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Longitudinal measurement in health-
related surveys. A Bayesian joint growth
model for multivariate ordinal responses

Josine Verhagen®" and Jean-Paul Fox

Longitudinal surveys measuring physical or mental health status are a common method to evaluate treatments.
Multiple items are administered repeatedly to assess changes in the underlying health status of the patient.
Traditional models to analyze the resulting data assume that the characteristics of at least some items are
identical over measurement occasions. When this assumption is not met, this can result in ambiguous latent
health status estimates. Changes in item characteristics over occasions are allowed in the proposed measure-
ment model, which includes truncated and correlated random effects and a growth model for item parameters.
In a joint estimation procedure adopting MCMC methods, both item and latent health status parameters are
modeled as longitudinal random effects. Simulation study results show accurate parameter recovery. Data from a
randomized clinical trial concerning the treatment of depression by increasing psychological acceptance showed
significant item parameter shifts. For some items, the probability of responding in the middle category versus
the highest or lowest category increased significantly over time. The resulting latent depression scores decreased
more over time for the experimental group than for the control group and the amount of decrease was related to
the increase in acceptance level. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

Repeatedly administered questionnaires are increasingly used in clinical studies to assess the effects of
interventions on or to track changes in reported physical or mental health status. Examples are quality of
life questionnaires for patients with chronic diseases, psychiatric questionnaires to follow patients with
psychiatric disorders, and cognitive ability questionnaires to track the onset of Alzheimer’s disease. In
this type of studies, a questionnaire is administered at each occasion to measure the underlying health
status. The resulting data can be characterized as longitudinal multivariate response data designed to
track intra-individual changes in latent physical or mental health status.

When the outcome consists of multiple item responses, it is common to use a latent variable to
model the dependency between the item responses. The multivariate item responses are assumed to
be conditionally independently distributed given a common latent variable. The latent variable and item
characteristics are used to specify the probability of each item response, which defines the measurement
model. Examples are common factor models for continuous responses (e.g. [1]), multiple indicators and
multiple causes (MIMIC) models (e.g. [2]), item response models for discrete responses (e.g. [3]), and
latent class models for discrete latent variables (e.g. [4,5]). In this paper, we will focus mainly on item
response theory (IRT) models, which are becoming more and more popular for health questionnaire data
(e.g. [6-8])

Mixed random effects models have been proposed for modeling individual change over time [9-11].
The specification of random effects accounts for the dependency between the within-subject mea-
surements. Furthermore, random effects provide a very flexible way of handling missing data within
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subjects, as the number of measurement occasions per subject is allowed to vary. In addition, individual
differences in the onset of the measurements and in the time span between measurement occasions can
be taken into account [12].

In longitudinal surveys consisting of multiple administered items per measurement occasion, latent
growth models are often used to model longitudinal growth in the latent variable using mixed random
effects [13—16]. In latent growth curve models, for example, the random effects structure allows indi-
vidual growth trajectories to vary randomly around a general growth trend. Longitudinal item response
models (e.g. [17, 18]) have appeared particularly useful for analyzing longitudinal health-related ques-
tionnaires. Using a latent variable has the additional advantage that not all respondents necessarily have
to answer all items at each occasion.

A common assumption in latent growth models is that the parameters of the measurement part, which
connects the latent variable to the observed responses, are invariant over occasions. However, due to
either the process of test administration, developmental changes between measurement occasions, or
other occasion-dependent influences, the characteristics of the test can change over time. As a result, the
relation between the observed responses and the latent variable will differ per occasion. Consequently, a
constant level of underlying health status leads to different response probabilities at sequential occasions.

Invariance over measurement occasions of item characteristics relating the latent variable to the
response probabilities will be referred to as longitudinal measurement invariance, a form of measure-
ment invariance [19]. In a factor analysis measurement model, for example, this implies that intercepts
and factor loadings are invariant over occasions [20]. In the field of IRT, non-invariance of discrimina-
tion and difficulty parameters over measurement occasions is known as item parameter drift [21, 22].
It is well known that longitudinal measurement invariance is not self-evident and should be tested for
(e.g. [12,20,23]). Nevertheless, in most applications longitudinal measurement invariance of at least
some items is assumed.

Implications of an erroneous assumption of longitudinal measurement invariance are that latent
variable means and variances can be affected, rendering estimates of changes in latent health status
ambiguous to interpret. To avoid bias in latent growth estimates due to violations of measurement invari-
ance assumptions, latent growth models for longitudinal (health) questionnaire data should allow for
occasion-specific measurement characteristics.

Procedures have been developed to assess measurement invariance for cross-sectional response data
(e.g. [24,25]), which are usually based on fixed item parameters. In the present approach, longitudinal
measurement invariance will be assessed using a random item effects structure that allows the modeling
of longitudinal growth in item characteristics. A nonlinear model for longitudinal multivariate responses
will be introduced, which models growth in both the parameters of the measurement part and in latent
health status simultaneously. The random item effects multilevel IRT model developed by [26] (see also
[27-29]) will be extended with multivariate and covarying random item parameter effects as well as
with growth structures to incorporate change over time in both latent health status and item parameters.
In this model, the measurement and latent health parameters will be treated as crossed random effects
(e.g. [30,31]). Moreover, it is possible to include time-varying, person or item level covariates to explain
variation in health status and item parameters. MCMC methods will be used for inference.

Advantages of this approach are that it will enable the growth modeling of latent health given a very
flexible occasion-specific measurement model, not assuming item parameters to be invariant over mea-
surement occasions. The more realistic occasion-specific measurement models will increase the accuracy
of the latent health status estimates. In addition, information acquired about item parameter shifts will
provide more insight in measuring latent health status longitudinally. As a case study, data from a
randomized clinical trial concerning the treatment of depression will be analyzed.

In Section 2, we describe the model in more detail. In Section 3, we describe the estimation pro-
cedure and ways to explore longitudinal invariance. In Section 4, we show the results of a simulation
study to assess parameter recovery and present the results of the randomized clinical trial concerning the
treatment of depression. We give a discussion in Section 5.

2. A joint random effects growth model for longitudinal multivariate
discrete responses

Health-related questionnaires often consist of a set of items with categorical or ordinal response cate-
gories. It will be assumed that the items under analysis measure one unidimensional latent construct,
which represents some form of physical or mental health status.
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The probability of each response Y;;x can be perceived as a function of the latent health variable 0;;
of personi =1,..., I at occasion j = 1,...,J and of the parameters of the measurement part of the
model i,-'kj foritem k = 1,..., K at occasion j.

To account for the cross-classified nested structure of the data, where occasions are nested in persons
and items, random effects structures will be imposed to model the dependency structure. This results
in two cross-cutting hierarchies: A three-level structure of observations Y;;; within occasions j within
items k referred to as the measurement part of the model and another three-level structure of observa-
tions Y;;x within occasions j within persons i, referred to as the latent variable part of the model. Within
these hierarchical structures, growth models can be implemented, as well as fixed or random covariates
to explain variance within and between persons, items, or occasions (Figure 1).

2.1. Occasion-specific measurement models for categorical responses

The basis of the measurement model presented here was developed by [32] and [33] for educational data
and can be seen as an extension to the polytomous logistic model for multinomial responses or a discrete
choice model [34]. The probability that a subject with latent health status 6 responds with category ¢
depends on threshold parameters of the item categories and on a discrimination parameter, which can be
unique for each item.

In this generalized partial credit model (GPCM), the conditional probability that person i chooses the
cth category over the ¢ — 1st category is modeled with a dichotomous logistic model (see also [7]). In a
longitudinal framework, the GPCM can be extended by including occasion j :

P(Yl]k =c | Zijck) _ expzi_i(rk
P(Yijk =c| Zijex) + P (Yijk = (c — 1) | Zijex) 1 +expZiier’

which can also be written as
P(Yijx = c | Zijek)
P (Yije = (c = 1) | Zijex)

= expZiick |

§1 E.>k éK

So

Figure 1. Directed acyclic graph of the joint random effects growth model. The observed scores y; jx for person
i onitem k at occasion j are a function of the unobserved latent person scores 6;; and item characteristics & ;.
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- -
As ZOC P(Yijx = c|Zijcx) equals 1, the probability of response ¢ given Z;jcx is given by
exp (3.6 (Zijek))

C c :
>0 exp (Xo(Zijer))

The Z;jcr will be modeled in such a way that respondents with a higher latent score ¢;; are more
likely to score in a higher response category. Furthermore,

P(Yijk =c | Zijek) = ()

Zijek = akj (9ij - l;ckj) - 2

The threshold parameters l;ck ; are the points on the latent scale at which the category response func-
tions of P(Y;jx = c|0) and P(Y;jx = (c — 1)|0) intersect (Figure 2). When the latent health level
increases beyond this point, the probability of responding with ¢ becomes higher than the probability
of responding with (¢ — 1). The discrimination parameter dy; is related to the discrimination between
categorical responses as the latent health level changes. The higher the discrimination parameter, the
steeper the category response functions, and the crisper the response categories discriminate between
higher and lower latent health levels.

To account for changes in the measurement characteristics over time, Equation (2) contains occasion-
specific item parameters. For each item, these parameters will be modeled as random effects varying
around general longitudinally invariant item parameters. In this way, the parameters of all items are
allowed to vary over occasions. The occasion-specific item parameters are exchangeable given the gen-
eral item parameters and form a second level between the observed responses (level 1) and the invariant
general item parameters (level 3).

Because they relate to the same item, the occasion-specific parameters per item are assumed to
be correlated. The random item parameters will be assumed to be multivariate normally distributed
with an unstructured covariance matrix. This novel way of modeling the GPCM parameters cap-
tures within-item correlations. It follows that the random occasion-specific item parameters §;; =

(dkj,gokj,...,l;c;cj) are assumed to be multivariate normally distributed given the general item
parameters &, = (ag, bok, - ... bck):
B 162, ~ N (825, ). 3
where
2
Oay Oaxbor -+ Oagbcy
2
op o cer Oborh
2~ — 0k Ak bOk 0kOCk ) (4)
€k -
2
Obckax  Obcrbor -+ Opgy

0.8
1

P(c)

0.4

0.2

Latent health status

Figure 2. Item category response curves: probability of a response ¢ (¢ = 0, 1,2, 3) given latent health status 6
(6 € [—4,4)).
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Following a hierarchical prior structure, at the third level the general item parameters are assumed to
be multivariate normally distributed given mean parameters ug = (do, boo, - - - » bco):

Er | g, g ~N(pg, Xg). &)

The extension of the GPCM with occasion-specific random item parameters following a multivariate
hierarchical structure is a natural extension in this Bayesian modeling framework. For model identi-
fication additional restrictions are necessary, which will be described in Section 2.4. When the item
parameters are longitudinally invariant, the occasion-specific parameters are all restricted to be equal
to the general item parameters. In that case the item characteristics are a priori distributed according to
Equation (5).

2.2. A growth model for item characteristic change

It is natural to assume that change in item parameters over occasions is not completely random, but
follows a growth pattern. This change can be modeled with a random linear time effect of the average
time passed at occasion j over subjects. Depending on the total number of occasions available, charac-
teristics can be added to explain linear and higher order change in item parameters over occasions, for
example, through polynomial time effects. Let v; denote a vector of explanatory information at occa-
sion j, and 8, a vector of item-specific coefficients predicting the occasion-specific item parameters
& ;- Then, a conditional growth model can be specified:

gkj =& +Vidk t e, €, NN(O’ ng)’ ©

where X £ is given by Equation (4). Its diagonal elements denote the conditional variance in
occasion-specific item parameters given the explanatory information. The off-diagonal terms denote
the within-item covariance between item characteristics.

2.3. A growth model for latent health status

The change over occasions in latent health status of person i can be modeled by a random intercept (S8¢;)
and random linear time effect (81;) of the time passed since the individual’s starting point ¢;¢,

0ij = Boi + (tij —tio)B1i + eij.

The growth model can be easily extended by time-varying covariates with random effects (including
polynomial effects) denoted as x;;, time-varying covariates with fixed effects (including main time
effects) denoted as s;;, and person-level covariates that do not vary over occasions, denoted as w;. Then,
the more general representation of the latent variable growth part of the model is given by

0ij =X§jﬂi +S§j; +eij.ei;j ~N(0,0;)

' (7)
B;=wiy +v;,v; ~N(©O,T).

An occasion-specific residual variance parameter was specified to model the unexplained variability
per measurement occasion. This residual variance parameter will be included in identifying restrictions
described in Section 2.4.

2.4. Model identification

Two issues need to be addressed. First, the latent scales for the different occasions need to be linked.
Separate models for each occasion result in incomparable scales between occasions. Second, there is no
unique solution to Equation (2), as multiple parameter combinations result in the same likelihood. For
each occasion, a shift in the latent mean p ; results in the same expected response probabilities as a shift
of all threshold parameters I;Ck ;7 in the opposite direction. A similar identification problem exists for the
discrimination parameters dy; and the occasion-specific residual variance of the latent variable 0.
Assuming that an overall shift in the health responses over measurement occasions is more likely the
result of a change in latent health status than of a mean change in threshold parameters over occasions,
the following restriction is imposed: D, > . bex; = 0 for each j. For each occasion, the mean of the

thresholds ) " bx; is fixed to the arbitrary value of 0, where by; = . l;ck ;. Constraining the sum of
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the threshold parameters to be equal in both groups links the occasion-specific scales, while fixing this
sum to 0 identifies the model. For each occasion, the product of the discrimination parameters is fixed
to 1: [ dx; = 1 foreach j. This expresses the assumption that it is more likely for the latent health
variance to change over time than for all items to discriminate equally more or less. In addition to these
elementary identification constraints, the random effects occasion-specific item parameters will shrink
toward the general item parameters. The variance of item parameters over occasions will indicate the
degree to which the items are non-invariant.

The identification constraints deviate from the usual constraints for the GPCM for incomplete designs.
Traditionally, so-called ‘anchor’ items that have identical parameters over occasions are used to link the
scales. A reference occasion with fixed mean and variance is used to identify the scales. Restricting the
sum of the thresholds and the product of the discrimination parameters is a very natural way of identi-
fication in a random effects framework, however, as it allows the variance components to be estimated
freely. This is not possible when restricting specific distributional parameters. Problems would arise
with the specification of proper prior distributions and the results would be hard to re-scale. In addition,
unrestricted covariance components make it much easier to extend the model to include, for example
covariates, to explain variance in both the latent variable and the item parameters.

3. Estimation and inference

Combining all parts of the model described previously, the implied conditional model can be defined by
inserting Equation (6) and (7) into Equations (2) and (1). Hence, the likelihood model can be represented
by

exp (X6(Zijex))

C 9
>0 exp (226(Zijex))

P(Yijk = cl&y;. 0ij) =

where
Zijck = (ak +V;8ax + Eakj) ((xij B; + 518 + eij) = (bek + Vjek + Gb(,-k_/)) :

3.1. Estimation

In the hierarchical modeling approach, the parameters at each level are conditionally independent given
the parameters on the higher level. The resulting full posterior is therefore a product of the likelihood
and the hierarchical priors at each level:

p(0,.§,.|Y)o< 1_[ 1_[|:1:[p(yijk|gkj79ij)p(gkj|-):|p(9ij|-) ;

1

with conditional hierarchical priors for the latent variables p(6;; | .) and for the random item param-
eters p (5 kj | ) The hierarchical prior incorporating the mixed effects model on the latent variable is
constructed as follows:

pij | ) = pOi | xij, Bi,sij, §,0)p(Bi | Wi, ¥, T p(& | pe, Xe)p(o)),

and the hierarchical prior defining the growth model for the item parameter

p (§k,~ | ) =p (Ekjlskw?k,v,', Egk)p (Bx lpe Ze) p Bx | s Zp) p (Egk)-

To estimate the model parameters, an MCMC sampling method will be used. The first sampling step
for both person and item parameters will be a Metropolis—Hastings step, which samples correlated
and truncated group-specific item parameters. The hierarchical prior parameters will be sampled with
a Gibbs sampler. Conjugate hyperprior distributions will be used, which define a hierarchy of normal
distributions. The means and variances of the mean parameters p;, y, g and pg will be drawn from
normal-inverse Wishart distributions. The hyperpriors for the variance terms o; will be drawn from
inverse gamma distributions and the hyperpriors for the covariance matrices X £ from inverse Wishart
distributions. The full sampling scheme can be found in Appendix B. Software in the form of Splus or
R code combined with Fortran.dll file is available on request from the corresponding author.

- _______________________________________________________________________________________________|
Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012



Statistics
J. VERHAGEN AND J.-P. FOX

3.2. Exploring longitudinal invariance

The proposed model offers many opportunities to explore whether the item parameters are longitudinally
invariant. We will focus on two tests of longitudinal measurement invariance, a Bayes factor test focused
on invariance of the separate items, and the deviance information criterion (DIC) for the comparison of
models with and without invariance restrictions.

3.2.1. Bayes factor. The variance and covariance components of X g can be used to evaluate whether
the occasion-specific parameters are invariant over measurement occasions, and whether the discrimina-
tion and threshold parameters covary over time. To test longitudinal invariance of each item parameter, a
Bayes factor can be computed to compare the marginal likelihood of the nested models with and without
invariance of the parameter (see also [35]).

In case of nested models, the Bayes factor reduces to the ratio of the density (region) in accordance
with the null hypothesis under the prior and posterior distribution for the most general model [36,37].
Under the conditions that both models share the same conditional distribution of observed data and the
parameter space associated with the prior under the null hypothesis, denoted as ®y, is a subset of the
parameter space associated with the prior under the alternative hypothesis, ®1, the Bayes factor can be
evaluated as the posterior expectation of the ratio of prior densities.

Let p (agk | Ho), agk € Op and p (afk | Hl), alfk € Oy, where ®) C O, denote the prior under the

null hypothesis and the prior under the alternative hypothesis, respectively. The Bayes factor in favor of
the null hypothesis can be expressed as [38]

Joo » (92, 1 Ho) p (y102. ) do2, o, p (02, | Ho) p (v 102, ) do2,

Jo, (o2 1) p(yl0z, )doz p(yl Hi)
[ [l o),
Gl (abk | Hl) p(y| Hi) b N
| (Gbk lHO) 2 2
:/@l _m_ p(ylo3,. Hi)dof,

(Gbk | HO)

=E —|y7
(Ubk|H1>

The ratio of prior densities is evaluated using MCMC samples from the marginal posterior density of
ogk under the alternative hypothesis, given that the ratio is bounded on ®;. Because the specific null
hypothesis of a variance component of zero is on the boundary of the parameter space, the null hypothe-
sis will be specified as Hy : 02 < §, where § is a very small number which is chosen to represent a small
difference in the context of the problem under analysis [39-41].

The Bayes factor is the ratio of the support for the two models given the data and the prior information.
A Bayes factor higher than 1 indicates more evidence for the null hypothesis, and a Bayes factor lower

than 1 indicates more support for the alternative hypothesis.

3.2.2. DIC. The DIC of [42] will be used to compare the fit of models with and without invariant item
parameters. The deviance function will be defined as

D (A)=—2log | [] H[Hp(n,-klékj,eu)} : ©)
k

i J

The DIC consists of the posterior mean of the deviance corrected for the number of parameters in the
model. In hierarchical models, the number of parameters is hard to determine, which is solved in the DIC
by computing the effective number of parameters pp. The pp is computed by subtracting the deviance
at the posterior means from the posterior mean of the deviance.
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The DIC is given by

where D (A) is the posterior mean deviance and D (f\) the estimated deviance at the posterior estimate

of A.

Longitudinal measurement invariance can be tested by comparing two of the models with occasion-
specific item parameters with the DIC of the measurement invariant model. Both models have to be
estimated.

4. Results

4.1. Simulation study: parameter recovery

To check whether parameter recovery is accurate under the proposed estimation procedure, we performed
a simulation study. We generated a data set containing 800 cases with 10 measurement occasions each
from a model with both latent (Equation (7)) and item parameter (Equation (6)) growth. We gener-
ated measurement occasion times for each case, with varying starting points and time intervals between
the occasions.

We used normal distributions to draw person-specific means (N (0, 0.5)) and person-specific latent
time effects (N(0.2,0.5)). We drew within-person latent variable values from normal distributions
with the person-specific means and person specific variances from an inverse gamma distribution
1G(15,1/15). We also drew the general item parameters from normal distributions, with means equal to
1 for the discrimination parameters and means equal to =2 /3 for the threshold parameters. We simulated
the occasion-specific item parameters to be normally distributed around the general item parameters with
variances o,fckj = 0.02 and ngj = 0.04. We randomly assigned time effects to each item parameter,
varying between 0 and 0.5. We ran a single long MCMC chain with 1000 burn-in iterations and 10 000
final iterations.

In Table I, an illustration of the results can be found. For all general item parameters except for the
lower category of item 18, the true value fell within two standard errors of the posterior mean and the
posterior means did not differ systematically from the true values. The correlations between the true
values and the posterior means of the occasion-specific parameters, as well as the correlations between
the true values and the posterior means of the growth parameters were all above 0.94.

4.2. Application: intervention effects on depression level

We applied the proposed model to a study on the effects of guided self-help based on Acceptance Com-
mitment Therapy (ACT) [43]. We recruited participants through advertisements in Dutch newspapers
requesting people who want more out of their life but are hindered by depressive or anxiety symptoms.
We excluded respondents with very few symptoms, as well as respondents with a severe disorder, respon-
dents already receiving treatment, and respondents with a high risk of suicide. We randomly assigned
the remaining 376 participants to one of three conditions: ACT intervention with minimal or extensive
email support (250) and a waiting list (116) condition.

In the two experimental conditions, we administered questionnaires at five moments during the study:
at the start of the study and after 3, 6, 9, and 20 weeks. The respondents in the control condition only
answered the questionnaires at the start of the study and after 9 weeks. We assumed that missing occa-
sion measurements (2 for 12 experimental and 1 for 21 experimental and 3 control group members) were
missing randomly.

The aim of the data collection was to investigate whether the ACT intervention reduced depression
and anxiety. To measure depression, we used the Center for Epidemiologic Studies Depression (CES-D)
questionnaire [44], which consists of 20 items measuring symptoms of depression experienced in the
last week on a four-point scale (seldom or never, i.e. less than 1 day; sometimes, i.e. 1-2 days; often, i.e.
3—4 days; almost always, i.e. 5-7 days). For many items, we observed few or no responses in the highest
answer category. Therefore, for all items, we collapsed this category with the third category. This last
category now indicates the experience of the symptom for more than 3 days in the past week. One of the
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Table I. Simulation study: true values and posterior means and standard errors of general item parameters £x
and correlations between the true values and posterior means of occasion-specific (ax ., bex j . 0;;) and growth
(0k , Bi) parameters.
Item ay EAP(a;) SEa b1k EAP(by;)  SEby; bog EAP(byr)  SE by
1 1.20 1.16 0.10 —0.82 —0.79 0.08 0.52 0.51 0.08
2 1.20 1.24 0.06 —0.13 —0.11 0.06 1.00 1.02 0.08
3 0.98 1.04 0.07 —1.05 —1.12 0.09 —-0.73 —0.79 0.06
4 0.80 0.76 0.08 —0.11 —0.06 0.07 1.37 1.33 0.08
5 0.98 0.93 0.06 —1.50 —1.52 0.07 1.58 1.61 0.07
6 0.80 0.87 0.08 —1.26 —1.25 0.09 —0.76 —0.87 0.06
7 1.04 1.09 0.08 —0.86 —0.81 0.06 1.55 1.56 0.07
8 0.98 0.94 0.08 —0.08 0.02 0.08 0.11 0.02 0.07
9 0.85 0.79 0.05 —0.53 —-0.51 0.06 0.04 0.07 0.05
10 0.99 0.82 0.10 —1.54 —1.44 0.07 0.56 0.54 0.06
11 1.16 1.17 0.08 0.05 0.07 0.07 0.67 0.67 0.08
12 0.70 0.69 0.05 —0.08 —-0.10 0.07 0.59 0.55 0.07
13 1.19 1.15 0.06 —0.24 —0.13 0.07 1.79 1.77 0.08
14 1.02 0.93 0.06 —0.74 —0.70 0.06 0.69 0.70 0.06
15 1.02 1.02 0.09 —1.24 —1.19 0.07 0.49 0.53 0.06
16 0.92 0.90 0.06 —0.69 —0.58 0.07 0.27 0.28 0.07
17 1.20 1.18 0.07 0.76 0.82 0.07 1.34 1.26 0.08
18 0.99 0.95 0.07 —1.37 —1.20 0.07 —0.12 —0.13 0.05
19 0.98 0.98 0.05 —0.47 —0.37 0.06 0.73 0.76 0.06
20 1.20 1.16 0.07 —0.26 —0.18 0.07 0.49 0.46 0.07
Correlations between true values and posterior means
Pay 0.94
Pber 0.99

08 0.94

P6; ; 0.94

PB; 0.97

items generated almost no responses in the lowest category, and we removed this item for the analysis
without threatening the test validity. The content of the CES-D items is given in Appendix A.

In addition to the effect of the ACT intervention, we investigated the hypothesis that the process
of decreasing depression was mediated by a higher acceptance level [45,46]. Acceptance is character-
ized by patients becoming more able to embrace and accept negative personal experiences instead of
avoiding them [43]. Therefore, we measured the construct acceptance using the Acceptance and Action
Questionnaire [47].

Besides the hypotheses concerning change in depression level, we tested the hypotheses regarding
measurement invariance for each item. First, we determined whether the hypothesis of invariance held
for the item parameters, as described in Section 3.2.1. Then, we investigated the hypotheses that the
change in the non-invariant item parameters was described by a growth model (Section 2.2).

For all models, we ran a single long MCMC chain of 50 000 iterations, with a burn-in of 5000 itera-
tions. The trace plots showed good convergence characteristics, and the convergence statistics (Geweke
Z, autocorrelations) were satisfactory. We modeled the responses at the five measurement occasions with
the occasion-specific GPCM (Equation (2.1)).

4.2.1. Latent growth model. First, the model component for the latent variable depression was mod-
eled conditional on invariant item parameters, reducing the item parameter structure to the general item
parameters (Equation (5)). To evaluate whether the depression level of the experimental group members
decreased over time, and whether this decrease was related to the change in acceptance, three models
were compared.

In the first model, denoted as M1, a basic discrete time effect on depression was specified. The
common structure on the latent variable for the experimental and control group consisted of a random
intercept and fixed occasion means,

0ij = Boi +{jOccasion; + e;j,
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where e;; ~ N(0,0;) and Boi ~ N(y00.T00). The random intercept varied over individuals and
specified the between-subject variability in average depression levels conditional on occasion-specific
mean levels. An occasion-specific residual variance parameter was specified to model the unexplained
variability per measurement occasion.

In the second model, denoted as M2, a latent growth model was implemented. For individuals mea-
sured on more than two occasions, the latent growth model included a random intercept S¢; and a random
slope for a first (81;) and second (f5;) order polynomial time effect,

0ij = Boi + BriTime;; + ﬂzl-Time,-zj + ej;, withe;; ~ N(0,0;).

The random effects were assumed to be multivariate normally distributed, where the random intercepts
and first order slopes were defined conditional on membership of the control (Experimental = 0) or
experimental (Experimental = 1) group,

Boi = Yoo + yo1 Experimental; + vo;
Bii = y10 + y11 Experimental; + vy; (10)
B2i = y20 + va2i,

with v; ~ N(0,T). The time-point zero corresponds with the first measurement occasion such that the
random intercept variance specifies the between-subject variation in depression levels at the first mea-
surement occasion. Furthermore, between-subject variation was specified over the subject-specific linear
trend variable and quadratic time variable. The random effects were allowed to correlate using a common
covariance matrix. For individuals assessed at just two measurement occasions (i.e. the control group),
the latent trajectory was specified without the subject-specific quadratic time effect.

In the third model, denoted as M3, the subject-specific difference in acceptance between the first and
fourth measurement occasion was used as an explanatory third-level variable, denoted as Acceptance.
Subsequently, the random subject effects at level 3 are given by

Boi = Yoo + yo1 Experimental; + yop Acceptance; + vy;
B1i = Y10 + y11 Experimental; 4+ y1pAcceptance; + vy; (11)
Bai = y20 + va2i,

with v; ~ N(0,T).

In the upper part of Table II, the DIC of the three models is compared. The object is to select the best
model given invariant item parameters such that in a next stage, the assumption of longitudinal mea-
surement invariance can be evaluated. Conditional on invariant item parameters, the second and third
models have a substantially lower DIC than the first model, which indicates that the subject-specific
latent variable trajectory significantly improves the model fit. According to the DIC, the fit of model M3
does not increase relative to model M2. However, the DIC measures the fit of the random effects at level
1, which does not really change by adding acceptance as an explanatory variable. The common effect
of acceptance on the linear trend parameter of the latent variable trajectory of depression is significant
and large, around 1.06 (0.28), which shows that participants increasing their level of acceptance show
a significant decrease in their level of depression. As a result, model M3 will be used to evaluate the
longitudinal measurement invariance assumptions.

Table II. Deviance information criteria for models M1 to M6.

Model specification D D PD DIC
Investigating latent growth model (fixed item parameters over occasions)
M1: Discrete latent occasion effects 40191 41885 1694 43580
M2: Quadratic latent growth model with fixed condition effect 40116 41081 965 42047
M3: M2 corrected for change in Acceptance 40120 41082 962 42044
Investigating longitudinal measurement invariance (conditional on latent growth model M3)
M4: M3 allowing item parameter change for all items 40228 41234 1007 42241
M5: M4 with items indicated as invariant (BF > 3) restricted 39968 40992 1024 42015
M6: M5 with growth model on non-invariant item parameters 39909 40976 1066 42041
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4.2.2. Investigating longitudinal measurement invariance. In model M3, item parameters were
restricted to be measurement invariant over occasions, reducing the item parameter structure to the gen-
eral item parameters (Equation (5)). Given the latent growth structure of depression in model M3, this
model was generalized by assuming all item parameters to be measurement non-invariant using the
random item effects specification over time (Equation (3)), which will be referred to as model M4. A
restricted version of model M4, denoted as model M5, consisted of some items restricted to be invariant
and was used to evaluate partial longitudinal measurement invariance. In model M6, latent trajectories
were added to the identified non-invariant item characteristics of model M5.

In the lower part of Table II, the DICs of the generalized models from the full invariant model M3
are given. The data do not support the assumption of full longitudinal measurement non-invariance,
because the DIC of model M4 is lower than that of model M3. Subsequently, the measurement invariance
assumption of each item was evaluated. Therefore, the multiple marginal null hypotheses of longitudi-
nal measurement invariance were investigated using the Bayes factor specified in Equation (8) and by
examining the item parameter variances over time.

In Table III, for each item the estimated posterior standard deviation over time of the three item param-
eters are given under the label oy, , 0p,, , and 03, respectively. A high Bayes factor value supports the
null hypothesis of longitudinal measurement invariance. For items 5 and 19, the Bayes factors showed
substantially more evidence for longitudinal variance in the highest item threshold parameters than for
longitudinal invariance, as indicated by a Bayes factor lower than 0.33. The measurement invariance
assumption was at least three times more likely than measurement non-invariance for the parameters of
items 2, 8—10, and 12—16, for the threshold parameters of items 17 and 18, and for the discrimination
parameters of items 1-3, 5, and 19.

Model M5 was defined as a partially restricted measurement invariant model, where the measurement
invariant item parameters (i.e. tested to be invariant under model M4) were restricted to be invariant
over time. This model M5 showed a better fit to the data than both the full invariant (M3) and the full
non-invariant (M4) models according to the DICs represented in Table II. The test result supports the
joint hypothesis of partial measurement invariance.

In model M6, latent trajectories with a linear trend component were defined for the non-invariant item
characteristics. According to Equation (6), a latent trajectory was defined with a random intercept, defin-
ing the mean item characteristic level over time, and a time variable that models the trend over time.

Table III. For model M4, posterior variance estimates of random item characteristics over time and Bayes
factor estimates concerning the marginal measurement invariance null hypotheses and for model M6, latent
trajectory parameter estimates of the non-invariant item parameters.

Model M4 Model M6
Item og, BF oy, BF o0, BF 8ay SEggk 31k SEs,, S  SEs,,
1 0.15 5.18 0.14 658 021 145 —0.01 0.05 0.09 0.06
2 0.14 623 0.14 659 020 2.89 0.02 0.05 0.06 0.06
3 0.18 387 0.17 469 020 2.89 —0.06 0.05 0.03 .06
4 0.14 677 016 473 0.15 4.78
5 0.16 4.02 0.16 441 024 0.32 -0.03 0.06 0.09 0.06
6 029 188 041 1.03 023 3.30 0.13 0.08 —0.28 0.10 0.12 0.08
7 020 243 017 4.69 0.18 2.64 0.08 0.06 —0.16 0.08 0.05 0.06
8 0.14 677 0.15 6.17 0.14 6.79
9 0.17 421 0.14 638 0.17 4.00
10 0.14 730 0.13 8.02 0.17 4.18
11 0.16 259 0.18 353 0.18 234 0.02 0.03 -0.10 0.06 0.06 0.05
12 0.15 527 016 479 0.19 3.10
13 0.16 460 0.19 3.06 0.16 450
14 0.14 7.18 0.14 643 015 6.06
15 0.17 362 021 345 0.14 739
16 0.16 466 0.14 646 0.19 3.55
17 0.19 291 0.15 628 016 5.12 -0.02 0.05
18 0.18 183 0.14 698 0.15 554 —0.07 0.03
19 0.16 448 027 062 027 0.16 —0.08 0.05 0.11 0.06
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The estimated posterior mean trend effects and the standard errors can be found in Table III under model
M6. The discriminating effect of item 18 decreased significantly over time, whereas for items 6 and 7
the probability of responding with the second over the first category increased over time, and for item 19
the probability of responding with the third over the second category decreased over time. In Figure 3,
the significant shift in probabilities for the answer categories over time is illustrated for item 19, where
the category bounds as a function of depression level become more bold over time. This illustrates the
trend of the middle category to become more probable over time, as the lower threshold shifts downward
and the upper threshold shifts upward for each level of depression.

4.2.3. Latent developmental trajectory of depression. In Model M6, the subject-specific latent trajec-
tory of depression was modeled conditional on the partial measurement invariant item parameters. Model
M7 corresponds with model M6 but the explanatory variable change in Acceptance was excluded from

Category 1,

0.6

|
|
|

Category é,_ j

o

Category é,_

5T
1

P
0.4

0.2

0.0
1

Latent depression level

Figure 3. Item category response probabilities for item 19 on five measurement occasions.

Table I'V. Conditional on partial longitudinal measurement invariance, population param-
eter estimates, and standard errors of the mean latent trajectory of depression with and
without variable Acceptance.
Model M7 Model M6
Parameter EAP SE EAP SE
Fixed effects
Intercept Y00 0.13 0.07 0.13 0.07
Y10 —0.28 0.09 -0.15 0.09
Y20 0.17 0.02 0.17 0.02
Experimental Y01 —0.05 0.08 —0.06 0.08
Y11 —0.84 0.11 —0.78 0.11
Acceptance Y02 —0.03 0.23
V12 -1.06 0.28
Random effects
Residual variance level 2
01 0.04 0.01 0.04 0.01
02 0.10 0.03 0.10 0.03
03 0.09 0.03 0.09 0.03
04 0.04 0.01 0.04 0.01
05 0.05 0.02 0.06 0.02
Residual variance level 3
Too 0.52 0.05 0.52 0.05
T11 0.98 0.13 0.83 0.13
Iy 0.12 0.03 0.11 0.03
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Figure 4. Mean latent growth patterns of depression for the experimental and control group.

the latent trajectory function. The mean latent trajectory parameter estimates of both models can be
found in Table IV.

Model M7 shows a non-zero negative linear trend of depression for subjects in the control group
(y10 = —0.28, SE = 0.09), with a steeper negative mean trend for subjects in the experimental group
(y11 = —0.84,SE = 0.11). For the experimental group members, the negative linear mean trend is
decelerated by a second order time effect (y,9 = 0.17, SE = 0.02). The estimated random effects
variances show that there is heterogeneity in depression levels at the start of the study and significant
between-subject variation in trend effects and in the decelerating effects of the squared time variable.

The inclusion of the level-3 variable ‘change in acceptance’ to explain heterogeneity in the subject-
specific trajectory parameters (intercept and trend) annihilates the first order time effect for the control
group (Y10 = —0.15, SE = 0.09), which is no longer significantly different from 0. It also slightly atten-
uates the negative linear mean trend in depression for the experimental group (y1; = —0.78, SE = 0.11).
The decrease of both effects indicates that part of the decrease of depression over time can be explained
by an increase in level of change in acceptance. The same effect is also indicated by a decrease in
the residual variance in first order slopes from 0.98 to 0.83, when conditioning on the change in
acceptance. A strong effect was found of positive change in acceptance on decrease in depression
(y12 = —1.06, SE = 0.28). The other variance components were unaffected by the inclusion of
acceptance. The small residual variances at level 2 show that models M6 and M7 explain most of the
heterogeneity per measurement occasion.

Figure 4 shows the predicted occasion means of depression for the experimental and control group
and 95% credible intervals. The mean depression level in the experimental group declined much
steeper than that of the control group resulting in a lower average depression level at measurement
occasion four.

5. Discussion

In this paper, we proposed a joint growth model with random occasion-specific parameters for both
latent health and item parameters to measure changes in latent health status over time. Instead of assum-
ing longitudinal invariance of the measurement model, we modeled variance in item parameters over
measurement occasions with a growth model. The result is a multilevel growth model that reflects the
effects of time characteristics on the occasion-specific item parameters and on the latent health construct
simultaneously. Using the more flexible occasion-specific item parameters, change in the latent variable
can be measured more accurately. In addition, the change in item parameters can provide insight into
the process of longitudinal measurement. It can be used, for example, to detect and account for response
shift (e.g. [29,48]) by testing whether item parameters are changing over time and by explaining this
shift with time-related variables.

A simulation study showed accurate parameter recovery for most of the general, the occasion-specific,
and the growth parameters in both the latent and the item parameter growth models.

The analysis of a randomized trial on depression showed that the item parameters did change over
measurement occasions. For some items, participants were more inclined to answer toward the middle
category instead of the lowest or highest category over time. Conditional on this item parameter change,
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there was an overall decrease in depression level for the experimental group, taking subject-specific
change over time into account. The decrease in depression was stronger for the experimental group than
for the control group. The change in depression level was steeper for the participants with a larger change
in acceptance level.

A natural next step is to investigate what causes the shifts in item parameters and how to handle this in
the best way. In addition, health questionnaires often consist of clusters of items, of which some may be
more sensitive to change over time than others. To model this, it would be possible to include covariates
with item characteristics for each item on the third level to predict differential time paths for items with,
for example, specific content.

Appendix A. CES-D Questionnaire

Below is a list of the ways you might have felt or behaved. Please tell me how often you have felt this
way during the past week:

Rarely or none of the time (less than 1 day)

Some or a little of the time (1-2 days)

Occasionally or a moderate amount of time (3—4 days)
Most or all of the time (5-7 days)

During the past week:

I was bothered by things that usually don’t bother me.
I did not feel like eating; my appetite was poor.

I felt that I could not shake off the blues even with help from my family or friends.
I felt that I was just as good as other people.

I had trouble keeping my mind on what I was doing.

I felt depressed.

I felt that everything i did was an effort.

I felt hopeful about the future.

I thought my life had been a failure.

10. I felt fearful.

11. My sleep was restless.

12. Italked less than usual.

13. I felt lonely.

14. People were unfriendly.

15. Tenjoyed life.

16. T had crying spells.

17. I felt sad.

18. I felt that people dislike me.

19. I could not get ‘going’.

XN RO =

removed: I was happy.

Appendix B. MCMC Algorithm

The combination of truncated and correlated random effects with the identification restrictions described
in Section 2.4 makes the model unfortunately not suitable for estimation in programs such as Winbugs or
Mplus. The sampler was written in Fortran and can be called from Splus. It is available from the authors.
To sample the parameters of the joint growth model, an MCMC sampling scheme has been developed
with a Metropolis—Hastings step for the sampling of the occasion-specific item and person parameters
and a Gibbs sampler for the the higher level parameters.
At the m + 1th iteration,

1. For each k, j, and ¢, sample a proposal é:kj (c =1,...,C) from N <~C(',:’j),o,%lh§), where

Orih&‘ is tuned during the process to acquire an acceptance rate between 0.3 and 0.5. Let E,:f =

(§1kj, v €=k S+ k) - - s $ij)- The acceptance ratio R is the posterior probability ratio
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of the proposed value .g;c* and the previously sampled value é(m)

- (m) ~—c
P (ves 1€ 0 8 ) p (s 1650850 v, 817 20)

R =
z z (m)
p (i 0.0 85 ) o (B0 1650850 v, B 207)

A random uniform number u.x; is drawn, and the proposal is accepted when u.x; < R.
2. For each k and j and for each discrimination parameter ¢ = 0, sample E(’;k from

(é(();:’]) Opp E) 1 (Eok] > (). Because the proposal density is truncated, the acceptance ratio R

is

(m)

(m+1) z ~(m+1) Eoks
(31 1By 050 p (B 160000 B0 0 @ (1)

zm
Ek

(m+1) ~(m+1) Fx o\

p (e 1850 &0 7) p (B 1650850 v, &1 ,zgk’)Q(Em)

Omh

R =

A random uniform number u¢g; is drawn, and the proposal is accepted when ugx; < R.

3. For each i, sample 9* from N (9('") O ) The acceptance ratio R is

~(m+1)
p(vi 165 8") p (67 1%, B 515,80 (™)
~(m+1) ’
(y,, | Q(m) § )P (Gi(;n) | xi7. B i) C(m),oj(m))

A random uniform number u;; is drawn, and the proposal is accepted when u;; < R.

4. For each k, sample the general item parameters ’g',(cmﬂ) and time coefficients § ,(CmH) from the full
conditional
SOk (n D) ECk (m) | ./\/( * *)
vec . ~N(nT,R7),
( 8ok ) ( Sck )
where

-1
Q*—lz):g;@([l v]’[l v]) +):E‘81,

g’:qk Mo

" - ¢ —1 80k -1 M’(SO
w=zte ([t vI[r v]) | o [+ZE | o []

S(Z‘k Hec

Sck s

R . 5
with [ ?k ]:([ Ly v]) [1 v
k
and Xgs = (Ugo @ 250) ®...H (Ogc @ Z,gc) .
5. For each k, sample Zémﬂ) from the full conditional
k
3 (m+1) | E(m+1)

&k
where § = (gk — (& + VSk))/ (gk — (& + VSk)) .

£ 80 Sog .o ~IW ((no + J/2). (Sog, +5)) .
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6. Sample [l,ém—H) and ngﬂ) from the full conditionals

K - 3
" | El(cmH)’Zém)’KONN(Ko%-Kg’KojK)’

ngﬂ) | E,(cmﬂ),v,KO,SOS,NIW(K"‘V’Z*)’

with
E=) &/K
k
J— - K e
T =S80, + K ((Ex —5)(E—8)') + W;@“ '

7. Sample u§m+1) and E§m+1) from the full conditionals

(m+D) | gmtD) ) g K 3 X
s | k A N(K0+K 7I{()-i-l( ’

2D 189 ) Ko, Ses ~IW (K +v, %),
with

§=) 8/K.
k

_ _ KKo -
3% =Sos + K (65 — 8)(8x —8)") + 0 §5'

86 .
K + K,

8. For each i, sample 8 §m+1) from the full conditional

ﬂl(m-i-l) | 0§m+1),0‘](-m),T(m),}’(m),g(m)NN(IL’B,Zﬂ),

where

9. Sample y ™+ from the full conditional
p D gD T g N, ),
where
Ry =Xy ngT_lﬂiv
i
-1
%, = <ZW§T—1W,- + SO—;) :
i

10. Sample T+ from the full conditional

T | gD et (Gor ~ TV ((HOT +1), (SOT + (B —wiy)(B; — wl-y)’)) :
i
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11. Sample & 4D and §m+1) from the full conditionals

K . X
(m+1) | g(nt1) glm+1) y(m) _ Ar ¢
¢ | B e K0+NC’K0+N '

ng-i-l) | ;(m)’ v, Ko, So¢ ~IW (K + v, E*) )
with £ = (s's)™! (s"(6 —xPB)) .

NKo [s\! /2
and):*ZSog+N((9—X,3)—S§)l((0_Xﬁ)_so+N_|_})(0 (C) (C)

12. Sample o}mH) from the full conditional

Oj(m+1) | 0§m+1)’ﬂ(m+1)7 §(m+1),"07500 ~1IG (nj T g, s* + SOO‘) 7

where s* = Zj (6 —xiB;) —siS)
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