k

), where
N

f
k denotes the number of participants consulting the feed-

back to item k and ζ f ∗ the corresponding vector storing their
level of attention. This leads to a multivariate normal condi-
tional posterior distribution for the item parameters (φk, λk).

Sampling of covariance and mean population pa-
rameters. Sampling covariance parameters, �P , is car-
ried out in three sampling steps. Let 	a = (θa, ζ a) and �P11

has an inverse Wishart prior with N0 degrees of freedom
and scale parameter �0. The conditional posterior is defined
as

�P11 | 	a,μP ∼ inverse − Wishart (N + N0, S) , (11)

where S = ∑
i(	

a
i − μP )(	a

i − μP )t + �0.
The component �P12 is sampled as the regression parame-

ter in the regression of 	a
i on 	

f
i according to Equation (10)

given �P11 . A vague proper prior is defined for the covariance
component �P12 .

The component �P22 − �P21�
−1
P11

�P12 is the covariance

matrix of 	
f
i given 	a

i . A sample is drawn from the inverse
Wishart distribution with N + N0 degrees of freedom and

sale parameter

S =
∑

i

(
	

f
i −

(
μ

f
P + �P21�

−1
P11

(
	a

i − μa
P

)))

×
(
	

f
i −

(
μ

f
P + �P21�

−1
P11

(
	a

i − μa
P

)))t

.

The draws of �P12 and �P11 are used to compute
�P21�

−1
P11

�P12 , which is used to obtain a sample of the com-
ponent �P22 .

The covariance parameters of the item parameters, �I , are
sampled in three comparable steps. The covariance param-
eters of ξ a are sampled in the first step. In the second step,
the covariance parameters �I22 − �I21�

−1
I11

�I12 are sampled.
Finally, the covariance parameters, �I12 , are sampled that
specify the covariance structure between ξ a and ξf . The
posterior distributions can be derived in a way similar to the
covariance parameters of the person parameters.

The mean population parameters for item and person pa-
rameters, (μI ,μP ), are sampled from multivariate normal
distributions. Using a multivariate normal prior with mean
μ0 and variance parameter �0, the conditional posterior dis-
tribution of μP is given by

μP | z, t,	P ,�P

∼ N
(

	P N�−1
P + μ0�

−1
0

N�−1
P + �−1

0

,
1

�−1
0 + N�−1

P

)
, (12)

where 	P represents the vector of average latent variable
values across persons.

In the same way, the conditional posterior distribution of
μI is given by

μI | z, t,	I ,�I

∼ N
(

	IK�−1
I + μ0�

−1
0

K�−1
I + �−1

0

,
1

�−1
0 + K�−1

I

)
, (13)

where 	I represents the vector of average item values across
items.


