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Randomized response (RR) models are often used for analysing univariate randomized

response data and measuring population prevalence of sensitive behaviours. There is

much empirical support for the belief that RR methods improve the cooperation of the

respondents. Recently, RR models have been extended to measure individual unidimen-

sional behaviour. An extension of this modelling framework is proposed to measure

compensatory or non-compensatory multiple sensitive factors underlying the random-

ized item response process. A confirmatorymultidimensional randomized item response

theory model (MRIRT) is proposed for the analysis of multivariate RR data by modelling

the response process and specifying structural relationships between sensitive behav-

iours and background information. A Markov chain Monte Carlo algorithm is developed

to estimate simultaneously the parameters of the MRIRT model. The model extension

enables the computation of individual true item response probabilities, estimates of

individuals’ sensitive behaviour on different domains, and their relationships with

background variables. An MRIRT analysis is presented of data from a college alcohol

problem scale, measuring alcohol-related socio-emotional and community problems, and

alcohol expectancy questionnaire, measuring alcohol-related sexual enhancement

expectancies. Students were interviewed via direct or RR questioning. Scores of

alcohol-related problems and expectancies are significantly higher for the group of

students questioned using the RR technique. Alcohol-related problems and sexual

enhancement expectancies are positively moderately correlated and vary differently

across gender and universities.

1. Introduction

In sample surveys, it can be difficult to obtain reliable information on stigmatizing

or socially undesirable/unacceptable matters using the common direct questioning
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procedure. Direct questioning on sensitive matters often leads to refusals, non-responses,

or socially desirable answers. Warner (1965) developed the randomized response (RR)

technique to gather information on such sensitivematters by protecting the privacy of the

respondents. It is shown in several studies (e.g., Lensvelt-Mulders, Hox, van derHeijden,&
Maas, 2005) that the cooperation of respondents improved due to the RR technique. But

despite the evident usefulness of the RR technique, inferences from applications utilizing

it are limited to estimating population proportions. Further, the traditional RR models

(e.g., Greenberg, Abul-Ela, Simmons, &Horvitz, 1969;Warner, 1965) are only appropriate

for the analysis of univariate RR data, they do not account for individual response

probabilities, and they do not allow for heterogeneity across respondents. In many cases,

outcome data are multivariate or correlated, and it is appealing to model the individual

outcomes while taking account of the dependency structure.
To motivate the problem, questionnaire data to measure different psycho-social

dimensions of problem drinking among college students were collected on 793 students

from four colleges/universities in North Carolina. Furthermore, responses to alcohol

expectancy questionnaire items were collected, which measure alcohol-related sexual

enhancementexpectancies.Apartof theparticipantswerequestionedviaanRRtechnique

to investigatewhether this increases theaccuracyofself-reportsof sensitive informationon

thedifferent latentdimensions.Further, interest is focusedonrelationshipsbetween latent

factors, and their relationship with background variables (e.g., age, gender, racial origin).
Several attempts have been made to extend the class of RR models by modelling the

item response process and/or by including various sources of information such as

ancillary variables. Scheers andDayton (1988)model the relation between the population

proportion with the sensitive characteristic and covariate information. They showed that

the use of relevant covariate information improved the estimation of the population

proportion with the sensitive characteristic. B€ockenholt and van der Heijden (2007) and

B€ockenholt, Barlas, and van der Heijden (2009) proposed an item randomized response

model for multivariate dichotomous RR data that accounts for the possibility (1) that not
all respondents may follow the randomization instructions (say ‘no’ regardless of the

question), and (2) that respondents provide intentionally misleading answers to conceal

socially undesirable behaviour. Fox (2005) and Fox and Wyrick (2008) modelled

multivariate dichotomous and polytomous data with a randomized item response theory

(IRT) model that accounts for individual differences in the response process, and that

enables the computation of individual response probabilities, and the measurement of a

unidimensional underlying sensitive characteristic. De Jong, Pieters, and Fox (2010)

developed a mixture randomized IRT model for polytomous randomized responses.
The IRT modelling approach to RR data is generalized to measure multiple latent

sensitive characteristics together with relationships with background variables using a

structural multivariate regression model, given dichotomous or polytomous randomized

responses. The situation is considered in which multiple latent factors underlie the

manifest randomized responses in a compensatory or non-compensatory way. This study

extends the work of B€ockenholt and van der Heijden (2007), who proposed a between-

itemmultidimensional item randomized responsemodel for binary response data. In their

study, multiple item bundles are considered, where each item bundle is used tomeasure a
specific construct using the Rasch model in a non-compensatory way. At the level of

observations, responses are assumed to be conditionally independently distributed given

one of the factors. The present generalizationmakes it possible to handle also polytomous

randomized item responses, compensatory items when the response process involves

multiple constructs, and more advanced item response models that allow item-specific
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discriminations/loadings for multiple factors. A full Bayesian estimation procedure is

proposed which supports the joint estimation of all parameters, including the estimation

of all factor loadings. Here, themixturemodel component for dealingwith non-compliant

response behaviour will not be considered.
In the spirit of multidimensional confirmatory item-factor models, a Bayesian

multidimensional confirmatory IRT model is proposed for dichotomous and polytomous

data tomeasure and relate factors underlying the individual sensitive characteristics given

randomized response observations. The unobservable factors can be interpreted as a

combination of subscale components, or as compensatory or non-compensatory factors

that influence the item probabilities in a combined way. This modelling approach

connects with recent developments in multidimensional IRT research showing the

computational feasibility and increasing attention in the methodology (e.g., Chambers,
2010; Edwards, 2010; Reckase, 2009; Wirth and Edwards, 2007).

The proposed model consists of three components. At the first stage the multivariate

RR data are related to individuals’ response probabilities via an RR model. At the second

stage, the response process ismodelled by assuming amultidimensional IRTmodel for the

underlying true responses, which would have been observed if the responses had not

been randomized. This enables the measurement of individual response probabilities and

individual latent sensitive characteristics. At the third stage, the latent sensitive

characteristics are considered to be outcomes of a multivariate regression model. This
enables a marginal interpretation for the individual outcomes while appropriately

accounting for the dependency structure. The multivariate model has the advantage that

the dependency structure can be described parsimoniously in terms of correlation

coefficients of the underlying latent characteristics. That is, heterogeneity across

respondents and across groups can be properly modelled.

AMarkov chainMonteCarlo (MCMC) algorithm is developed to estimate all parameters

simultaneously. It is shown that the posterior computation can proceed through a Gibbs

samplingalgorithmusingauxiliaryvariables. Twoaugmentation steps facilitate a sampling-
based approach for estimating all model parameters simultaneously. First, discrete

variables aredefined that represent the true itemresponses thatwouldhavebeenobserved

without randomizing responses. The conditional distribution of the latent true item

responses given the randomized responses are derived via Bayes’ theorem. Second,

normally distributed latent variables are defined that are manifested as discrete true item

responses through a threshold specification. The developed algorithm generalizes the

procedure of Fox and Wyrick (2008) and De Jong et al. (2010) to deal with the

multidimensional IRT model and the structural multivariate latent variable component.
In the following the three-stage multidimensional randomized item response theory

model (MRIRT) model is presented. Then a general MCMC algorithm is described for

dichotomous and polytomous RR data. Different prior choices are discussed that lead to

proper posterior distributions. Then the posterior computations are illustrated with a

simulationstudy. Subsequently, adescription isgivenof the jointBayesianmultidimensional

IRTanalysisof theCollegeAlcoholProblemScaleandAlcoholExpectancyQuestionnaireRR

data with careful attention to the underlying factor structure. Finally, the pros and cons of

the newmodel are discussed and briefly comparedwith other approaches in the literature.

2. Modelling individual response probabilities

In general, the RR technique is used to estimate the proportion, p, of respondents
belonging to a sensitive class in the population. Horvitz, Shah, and Simmons (1967)
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proposed an unrelated question RR design that is based on two questions. One

provocative question is related to the sensitive characteristic, and the other unrelated

question refers to a non-sensitive innocuous attribute. Each respondent selects randomly,

by means of a randomizing device such as a die or spinner, one of the two questions and
answers it truthfully. The respondent does not tell the interviewer which question he has

selected to answer. If the population proportion of the non-sensitive characteristic is

known, and this is built into the randomizing device (see Boruch, 1971), the probability of

a positive response will be

n1=n ¼ p1pþ ð1� p1Þp2; ð1Þ

wheren1 (n1=n) is the number (proportion) of ‘yes’ answers reported byn individuals, and

p1 is the probability that the randomizing device selects the question related to the sensitive

characteristic. Subsequently,withprobability1 � p1, theunrelatedquestion is selectedand
with probability p2 a positive response is given. Note that parameters p1 and p2 are known

since they are specified by the randomizing device. Using equation (1), the proportion of

persons affirming or denying the intrusive item can be accurately estimated. De Schrijver

(2012) compared the forced response techniquewith the unrelated questioning technique

and concluded that the forced response technique was better understood.

For multivariate RR data, let the random variable Yi denote the observed randomized

responses and the randomvariableUi the true responses thatwould have been observed if

these responses had not been randomized. The distribution of observed randomized
responses relates to the distribution of true item responses according to the RR sampling

design; that is,

PðYiÞ ¼ PðYi1; . . .;YiKÞ ¼
Y
k

½p1PðUikÞ þ ð1� p1Þp2�: ð2Þ

The true individual response probabilities PðUikÞ will be modelled, which can improve

the estimate of the proportion with the sensitive characteristic in the population

depending on the available explanatory information. It will provide information at the

individual level since estimates of individual response probabilities can be obtained as
well as relationships with explanatory variables.

3. The model

3.1. Probit response functions

It will be assumed that a set ofK items are composed tomeasure amultidimensional latent

trait, hi, where hi ¼ ðhi1; . . .; hiQÞt . Let, hq, q = 1,…,Q, contain the traits of respondents

i = 1,…,N on dimension q. The true categorical outcome, Uik, represents the item

response of person ion itemk (k = 1,…,K). These item responsesmay be dichotomous or
polytomous. For dichotomous item responses a two-parameterQ-dimensional IRT model

is used to specify the relation between the level of a latent trait and the probability of a

particular item response; that is,

PðUik ¼ 1 j hi;Ak; bkÞ ¼ UðAt
khi � bkÞ ¼ U

�X
q

Akqhiq � bk

�
; ð3Þ

where Ak is the vector of item discrimination parameters or factor loadings, and bk is the

item difficulty parameter. The item parameters will also be denoted by nk, with
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nk ¼ ðAk; bkÞ. For polytomous item responses, the probability that an individual obtains a

grade c (c = 1,…,C) on item k is defined by a graded response model

PðUik ¼ cjhi;Ak; jkÞ ¼ UðAt
khi � jkc�1Þ � UðAt

khi � jkcÞ
¼ U

�X
q

Akqhiq � jkc�1

�
� U

�X
q

Akqhiq � jkc
�
; ð4Þ

where the boundaries between the response categories are represented by an ordered

vector of thresholds j; let nk ¼ ðAk; jkÞ. There are a total of C � 1 threshold parameters

and Q discrimination parameters for each item. For the logistic IRT model replace Φ(.)
with Lð:Þ. Although the polytomous IRT model in equation (4) also comprehends the

two-parameter IRT model, the two-parameter IRT model is presented separately

according to equation (3). Reckase (2009) gives an overview of multidimensional IRT
models.

3.2. Forced randomized response design

According to the forced RR design, two probabilities are specified by the randomizing

device: the probability p1 that the respondent has to answer the sensitive question, and

the probability p2 that a forced positive response is given. Using equations (2) and (3), the

probability of a positive randomized response equals

PðYik ¼ 1jhi;Ak; bkÞ ¼ p1PðUik ¼ 1jhi;Ak; bkÞ þ ð1� p1Þp2
¼ p1UðAt

khi � bkÞ þ ð1� p1Þp2:
ð5Þ

This is easily extended tomultiple (say, c = 1,…,C) response categories. The randomizing

device determines if the item is to be answered honestly with probability p1 or a forced

response is scored in category cwith probability ð1 � p1Þp2ðcÞ. Using equations (2) and
(4), the probability of scoring in category c equals

PðYik ¼ c j hi;Ak; jkÞ ¼ p1PðUik ¼ cjhi;Ak; jkÞ þ ð1� p1Þp2ðcÞ
¼ p1½UðAt

khi � jkc�1Þ � UðAt
khi � jkcÞ� þ ð1� p1Þp2ðcÞ:

ð6Þ

3.3. Structural multivariate latent model
In multidimensional IRT, it is often assumed that the latent traits hi, i = 1,…,N, are

exchangeable and multivariate normally distributed. That is, hi �NQðlh;RhÞ, where the

population means of latent traits and variations and dependencies among latent trait

dimensions do not depend on any individual information. This model specification can be

extended to include clustering of background information of respondents. In general, a

multivariate model makes it possible to investigate correlations between latent traits, its

dependence on the individual and the group level, to test simultaneously effects of an

explanatory variable on several latent traits, and to test for differential effects of
explanatory variables on various latent traits.

Let S predictor variables for respondent i be stored inXt
i ¼ ðXi1; . . .;XiSÞ. A structural

multivariate latent model for the latent traits is expressed by
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that is,

h ¼ Xcþ e; ð7Þ

where e is an N 9 Q matrix whose rows are independently distributed, ei �NQð0;RhÞ.
The S 9 Qmatrix c contains unknown fixed effects parameters. The latent traits on theQ

dimensions for each respondent have a covariance matrix Rh but the latent traits are

uncorrelated across individuals. A complete overview of multivariate multiple regression

models can be found in Johnson and Wichern (2002).

The within-subject covariance matrix Rh can be modelled as functions of unknown

covariance parameters, where each structure for Rh can have important subject-specific
interpretations. The efficiency of the regression parameter estimates may be improved by

modelling the covariancematrix parsimoniously as independent,with a constant variance

parameter across subjects’ latent trait dimensions,

Rh ¼ r2IQ; ð8Þ

where IQ is a Q 9 Q identity matrix.

Other cases arise by allowing the variance r2 to vary across latent trait dimensions,

or by allowing the variance to vary across groups of subjects. In both cases Rh

remains a diagonal matrix. The general extension is the unstructured covariance

matrix with Q(Q+1)/2 parameters, and possibly with covariance parameters that vary

across groups.

Finally, in a multivariate mixed effects modelling approach, variation can be modelled

in latent trait dimensions within and between groups of subjects, for example, due to
treatment effects. Following Schafer and Yucel (2002), let nj (j = 1,…,J) denote the

number of subjects in cluster j, and let Wj be an nj � R design matrix linking to the

randomeffect parameters fj, anR 9 Qmatrix of coefficients specific to subjects in cluster

j. With these random effects, equation (7) is generalized to

hj ¼ XjcþWjfj þ ej; ð9Þ

whereXj is an nj � Smatrix of explanatory variables. The nj rows of ej are assumed to be

independently distributed asNQð0;RhÞ. The randomeffects are independently distributed

as vecðfjÞ�Nð0;TÞ, where the vec(�) operator creates a column vector from the columns

of fj. It is assumed that for clusters j and j0, covðej; ej0 Þ ¼ 0, covðfj; fj0 Þ ¼ 0, and
covðej; fj0 Þ ¼ 0. Then the covariance matrix for vecðhjÞ equals

ðIQ �WjÞTðIQ �WjÞt þ Rh � Inj
: ð10Þ

A well-known structure is the case where each Wj is a vector of ones that gives the
between–withinmixedmodel structure called ‘compound symmetry’. Ifmodelling a large
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number of latent traits it may be advantageous to restrict T to a block-diagonal structure,

indicating that there are no a priori associations between the columns of fj.

3.4. Identification issues

The MRIRT model can be identified by imposing restrictions on some of the parameters.

Following B�eguin and Glas (2001), one approach is to fix themean and covariance matrix

of h to zero and the identity matrix, respectively. To avoid the rotational invariance,

constraints are necessary for some elements of A, for example, Akq ¼ 0 for k = 1,…,

Q � 1 and q = 2,…,Q. Furthermore, at least one element in each column of A is

constrained to be positive (see also Lopes & West, 2004).

It is also possible to consider the covariance parameters as unknowns by imposing the
restrictions Akq ¼ 1 if k = q, and Akq ¼ 0 if k6¼q for k = 1,…,Q and q = 1,…,Q, and

setting the mean equal to zero. Instead of restricting the upper-diagonal elements of the

matrix of factor loadings, the diagonal elements of Rh can also be restricted to one such

that only the non-diagonal elements are free parameters.

4. Bayesian inference

AnMCMCprocedure is proposed for model estimation. This MCMC algorithm is based on

developed MCMC methods for multidimensional IRT and factor-analytic models (e.g.,

B�eguin & Glas, 2001; Bolt & Lall, 2003; Jackman, 2001; Lopes & West, 2004; Sheng &

Wikle, 2007; Shi&Lee, 1998; Song&Lee, 2001; Yao&Boughton, 2007). A straightforward

MCMC implementation is not possible, since discrete randomized response data are

observed. Therefore, following the MCMC method of Fox and Wyrick (2008) for

unidimensional IRT, a double augmentation step is proposed to sample the discrete true
item response data and continuous latent response data given the RR data. As a result, the

joint distribution of the parameters and augmented data are considered to circumvent a

direct evaluation of the likelihood function, which is computationally intensive.

The joint posterior distribution can be expressed as

pðu; h; f;A; j; c;Rh;TjyÞ / pðyjuÞpðu j h;A; jÞpðhjc;Rh; fÞpðfjTÞ
pðAÞpðjÞpðTÞpðRhÞpðcÞ

/
Y
j

Y
i

Y
k

pðyijkjuijkÞpðuijkjhi;Ak; jkÞ
" #"

pðhijc; fj;RhÞ
i
pðfjjTÞpðAÞpðjÞpðTÞpðRhÞpðcÞ;

where pðyijkjuijkÞ defines the RR process given the characteristics of the randomizing

device. The term pðuijkjhi;Ak;jkÞ defines the multidimensional IRT component for the

true response data, and pðhijc; fj;RhÞ the multivariate model component for the factors.

The structural multivariate parameters and the multidimensional IRT parameters are

sampled from the full conditionals, where only the threshold parameters j are sampled
using a Metropolis–Hastings step. The full conditionals are easily derived given the

augmented data. Therefore, the randomized response data Y will be augmented with

latent data U and Z. The random variable Uijk represents the true response to item k of a

person indexed ij. The conditional probability of a true responseUijk given a randomized
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response Yijk is considered. Let pijkðcÞ denote the probability of responding in category c

according to the IRT model in equation (5) or (6); it follows that

PðUijk ¼ cjYijk ¼ c; pijkðcÞÞ ¼ PðUijk ¼ c;Yijk ¼ c; pijkðcÞÞ
PðYijk ¼ c; pijkðcÞÞ

¼ pijkðcÞ½p1 þ ð1� p1Þp2�
pijkðcÞp1 þ ð1� p1Þp2 ;

where p1 and p2 are the known randomizing device characteristics. In general, the

conditional distribution of a true item response given a randomized item response is a

multinomial with cell probabilities

DðcÞ ¼ pijkðcÞp1Iðc ¼ c0Þ þ pijkðcÞð1� p1Þp2
pijkðc0Þp1 þ ð1� p1Þp2 ; ð11Þ

for c; c0 ¼ 1; . . .;Ck. For binary response data, the conditional distribution is Bernoulli

with the success probability defined in (11) and c = 1.

Subsequently, the full conditional of the augmented data Z is a normal distribution,

ZijkjUijk; hi; nk � NðAt
khi � bk; 1Þ for binary data,

NðAt
khi; 1Þ for polytomous data,

�
ð12Þ

with Uijk the indicator of Zijk being positive for binary response data, and Uijk ¼ c if

jkc�1 �Zijk � jkc for polytomous response data.

The prior for the non-fixed factor loadings is standard normal. The full conditional for
Ak is normal with mean ðhthþ IQÞ�1ðhtðZk þ bkÞÞ and variance ðhth þ IQÞ�1. When Ak

contains fixed elements, the vector of free random loadings is sampled given the other

vector of fixed loadings. The difficulty parameters are not included in themean termwhen

dealing with polytomous data, but thresholds are introduced as additional restrictions on

the space spanned by the augmented data vectors.

Non-informative proper priors for the difficulty or threshold parameters are specified.

The threshold parameters in equation (4) are assumed to be independent and uniformly

distributed subject to the condition jk0 < jk1 < . . . < jkCk
, with jk0 ¼ �1 and

jkCk
¼ 1. Sampled values from the conditional distribution of the threshold parameters

can be obtained using the Metropolis–Hastings algorithm; see Fox (2005, 2010) for

specific details. For binary data, the full conditional posterior of the difficulty parameter is

normal with mean

�P
iðZik � At

khiÞ=N þ lb=rb
N�1 þ r�1

b

ð13Þ

and variance ðN�1 þ r�1
b Þ�1 using a normal prior with mean lb and variance rb. The

mean and variance parameters are sampled from a normal and an inverse-gamma

distribution, respectively, given the difficulty parameters.
Consider themultivariate regressionmodel in equation (7) for the latent variables h and

the multidimensional IRT model in equation (3). Subsequently, the full conditional

distribution is normal with mean
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hijjZij;A;b; c;Rh �NððAtA þ R�1
h Þ�1

ĥij; ðAtA þ R�1
h Þ�1Þ; ð14Þ

where ĥij ¼ ðAtðZij þ bÞ þ R�1
h ctXijÞ.

4.1. Structural multivariate parameters

The posterior distributions of the fixed effects parameters c in equation (7) follow from

standard Bayesian linear model results. The prior distribution for the multivariate
regression parameter is assumed to be normal with fixedmean and variance parameter c0
and Γ, respectively. It follows that

cjh; c0;Rh;C�Nð~c;RcÞ;

with

~c ¼ RcððR�1
h � XtXÞĉþ C�1c0Þ

Rc ¼ððR�1
h � XtXÞ þ C�1Þ�1;

Subsequently, the covariance matrix Rh has an inverse-Wishart distribution with N þ n0

degrees of freedom and scale matrix S�1
h , with Sh ¼ P

jðhj � XjcÞðhj � XjcÞt þ IQ and

n0 	Q, to specify a non-informative proper prior distribution. Note that all parameters of

the covariance matrix Rh are free parameters when using identifying restrictions on the

item parameters and factor loadings.

The posterior distribution of the fixed effects parameters and the within-subject

covariance matrix given a multivariate mixed effects model according to equation (9) are
slightly different due to the fact that the error terms are defined as ej ¼ hj � Xjc � Wjfj,

and by allowing variation across clusters. According to (9), it follows that the posterior

distribution of the random effect parameters is a product of normal distributions. As a

result,

vecðfjÞjhj;Rh; c;T�Nðvecðf̂jÞ;XfÞ; ð15Þ

where

vecðf̂jÞ ¼ XfðR�1
h �Wt

jÞvecðhj � XjcÞ
Xf ¼ ðT�1 þ R�1

h �Wt
jWjÞ�1:

Subsequently, when T is block diagonal, independent draws from a inverse-Wishart

distribution with degrees of freedom m + J and scale parameterKf þ P
j fjqf

t
jq, where fjq

denotes the qth column of fj. The hyperparameter m is usually set toR to specify a disperse

prior, and a priori independence is assumed among the random effects, that is, Kf ¼ IR.

4.2. Implementation issues

The MCMC algorithm can handle RR data as well as direct questioning data since the

properties of the randomizing device are known and corresponding parameters can be set

to specific values. For direct questioning data, p1 is set to one. This corresponds with the
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approach of Chaudhuri and Mukerjee (1988) who permitted an option for direct

questioning for those who volunteer to reveal the truth viewing the attribute not

stigmatizing enough.

Ignorable missing response values are handled by sampling latent augmented data Zijk

without truncating the values to a specific domain but based on given values of the item

parameters and the latent variable. This imputation-based procedure creates a complete

data set and the procedure is easily implemented in the MCMC algorithm. The imputed

augmented values have larger standard deviations since they are not restricted to a specific

domain such that uncertainty due to missing values is taken into account.

The convergence of the MCMC algorithm is depending on several factors. Conver-

gence can be slowwhen the amount of missing information is high. In that case the latent

person parameters and item parameters are poorly estimated with large variances. Also
more iterations might be needed in order to obtain stable parameter estimates.

Convergence can also be slow when the number of clusters is large, because for large J

theposterior distribution forTgiven fbecomes very tight, and, as a result, a drawnvalue of

the covariance matrix T may remain close to its previous value. Convergence can be

informally assessed by examining trace plots, time series plots, plots of the average of each

parameter across multiple chains, and plots of the running average. Formal and informal

convergence diagnostics can be found in Brooks and Gelman (1998) and Gilks (1996).

Starting values for the MCMC algorithm can be obtained by fitting a multidimensional IRT
model to the data but ignoring the randomized response character of the discrete

response data using the MCMC algorithm of B�eguin and Glas (2001). However, it will be

shown in a simulation study that convergence properties of the proposed MCMC

algorithm are good and independent of chosen starting values.

5. Simulation study

In this section, results are reported from a simulation study for parameter recovery based

on the MRIRT model for randomized item response data.

Data were simulated for two correlated factors (Q = 2), where a total of N = 750

subjects responded to K = 20 items. For the two factors a structural multivariate model

was assumed with two explanatory variables. The covariance between factors was set at

0.30, and the factor variance components were both 1. The explanatory variable values

were generated from a standard normal distribution. Four response categories were
assumed,with the threshold parameters for all items set at jC ¼ ð�1; 0; 1Þ. For the forced
RR part, the probabilities were set at p1 ¼ :667 and p2 ¼ :25. To avoid rotation of the

two factors, the first item only loaded on the first factor, and the second item only on the

second factor. Furthermore, for reasons of identification the mean and variance of each

factor were restricted to the simulated values.

Using randomly generated starting values, twoMCMC chains of 10,000 iterations each

were simulated, and the first 5,000 iterations were discarded for the burn-in. Using the

CODA package in R, convergence of the algorithmwas assessed using several statistics as
well as the visual inspection of trace plots. Figure 1 shows trace plots of two chains for the

regression coefficients. For the MCMC chains of the regression parameters, Gelman’s R

statistic was estimated to be 1.01, which is below the recommended threshold of 1.10.

Also for other parameters those statistics suggested convergence of the algorithm. The

partial autocorrelation function for several chains suggested a first-order Markov process,

only for some chains showing a statistically significant, but minor, autocorrelation of

around .20 at lag 2.
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Recovery of the loadings and the factor values was assessed graphically (not shown)

and showed that the true against the re-estimated parameters closely followed the identity

line. Finally, Table 1 shows the true and re-estimated parameters for the structural

multivariate model on the subject parameters, indicating that the MCMC algorithm

worked well for estimation of the model.
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Figure 1. Trace plots of estimated regression coefficients showing two MCMC runs, where the

solid black line represents the simulated true value.

Table 1. Results of simulation study. Generating values, means and standard errors of recovered

values

Gen.
RIRT model

Fixed Coeff. Mean SD 95% HPD

First factor

c10 0 – – –
c11 1.00 1.04 0.04 [0.95,1.12]

c12 0.00 0.00 0.07 [�0.13,0.13]

Second factor

c20 0 – – –
c21 0.00 �0.02 0.06 [�0.15,0.10]

c22 1.00 1.00 0.04 [0.92,1.08]

Random Coeff. Mean SD 95% HPD

Rh11 1.00 0.92 0.09 [0.79,1.06]

Rh12 0.30 0.35 0.10 [0.17,0.51]

Rh22 1.00 1.01 0.08 [0.88,1.14]
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6. Measuring drinking problems and alcohol-related expectancies among

college students

Thirteen items of the College Alcohol Problem Scale (CAPS; O’Hare, 1997) and four items

of the Alcohol Expectancy Questionnaire (AEQ; Brown, Christiansen, & Goldman, 1987)

were used to assess alcohol problems and alcohol-related expectancies among college

students. The questionnaire items are given in the Appendix. The sensitive nature of the
study supports an RR questioning technique to avoid refusals and misleading responses

concealing socially undesirable behaviour. Any self-reported information about negative

consequences of drinking is likely to be biased due to socially desirable responding. It is

investigated whether the RR technique improved the cooperation of the respondents and

the accuracy of the self-report data by comparing the RR outcomes with the direct

questioning outcomes. Furthermore, using the MRIRT modelling approach, multiple

sensitive constructs underlying both scales (CAPS and AEQ) are measured and their

relationships with background information analysed.
The AEQ is used to measure the degree of expectancies associated with drinking

alcohol. Expectancies related to alcohol use are known to influence alcohol use and

behaviour while drinking (e.g., Werner,Walker, &Greene, 1995). The entire test consists

of 90 items and covers six dimensions (see Brown et al., 1987). In the present study,

attention was focused on alcohol use-related sexual enhancement expectancies using

four items covering sexual enhancement expectancies, which are given in the Appendix.

The CAPS instrument is one of the major self-report measures used to asses drinking

problems. The items cover socio-emotional (e.g., hangovers, memory loss, depression) as
well as community problems (e.g., driving under the influence, engaging in activities

related to illegal drugs, problems with the law). O’Hare (1997) developed the CAPS

instrument to measure different psycho-social dimensions of problem drinking among

college students. The two factors, socio-emotional and community problems, were

identified from a factor analysis which explainedmore than 60% of the total variance. Fox

andWyrick (2008) analysed the CAPS data using a unidimensional RIRTmodel tomeasure

a general construct alcohol dependence. Although the model described the data well, a

multidimensional approach provides insight in the different factors related to problem
drinking, factor-specific relationships with background variables, and supports the

multidimensional nature of the CAPS.

Data were collected through a survey study in 2002 at four local colleges/universities,

Elon University (N = 495), Guilford Technical Community College (N = 66), University

of North Carolina (N = 166), andWake Forest University (N = 66). A total of 351 students

was assigned to the direct questioning (DQ) condition and 442 to the RR condition.

Students in the DQ group served as the study’s control group and were instructed to

answer the questionnaire as they normally would. Students in the RR condition used a
spinner to assist them in completing the questionnaire. For each item of the CAPS and

AEQ, the spinnerwas used as a randomizing device and the outcome determinedwhether

to answer honestly or to register a forced response. The properties of the spinnerwere set

such that an honest answerwas requestedwith a probability of 60% and a forced response

with a probability of 40%. When a forced response was to be generated, each response

was given an equal probability of 20%. No identifying information was collected, but age,

gender, and ethnicity were also registered. Each class of students (5–10 participants) was

randomly assigned to the DQ group or the RR group and selected from the same
population. It was not possible to randomly assign students.
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The following MRIRT model was used to analyse the response data:

PðYik ¼ cjhi;Ak; jkÞ ¼ p1pik þ ð1� p1Þp2ðcÞ;
pik ¼ UðAt

khi � ji;ðc�1ÞÞ � UðAt
khi � ji;cÞ;

hi ¼ c0 þ c1RRi þ ei;

where ei �Nð0;RhÞ and RRi equals one for each dimension q when student i was

assigned to the RR group and zero otherwise. According to the forced RR sampling design,

p1 ¼ :60 and p2ðcÞ ¼ :20, for c = 1,…,5; in the DQdesign p1 ¼ 1. The factor loadingsA
and item thresholds are assumed to be independent of the questioning technique. The

MRIRTmodel was identified by fixing themean in each dimension, such that c0 ¼ 0. The
variance was identified by restricting the variance components of each factor to 1. The

so-called rotational variancewas identified by assigningQ items uniquely toQdimensions.
Eachmodelwas estimated using 50,000MCMC iterations using a burn-in period of 10,000

iterations for parameter estimation. The convergence of chains was inspected using plots

and various MCMC convergence diagnostics.

6.1. Multidimensional scale analysis

First, a two-factor RIRTmodel was estimated, where items 1 and 14 had just one free non-

zero loading to identify two factors. In Figure 2, the estimated factor loadings are given for
the two-factor RIRT model stated in equation (16). The estimated factor loadings are

standardized by dividing each loading by the average item loading. For each component,

the sign of the loadings is set in such a way that a higher latent score corresponds to a
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Figure 2. Estimated standardized factor loadings for the two-factor RIRT model
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higher observed score. It can be seen that items 14–17 measure the factor alcohol-related

expectancy and that most other items are clearly measuring another factor, socio-

emotional/community problems, which was labelled alcohol dependence in the Fox and

Wyrick (2008) analysis. The loadings are all above .75, which indicates that both factors
can be interpreted. Note that expectancies are increasing with alcohol consumption and

slightly diminish socio-emotional/community problems given the negative factor loadings

for the other component.

Second, a three-factor RIRT model was estimated to investigate whether problems

associated with drinking were represented by two factors (i.e., socio-emotional and

community problems), and sexual enhancement expectancies by another factor. Besides

items 1 and 14, the loadings of item 5 were also restricted to identify the community

problems factor as reported in the literature. In Table 2, the standardized estimated factor
loadings of the three factors are given. Items 1–4, 6, 8, and 9 associate with the first factor,

representing socio-emotional problems, and have factor loadings higher than .60. This

first component represents drinking-related problems including depression, anxiety, and

troublewith family, where the problemswill increasewith alcohol consumption. Some of

the items also associatewith the two other components. The second component, labelled

community problems, covers items 5, 7, and 10–13, with loadings higher than .60, except

for item 12. As reported in the literature, this item is associated with the community

problems factor but relates also to the other components andmost strongly with the third
component. The community problems factor covers acute physiological effects of

drunkenness together with illegal and potentially dangerous activities (e.g., driving under

the influence).

For the two-factor RIRTmodel, the second and third response options of theAEQ items

were more likely to be endorsed than the second and third response options of the CAPS

Table 2. CAPS-EA scale: estimated weighted factor loadings for the three-factor analysis

Subscale Items Three-factor RIRT model

Socio-emotional Comp. 1 Comp. 2 Comp. 3

1 Feeling sad, blue or depressed 1.00 .00 .00

2 Nervousness or irritability .99 .12 �.05

3 Hurt another person emotionally .94 .33 .08

4 Family problems related to your drinking .82 .55 .15

6 Badly affected friendship or relationship .83 .49 .26

8 Caused other to criticize your behavior .78 .50 .38

9 Nausea or vomiting .73 .39 .58

Community problems Comp. 1 Comp. 2 Comp. 3

5 Spent too much money on drugs .00 1.00 .00

7 Hurt another person physically .49 .83 .24

10 Drove under the influence .44 .73 .52

11 Spent too much money on alcohol .61 .65 .46

12 Feeling tired or hung over .59 .41 .69

13 Illegal activities associated with drug use .08 .95 .30

Alcohol expectancy scale Comp. 1 Comp. 2 Comp. 3

14 I often feel sexier after I’ve had a couple of drinks .00 .00 1.00

15 I’m a better lover after a few drinks �.11 �.06 .99

16 I enjoy having sex more if I’ve had some alcohol �.16 �.01 .99

17 After a few drinks, I am more sexually responsive �.16 �.02 .99
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items. The corresponding threshold estimates of theAEQ items in comparison to theCAPS

items for response categories 2 and 3 are lower – except for CAPS item 12 (feeling tired or

hung over) onwhich students scored relatively high. The AEQ items 14–17 andCAPS item
12 can be considered as the less severe items. Itemswith relatively high thresholds, item 4
(family problems related to drinking), item 5 (spending toomuchmoney on drugs), item 7

(hurting another person physically), and 13 (illegal activities associated with drug use)

were severe, where most students responded almost never or seldom. The threshold

estimates of the three-factor model were similar, except the threshold estimates of item 5

were not very stable and much higher. This follows from the fact that most responses

above one were considered to be forced randomized responses. Item 5 with a very low

prevalence did not provide much information to assess drinking problems. A prior

restriction on the upper bound led to a numerically stable solution.

6.2. Structural model analysis

In the two- and three-factor RIRT models, the multivariate latent factor model was

extended with an explanatory variable called RR and an indicator variable called Female

(which equals 1 when true). For each dimension, both explanatory variables were

included.

In Table 3, the structural multivariate parameter estimates of the three-factor and two-
factor RIRT models are given. For the two-factor model, loadings of items 1 and 14 were

fixed to identify two factors. One overall factor represents a composite measure of

alcohol-related problems (i.e., socio-emotional and community problems) and the other

factor alcohol-related sexual enhancement expectancies. It can be seen that there is a

moderate positive covariance of 0.65 between the two factors, where the component

variances are slightly smaller than 1.

Table 3. CAPS-EA scale: Parameter estimates of two- and three-factor RIRT model

Parameter

Two-factor Three-factor

Mean SD Mean SD

Socio-emotional/community

c11 (RR) .20 .09 .21 .10

c21 (Female) .01 .06 .05 .07

Alcohol expectancy

c12 (RR) .22 .06 .21 .07

c22 (Female) .03 .04 .06 .05

Community

c13 (RR) .32 .10

c23 (Female) -.30 .09

Variance parameters Mean SD Mean SD

Rh11 0.96 0.05 0.98 0.05

Rh12 0.65 0.07 0.55 0.06

Rh13 0.35 0.08

Rh22 0.98 0.05 1.06 0.05

Rh23 0.37 0.08

Rh33 0.99 0.07

Information criteria
�2log-likelihood 20,757 19,678
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The students in the RR condition score significantly higher for both factors. For the RR

group, the average latent scores are .20 and .22 on the composite drinking problem scale

and the alcohol-related expectancy scale, respectively, which are both zero in the DQ

group. Fox andWyrick (2008), who performed a unidimensional RIRT analysis using only
the CAPS items, reported an RR effect of .23. The present multidimensional approach

shows a comparable RR effect, as it does for the AEQ scores. The females and males show

comparable scores on both factors.

In the three-factor RIRT model, problems associated with drinking are represented by

two factors (i.e., socio-emotional and community problems) and sexual enhancement

expectancies by another factor. The RR effects are significantly different from zero for all

three factors, where the effect on the factor representing community problems related to

alcohol use is around .32 and slightly higher than the effects on the other factors, which
are around .21. It seems that students were less willing to admit to alcohol-related

community problems, which induced more socially desirable responses than the other

Table 4. CAPS-EA scale: Differences across colleges and universities using the two- and three-factor

RIRT model

Parameter

Two-factor Three-factor

Mean SD Mean SD

Socio-emotional/community

c11 (RR) .29 .08 .28 .09

School variables

c21 (Elon) .19 .06 .19 .07

c31 (UNCG) �.19 .10 �.14 .11

c41 (Wake Forest) �.23 .12 �.11 .14

c51 (Guilford) .24 .12 .05 .13

Alcohol expectancy

c12 (RR) .19 .06 .19 .07

School variables

c22 (Elon) .04 .05 .04 .05

c32 (UNCG) �.11 .07 �.10 .08

c42 (Wake Forest) �.23 .08 �.23 .09

c52 (Guilford) .30 .09 .29 .11

Community

c13 (RR) .30 .09

School variables

c23 (Elon) .12 .06

c33 (UNCG) �.13 .10

c43 (Wake Forest) �.37 .13

c53 (Guilford) .38 .13

Variance parameters Mean SD Mean SD

Rh11 0.94 0.05 0.96 0.05

Rh12 0.62 0.07 0.55 0.06

Rh13 0.45 0.07

Rh22 0.97 0.05 0.99 0.05

Rh23 0.47 0.06

Rh33 0.94 0.05

Information criteria
�2log-likelihood 20,858 19,660
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factors. The relatively high thresholds of items 5, 7, and 13 measuring community

problems indicated that they were more severe and most likely more sensitive. Male

students scored significantly higher than the female students on the factor representing

community problems related to alcohol use. That is, male students were more likely to
experience alcohol-related community problems than females. This gender effectwas not

found for the other factors.

Interest was focused on the average student drinking problems and expectancies of

the four selected colleges/universities that took part in the experiment. The clustering of

students in colleges/universities was represented using effect coding. In Table 4 the

parameter estimates are given for the two-factor and three-factor models. For each factor,

the intercept represents the average score across colleges and universities, which was set

to zero. In the two-factor model, the average score of the RR group is .29 and .19, both
significantly higher than zero. It follows that the mean scores of the alcohol-related

problems factor for Guilford Technical Community College and Elon University are

significantly higher than the means for University of North Carolina andWake Forest. For

the alcohol-related expectancy factor, Guilford Technical Community College scored on

average higher than the other colleges and universities.

For the three-factor model, the mean scores of the three factors of the RR group are

significantly higher than zero and comparable when controlling for differences across

universities and colleges. It follows that Guilford Technical Community College has the
highest average score of alcohol-related community problems and of alcohol-related

sexual enhancement expectancies. The results show that alcohol-related sexual

enhancement expectancies and community problems are positively correlated, where

scores differ across universities and colleges. The estimates of the RR effect indicate that

the RR group scored significantly higher in comparison to theDQgroup on each subscale.

Although validation data are not available, it is to be expected that the RR technique led to

an improvedwillingness of students in answering truthfully, given the randomassignment

to DQ and RR conditions.

7. Discussion

In educational and psychological measurement, it is often more realistic to assume that

multiple constructs influence the performance on test items. The multidimensional item

response theorymodel can be used to assess the underlying latent variable structure given
the test results (Reckase, 2009). When surveying sensitive topics, direct questioning may

lead to social desirability bias. Therefore, in combination with a randomized response

design, a multidimensional randomized item response model is proposed to measure

multiple sensitive constructs given multivariate randomized response data. The confir-

matory multidimensional model presented can handle dichotomous and polytomous

randomized item responses. The application shows a model belonging to the class of

compensatory models. However, when every item measures one construct a non-

compensatory MRIRT model can be stated in a similar way.
Markov chain Monte Carlo methods have developed to tackle the high-dimensional

integration problem in confirmatory multidimensional IRT analysis (e.g., Edwards, 2010;

Sheng, 2010). Cai (2010) proposed a Metropolis–Hastings Robbins–Monro algorithm for

an exploratory analysis given polytomous response data. B�eguin and Glas (2001)

developed a full Gibbs sampling procedure and proposed several posterior predictive

checks. Yao and Boughton (2007) showed MCMC estimation of multidimensional partial
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creditmodels and the assessment of subscale scores. The presentMCMC algorithm for the

estimationof theMRIRTmodel is based on a double augmentation scheme to dealwith the

categorical randomized response outcomes. Furthermore, the MCMC algorithm can also

handle the estimation of the multivariate structural model parameters. This includes the
structural regression parameters, which specify the relationship between the multiple

sensitive constructs and the explanatory background information, and the correlation

structure among the latent variables. The MCMC algorithm has been developed in R and

will be made freely available via the internet.

The present survey study on alcohol-related sexual enhancement expectancies and

drinking problems showed that randomized response questioning improved the

cooperation of the respondents and reduced domain-specific social desirability bias.

The joint analysis results support the alcohol expectancy theory (e.g., Brown et al., 1987),
which states that positive expectancies due to alcohol use lead to more positive initial

drinking experiences, leading in turn to more positive expectancies. Here, it was shown

that alcohol-related sexual enhancement expectancy scores were positively correlated

with subscale scores for alcohol-related socio-emotional and community problems. In the

literature, alcohol-related expectancies have been found to be useful in predicting

drinking problems and drinking behaviour, and patterns of problematic use (e.g., Werner

et al., 1995). The randomized response technique can improve the accuracy of the self-

report data and related predictions, while the multidimensional modelling approach can
improve the accuracy of subscale scores by using the additional subscale information

(e.g., Yao & Boughton, 2007).

The measurement of alcohol expectancies of individuals is important to identify

current and predict future problem drinking. The randomized response technique can

improve the quality of the diagnostic self-report data, when respondents tend to

underreport alcohol consumption and the negative effects of alcohol use due to social

desirability or potential legal ramifications. The multifactor modelling approach will

support the multifactorial nature of the expectancy questionnaires and individual
measurements of expectancy behaviour given randomized response data.
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Supporting Information

The following supporting informationmay be found in the online edition of the article:

Dataset 1:Compensatory andNoncompensatory Multidimensional Randomized Item

Response Analysis of the CAPS and EAQ Data

Dataset 2: Explanation R-Code and additional results. Compensatory and non-

compensatory Multidimensional Randomized Item Response Models.

Appendix: CPS-EQ Questionnaire

CAPS: Socio-emotional and community problems

How often (almost always (5), often (4), sometimes (3), seldom (2), almost never (1))

have you had any of the following problems over the past years as a result of drinking too

much alcohol?

1. Feeling sad, blue or depressed

2. Nervousness or irritability
3. Hurt another person emotionally

4. Family problems related to your drinking

5. Spent too much money on drugs

6. Badly affected friendship or relationship

7. Hurt another person physically

8. Caused other to criticize your behavior

9. Nausea or vomiting

10. Drove under the influence
11. Spent too much money on alcohol
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12. Feeling tired or hung over

13. Illegal activities associated with drug use

AEQ: Sexual enhancement

14. I often feel sexier after I’ve had a couple of drinks

15. I’m a better lover after a few drinks

16. I enjoy having sex more if I’ve had some alcohol

17. After a few drinks, I am more sexually responsive

Compensatory and non-compensatory multidimensional randomized item response models 21




