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1.1 Introduction
Research on behavior and attitudes typically relies on self-reports, especially when
the infrequency of behavior and research costs make it hardly impractical not to do
so. However, many studies have shown that self-reports can be highly unreliable and
actually serve as a fallible source of data.

Results from self-reports are often influenced by such factors as the question
order, wording, or response format, even when they contain simple behavioral ques-
tions. In general, the psychology of asking questions has received considerable atten-
tion in the literature (e.g., Sudman, Bradburn, & Schwarz, 1996; Tourangeau, Rips,
& Rasinski, 2000), and a growing body of research has provided sound methods of
question development that do improve the quality of self-report data.

Finally, the quality of self-report data depends on the respondents’ willingness to
cooperate and give honest answers. Especially for sensitive topics, it is known that
people tend to report in a socially desirable way; that is, in the direction of the re-
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searcher’s expectations and/or what reflects positively on their behavior. Thus, sensi-
tivity of the questions easily leads to misreporting (i.e. under- or overreporting), even
when anonymity and confidentiality of the responses is guaranteed. This observation
is supported by considerable empirical evidence. For instance, survey respondents
underreported socially undesirable behavior such use of illicit drugs (Anglin, Hser,
& Chou, 1993), the number of sex partners (Tourangeau & Smith, 1996), desires for
adult entertainment (De Jong, Pieters, & Fox, 2010), welfare fraud (van der Heij-
den, van Gils, Bouts, & Hox, 2000), and alcohol abuse and related problems (Fox &
Wyrick, 2008).

In order to overcome respondents’ tendencies to report inaccurately or even to
refuse to provide any response at all, strategies have been developed to deal with
them. Typically, anonymity of the respondents is guaranteed and explicit assurances
are given that each of their answers will remain completely confidential. Besides,
questions are often phrased such that tendencies to provide socially desirable answers
are diminished. Furthermore, respondents are motivated to provide accurate answers
by stressing the importance of the research study.

Other ways of avoiding response tendencies to report inaccurately are based on
innovative data collection methods that make it impossible to infer any identifying
information from the response data. A general class of such methods for sensitive
surveys is based on the randomized response technique (RRT) (Fox & Tracy, 1986),
which involves the use of a randomizing device to mask individual responses. RRT
has originated from Warner (1965), who developed a randomized response (RR) data
collection procedure, where respondents are confronted with two mutually exclusive
questions, for instance, “I belong to Group A,” and “I do not belong to Group A.” A
choice is made between the two statements using a randomizing device (e.g., tossing
of a die or use of a spinner). The randomization is performed by the respondent
and the outcome is not revealed to the interviewer. The respondent then answers
the question selected by the randomizing device. The interviewer only knows the
response, not the question.

Because of this setup, the RR technique encourages greater cooperation from
respondents and reduces socially desirable response behavior. The properties of the
randomizing device are known, which still allows for population estimates of the
sensitive behavior, for instance, proportions of the population engaging in a particular
kind of behavior or, more generally, membership of Group A. Further analysis of the
univariate RR data is limited to inferences at this aggregate data level.

Measurements of individual sensitive behaviors require support by multivariate
randomized item-response data. The purpose of this chapter is to give an overview
of item response theory models modified such that they are suitable for the analysis
of multivariate RR data. The general class of such models is referred to as random-
ized item-response theory (RIRT) models (Fox 2005; Fox & Wyrick 2008) or item
randomized-response (IRR) models (Böckenholt & van der Heijden, 2007). Different
RIRT models for binary, ordinal, and mixed responses are presented. Furthermore, it
is shown how to extend these models to handle non-compliance, i.e., when respon-
dent do not follow the RR instructions (Clark & Desharnais, 1998), as well as allow
for measurement of multidimensional constructs. Our compensatory multidimen-
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sional modeling approach generalizes the noncompensatory model by Böckenholt
and van der Heijden (2007), who considered multiple item bundles each measuring
a specific construct given binary response data.

1.2 Presentation of the Models

In Warner’s (1965) approach, a randomizing device (e.g., die, spinner) is required
to make the choice between two logically opposite questions. The setup guarantees
the confidentiality of each individual response, which cannot be related to either of
the opposite questions. Greenberg et al. (1969) proposed a more general unrelated
question technique, where the outcome of the randomizing device controls the choice
between a sensitive question and an irrelevant unrelated question.

Edgell, Himmelfarb, and Duchan (1982) generalized the procedure by introduc-
ing an additional randomizing device to generate the answer on the unrelated ques-
tion. The responses are then completely protected since it becomes impossible to
infer whether they are answers to the sensitive question or forced answers generated
by the randomizing device. Let the randomizing device select the sensitive question
with probability φ1 and a forced response with probability 1−φ1. The latter is sup-
posed to be a success with probability φ2. Let Upi denote the randomized response of
person p = 1, . . . ,P to item i,1, . . . , I. Consider a success a positive response (score
one) to a question and a failure a negative response (score zero). Then, the probability
of a positive randomized response is represented by

P{Upi = 1;φ1,φ2}= φ1P
{

Ũpi = 1
}
+(1−φ1)φ2 (1.1)

where Ũpi is the underlying response, which is referred to as the true response of
person p to item i when directly and honestly answering the question.

For a polytomous randomized response, let φ2(a) denote the probability of a
forced response in category a for a = 1, . . . ,Ai such that the number of response cat-
egories may vary over items. The probability of a randomized response of individual
p in category a of item i is given by,

P{Upi = a;φ1,φ2}= φ1P
{

Ũpi = a
}
+(1−φ1)φ2(a). (1.2)

It follows that the forced randomized response model is a two-component mix-
ture model, with the first component modeling the responses to the sensitive question
and the second component modeling the forced responses. The mixture probabilities
are controlled by the randomizing device. When φ1 > .5, the randomized response
data contain sufficient information to make inferences from the responses.
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1.2.1 Randomized IRT Models

In a multivariate setting, multiple items are used to measure an individual latent vari-
able or construct (e.g., alcohol dependence; academic fraud) from multiple correlated
randomized item responses. In this setting, the characteristics of the randomizing de-
vice are allowed to vary over items. For example, although they relate to the same
sensitive latent variable, the sensitivity of items may vary. The variation in sensitiv-
ity can then be controlled by adjusting the randomizing device properties. But this
option will not be further discussed here.

In randomized IRT modeling, the goal is to model the true item responses, Ũ,
which are latent because they are randomized before being observed. For dichoto-
mous response data, the two-parameter (2PL) normal-ogive model defines the prob-
ability of a positive response given the sensitive latent construct θp and item discrim-
ination and difficulty parameter ai and bi, respectively, which is given by

πpi = P
{

Ũpi = 1;θp,ai,bi

}
= Φ(ai (θp−bi)) , (1.3)

where Φ(.) denotes the cumulative normal distribution function.
For polytomous responses, the probability of a response in category a of person

p is supposed to be given by

πpi(a) = P
{

Ũpi = a;θp,ai,bi

}
= Φ

(
ai
(
θp−bi,(a−1)

))
−Φ(ai (θp−bi,a)) (1.4)

where vector bi contains the threshold parameters of item i , which follow the order
restriction: bi1 < .. . < biA for response alternatives a = 1, . . . ,A (for more on this
type of graded response model, see Samejima, vol. 1, chap. 6).

The last model can be extended to deal with questionnaires with items that mea-
sure multiple sensitive constructs. Let the multidimensional vector θθθi of dimension
D denote these constructs. Then, the probability of a true response in category a is

πpi(a) = P
{

Ũpi = a;θθθp,aaai,bbbi

}
= Φ

(
aaat

i
(
θθθp−bi,(a−1)

))
−Φ

(
aaat

i (θθθp−bi,a)
)

(1.5)

where the vector of discriminations (factor loadings) of dimension D specifies the
weights for each underlying dimension.

The models in (1.3)-(1.5) can be embedded in a randomized response model-
ing framework. For example, for two-parameter normal-ogive model for the true
responses, the overall model becomes

P{Upi = 1;θp,ai,bi}= φ1P
{

Ũpi = 1;θp,ai,bi

}
+(1−φ1)φ2. (1.6)

Thus, by combining the randomized response technique with an IRT model, la-
tent individual sensitive traits can be measured given observed randomized item re-
sponses. A major advantage of using an IRT model is its separation of item parame-
ters and person parameters. Consequently, it can be used to interpret individual dif-
ferences on the latent trait that is measured, allows for more complex test designs,
and handles measurement error at the individual level.



Bayesian Randomized Item Response Theory Models for Sensitive Measurements 5

1.2.2 Noncompliant Behavior

Despite the protection of privacy offered by randomized response techniques, some
respondents may still show noncompliant behavior and consistently select the least
self-incriminating response and completely ignore the randomized response instruc-
tions. Clark and Desharnais (1998) proposed a method to estimate the extent of non-
compliance using two sampled groups each confronted with a different randomized
response designs. Böckenholt and van der Heijden (2007) and Cruyff, van den Hout,
van der Heijden, and Böckenholt (2007) proposed the use of a two-component latent
class model, where one group consists of respondents that follow the randomized
response instructions and a second group of respondents does not follow them.

RIRT modeling can be extended to account for noncompliance. In order to do
so, let a binary latent class variable be Gpi = 1 when person p responds to item i in
a noncompliant (self-protective) way and Gpi = 0 when p responds in a compliant
way. Then, the randomized item response model in Equation (1.6) is

P{Upi = 0}= P{Gpi = 0}P{Upi = 0;θp,ai,bi}+P{Gpi = 1} I (Upi = 0) .

where I (Upi = 0) equals one when the answer to item i of respondent p is zero and
equals zero otherwise. This mixture model consists of a randomized item response
model for the compliant class but a different model for the noncompliant class. Infer-
ences are made from the responses by the compliant class, which requires informa-
tion about the behavior of the respondents. That is, the assumption of an additional
response model for Gpi is required (e.g., De Jong et al., 2010; Fox, 2010).

1.2.3 Structural Models for Sensitive Constructs

Respondents are usually independently sampled from a population, and a normal
distribution is often used to describe the distribution of the latent variable. If so, the
population model for the latent person variable is

θp ∼ N(µθ,σ
2
θ)

For more complex sampling designs, respondents can be clustered, and the model
for the population distribution needs to account for the dependencies between respon-
dents in the same cluster. As described, among others, by Fox (2010) and Fox and
Glas (2001; vol. 1, chap. 24), a multilevel population distribution for the latent per-
son parameters needs to be defined. Let θp j denote the latent parameter of person p
in group j ( j = 1, . . . ,J). The population distribution becomes

θp j ∼ N
(
β j,σ

2
θ

)
β j ∼ N

(
µθ,τ

2
00
)
.

Or, for the multidimensional case,

θθθp ∼ N (µµµθ,ΣΣΣθ) ,

where the covariance matrix of dimension D specifies the within-person correlations.
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This multidimensional model can also be extended to include a multilevel setting, but
this case will not be discussed. Also, to explain variation between persons in latent
sensitive measurements, explanatory variables at the level of persons and/or groups
can also be included. Finally, variation in item parameters can also be modeled as
described in De Boeck and Wilson (2004; vol. 1, chap. 33) and De Jong et al. (2010).

1.3 Parameter Estimation

A fully Bayesian estimation method with MCMC sampling from the posterior distri-
bution of the parameters is presented. The method requires prior distributions for all
model parameter. Non-informative inverse gamma priors are specified for the vari-
ance components. An inverse Wishart prior is specified for the covariance matrix.
Normal and lognormal priors are specified for the difficulty and discrimination pa-
rameters, respectively. A uniform prior is specified for the threshold parameters while
accounting for the order constraint.

Following the MCMC sampling procedure for item randomized-response data in
Fox (2005, 2010), Fox and Wyrick (2008), and De Jong et al. (2010), a fully Gibbs
sampling procedure is developed which consists of a complex data augmentation
scheme: (i) sampling of latent true responses, ŨUU ; (ii) sampling latent continuous re-
sponse data, ZZZ; and (iii) sampling latent class membership GGG. The item response
model parameters and structural model parameters are sampled in a straightforward
way given the continuous augmented data, as described by Fox (2010) and Johnson
and Albert (2001).

Omitting conditioning on Gpi = 0 for notational convenience, the procedure is de-
scribed for latent response data generated only for responses belonging to the com-
pliant class. A probabilistic relationship needs to be defined between the observed
randomized response data and the true response data. To do so, define Hpi = 1 when
the randomizing device determines that person i answers item i truthfully and Hpi = 0
when a forced response is generated. It follows that the conditional distribution of a
true response a given a randomized response a′ is given by

P
{

Ũpi = a′ |Upi = a
}

=
P
{

Ũpi = a′,Upi = a
}

P{Upi = a}

=
∑l∈{0,1}P

{
Ũpi = a′,Upi = a | Hpi = l

}
P{Hpi = l}

∑l∈{0,1}P{Upi = a | Hpi = l}P{Hpi = l}
,

where a,a′ = {0,1} and {1,2, . . . ,Ai} for binary and polytomous responses, respec-
tively.

For binary responses, πpi in Equation 1.3 defines the probability of a success.
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Subsequently, the latent responses are Bernoulli distributed,

Ũpi |Upi = 1,πpi ∼ B
(

λ =
πpi (p1 + p2(1− p1))

p1πpi + p2(1− p1)

)
,

Ũpi |Upi = 0,πpi ∼ B
(

λ =
πpi(1− p1)(1− p2)

1− (p1πpi + p2(1− p1))

)
.

For polytomous response data, πpi is defined in Equation (1.4) or (1.5), and Ũpi given
Upi = a is multinomially distributed with cell probabilities

∆(a) =
πpi(a′)p1I(a = a′)+πpi(a′)(1− p1)p2(a)

πpi(a)p1 +(1− p1)p2(a)
.

Following the data augmentation procedure of Johnson and Albert (2001) and Fox
(2010), latent true response data are sampled given the augmented dichotomous or
polytomous true response data.

The latent class memberships, Gpi, are generated from a Bernoulli distribution.
Let Ypi = 0 define the least self-incriminating response, then the success probability
of the Bernoulli distribution can be expressed as

P{Gpi = 1} I (Ypi = 0)
P{Gpi = 0}P{Ypi = 0 | θp,ai,bi}+P{Gpi = 1} I (Ypi = 0)

where a Bernoulli prior is usually specified for the class membership variable Gpi.
Given the augmented data, class memberships, true responses, and latent true

responses, all other model parameters can be sampled using a full Gibbs sampling
algorithm. The full conditionals can be found in the MCMC literature for IRT (e.g.,
Junker, Patz, & Vanhoudnos, vol. 2, chap. 15).

1.4 Model Fit
A Bayesian residual analysis can be performed to evaluate the fit of the model. Resid-
ual analysis for binary and polytomous item response models has been suggested
by De Jong et al. (2010), Fox (2010), Geerlings, Glas, and van der Linden (2011),
and Johnson and Albert (2001). Posterior distributions of the residuals can be used
to evaluate their magnitude and make probability statements about them. Bayesian
residuals are easily computed as by-products of the MCMC algorithm, and they can
be summarized to provide information about specific model violations. For instance,
sums of squared residuals can be used as a discrepancy measure for evaluating person
or item fit. The extremeness of the observed discrepancy measure can be evaluated
using replicated date generated under their posterior predictive distribution. Like-
wise, the assumption of local independence and unidimensionality can be checked
using appropriate discrepancy measures. For an introduction to posterior predictive
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checks, see Sinharay (vol. 2, , chap. 19). Studies of different posterior predictive
checks for Bayesian IRT models are reported in Glas and Meijer (2003), Levy, Mis-
levy, and Sinharay (2009), Sinharay, Johnson, and Stern (2006), and Sinharay (2006).

1.5 Empirical Example
In a study of alcohol-related expectancies and problem drinking, responses to thirteen
items of the College Alcohol Problem Scale (CAPS; O’Hare, 1997) and four items
of the Alcohol Expectancy questionnaire (AEQ; Brown, Christiansen, & Goldman,
1987) were analyzed. The goal was to measure the sensitive constructs underlying
both scales using multidimensional item response theory. Furthermore, it was inves-
tigated whether the randomized response technique improved the accuracy of the
self-reports obtained by direct questions.

1.5.1 CAPS and AE Questionnaire

As an initial screening instrument, the CAPS instrument was developed to mea-
sure drinking problems among youth. Its items covered socio-emotional problems,
such as hangovers, memory loss, nervousness, and depression, as well as community
problems, such as drove under the influence, engaged in activities related to illegal
drugs, problems with the law. The questionnaire items are given in Appendix A. Self-
reported information about negative consequences of drinking is likely to be biased
due to socially desirable responding. Consequently, the survey was expected to lead
to refusals to respond and responses given to conceal undesirable behavior. There-
fore, a randomized response technique was used to improve both the cooperation by
the respondents and the accuracy of their self reports.

The AEQ measures the degree of expectancies associated with drinking alcohol.
Alcohol-related expectancies are known to influence alcohol use and behavior while
drinking. The adult form of the AEQ consisted of 90 items and covers six dimensions.
But in the study the focus was on alcohol-related sexual enhancement expectancies.
The items covering sexual enhancement expectancies are given in Appendix A. The
data were collected on a five-point ordinal scale, ranging from one (almost never) to
five (almost always).

The CAPS data were re-analyzed by Fox and Wyrick (2008), who used a unidi-
mensional randomized item response model to measure general alcohol dependence.
Although the model described the data well, CAPS was developed by O’Hare (1997)
to measure different psychosocial dimensions of problem drinking among college
students. Two of the dimensions, socio-emotional and community problems, were
identified by analysis. Together, they explained more than 60% of the total variance
of the responses. In the present study, a multidimensional modeling approach was
carried out to investigate whether the CAPS data supported the measurement of mul-
tiple sensitive constructs given randomized responses. Besides, the multidimensional
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model was also used to jointly analyze the CAPS and AEQ data for the relationships
between the multiple factors they measure. Finally, the effects of the randomized
response technique on the measurement of their factors was analyzed jointly.

1.5.2 Data

A total of seven hundred ninety-three students from four local colleges/universities,
Elon University (N=495), Guilford Technical Community College (N=66), Univer-
sity of North Carolina (N=166), and Wake Forest University (N=66), participated in
the survey study in 2002. Both the CAPS and AEQ items were administered to them
and their age, gender, and ethnicity was recorded. It was logistically not possible to
randomly assign students to the direct questioning (DQ) or the randomized response
(RR) condition. However, it was possible to randomly assign classes of five to ten
participants to one of the conditions.

A total of 351 students was assigned to the DQ condition. They served as the con-
trol group and were instructed to answer the questionnaire as they normally would. A
total of 442 students in the RR condition received a spinner to assist them in complet-
ing the questionnaire. For each item, the spinner was used as a randomizing device
which determined whether to answer honestly or to give a forced response. Accord-
ing to a forced response design, the properties of the spinner were set such that an
honest answer was requested with a probability of .60 and a forced response with a
probability of .40. When a forced response was to be given, each of the five possible
responses had a probability of .20.

1.5.3 Model Specification

The following multidimensional randomized item response model was used to ana-
lyze the data,

P(Ypi = a | θθθp,aaai,bbbi) = p1πpi +(1− p1)p2(a)

πpi = Φ
(
at

i
(
θθθp−bi,(a−1)

))
−Φ

(
at

i (θθθp−bi,a)
)
, (1.7)

θθθp ∼ N
(
µµµθ,p,ΣΣΣθ

)
µµµθ,p = βββ0 +βββ1RRp

for a= 1, . . . ,5 and i= 1, . . . ,17. As just indicated, in the forced randomized response
sampling design, p1 = .60 and p2(a) = .20, for a = 1, . . . ,5, whereas for the direct-
questioning conditioning p1 = 1. The explanatory variable RRp was equal to one
when student p belonged to the RR group and equal to zero otherwise. The factor
loadings, a, and item thresholds were assumed to be independent of the questioning
technique.

Following Béguin and Glas (2001), the model was identified by fixing the mean
score for each dimension, such that βββ0 = 0, while the variance components for each
factor to set equal to one. To avoid the so-called rotational variance, one item was
assigned uniquely to each of the Q dimensions.
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The MCMC algorithm was used to estimate simultaneously all model parameters
using 50,000 iterations, with a burn-in period of 10,000 iterations.

1.5.4 Results

In Table 1.1, the estimated factor loadings for a three-factor of the multidimensional
RIRT model in (1.7) are given. The factor loadings were standardized by dividing
each of them by the average item loading. Furthermore, for each factor the sign of
the loadings was set such that a higher latent score corresponded to a higher observed
score. To avoid label switching, Items 1, 5, and 14 were allowed to have one free non-
zero loading, so that each of these items represented one factor.

Items 1-4, 6,8, and 9 were positively associated with the first factor and had factor
loadings higher than .60. This first factor represents drinking-related socio-emotional
problems, including depression, anxiety, and troubles with family. These problems
increased with alcohol consumption. Some of the items also loaded on the two other
factors.

The second factor (community problems) covered Items 5,7,and 10-13, with
loadings higher than .60, except for Item 12. In the literature, Item 12 has been asso-
ciated with factor community problems, but in our analysis the item also related to
the other factors, most strongly to the third. This second factor covers acute physio-
logical effects of drunkness together with illegal and potentially dangerous activities
(e.g., driving under the influence).

As expected, Items 14-17 were associated with a third factor, which represented
alcohol-related sexual enhancement expectancies. These expectancies increased with
alcohol consumption but, given their negative loadings on the other two factors,
slightly reduced the socio-emotional and community problems.

The multivariate latent factor model was extended with an explanatory variable
denoted as RR, which indicated when a student was assigned to the RR (RR=1) or
the DQ condition (RR=0). In addition, an indicator variable was included, which
was set equal to one when the respondent was a female. Both explanatory variables
were used for each factor. The RIRT model was further extended with a multivariate
population model for all factors.

In Table 1.2, the parameter estimates of the three-factor and a two-factor model
are given. For the latter, the loadings of Items 1 and 14 were fixed to identify two fac-
tors, with one factor representing a composite measure of alcohol-related problems
(i.e., socio-emotional and community problems) and the other alcohol-related sexual
enhancement expectancies. A moderate positive correlation of .65 between the two
factors was found.

The students in the RR condition scored significantly higher on both factors. For
the RR group, the average latent scores were .20 and .22 on the composite problem
and the alcohol-related expectancy factors, respectively, but both were equal to zero
for the DQ group. The RR effect was slightly smaller than that of .23 reported by
Fox and Wyrick (2008), who performed a unidimensional RIRT analysis using the
CAPS items only. A comparable effect was found for the AEQ scale. Females and
males showed comparable scores on both factors.
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TABLE 1.1
CAPS-EAQ Scale: Weighted factor loadings for the three-component analysis.

Subscale Items Three-Factor RIRT Model
Socio-Emotional problems Factor 1 Factor 2 Factor 3

1 Feeling sad, blue or depressed 1.00 .00 .00
2 Nervousness or irritability 1.00 .01 -.03
3 Hurt another person emotionally .96 .27 .10
4 Family problems related to drinking .82 .56 .14
6 Badly affected friendship .85 .46 .27
8 Other criticize your behavior .77 .50 .41
9 Nausea or vomiting .70 .39 .60

Community problems Factor 1 Factor 2 Factor 3
5 Spent too much money on drugs .00 1.00 .00
7 Hurt another person physically .48 .84 .26
10 Drove under the influence .43 .74 .53
11 Spent too much money .59 .66 .47
12 Feeling tired or hung over .57 .41 .71
13 Illegal activities .05 .96 .29

Sexual enhancement Factor 1 Factor 2 Factor 3
14 I often feel sexier .00 .00 1.00
15 I’m a better lover -.09 -.12 .99
16 I enjoy having sex more -.14 -.06 .99
17 I am more sexually responsive -.17 -.03 .99

In the three-factor model, with the estimated loadings given in Table 1.1, the
problems associated with drinking were represented by two factors (i.e., socio-
emotional and community problems) and sexual enhancement expectancies by an-
other factor. The randomized response effects were significantly different from zero
for all three factors, while the effect on the factor representing community problems
related to alcohol use was approximately .32. This was slightly higher than the ef-
fects of the other components, which were around .21. It seemed as if the students
were less willing to admit to alcohol-related community problems and gave more
socially desirable responses than for the other factors.

The male students scored significantly higher than the female students on the
factor representing community problems related to alcohol use. That is, male students
were more likely to experience alcohol-related community problems than females.
This gender effect was not found for the other factors. The estimated effects indicated
that the RR-group scored significantly higher in comparison to the DQ-group on each
subscale. Although validation data are not available, the RR technique was expected
to have led to an improved willingness of the students to answer truthfully, given their
random assignment to the direct questioning and randomized response conditions.

Finally, the three factors yielded moderate positive correlations, as shown in Ta-
ble 1.2. The factors community and socio-emotional problems correlated positively
with sexual enhancement expectancies due to alcohol use. In line with the alcohol
expectancy theory, more positive expectancies of alcohol use lead to more positive
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drinking experiences, which in turn lead to more positive expectancies. Here, an in-
creased expectancy of sexual enhancement stimulates alcohol use, which leads to
more socio-emotional and community problems.

1.6 Discussion

Response bias is a serious threat to any research that uses self-report measures. Sub-
jects are often not willing to cooperate or to provide honest answers to personal, sen-
sitive questions. The general idea is that by offering confidentiality, respondents will
become more willing to respond truthfully. Warner’s (1965) randomized response
technique was developed to ensure such confidentiality.

Our multivariate extension of the technique still masks the responses to the items
but enables us to estimate item characteristics and measure individual differences
in sensitive behavior. The models can handle both dichotomous and polytomous re-
sponses to measure both unidimensional or multidimensional sensitive constructs. In
the empirical example above, a forced randomized response design was used to col-
lect the data, but other options are available. Our RIRT models are easily adapted to
a specific choice of response design.

In order to improve the cooperation of the respondents, both from an ethical and
professional point of view, they should be informed about the levels of information
that can and cannot be inferred from randomized item responses. The outcome of the
randomization device is only known to the respondent, which protects them at the
level of the individual items.

The randomized response technique also has some disadvantages. The use of a
randomization device makes the procedure more costly, and respondents have to trust
the device. Respondents also have to understand the procedure to recognize and ap-
preciate the anonymity they guarantee. Recently, Jann, Jerke, and Krumpal (2012),
Tan, Tian, and Tang (2009), and Coutts and Jann (2011) proposed nonrandomized
response techniques to overcome the inadequacies of the randomized response tech-
nique and tested their proposals empirically. The main idea of their so-called trian-
gular and crosswise technique is to ask respondents a sensitive and a nonsensitive
question and let them indicate whether the answers to the questions are the same
(both ’Yes’ or both ’No’) or different (one ’Yes’ and the other ’No’). Such a joint an-
swer to both questions does not reveal the respondent’s true status. The distribution
of answers to the nonsensitive question has to be known and supports the measure-
ment of the population prevalence on the sensitive question. These nonrandomized
methods are designed to make inferences at an aggregate data level. Extensions are
required to collect multivariate sensitive items responses that will support the mea-
surement of sensitive constructs. In fact, more research is needed to explore the full
potential of nonrandomized response techniques for the analysis of individual sensi-
tive constructs.
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TABLE 1.2
CAPS-EAQ scale: Parameter estimates of two- and three-component randomized
item-response model.

Two Factor Three Factor
Parameter Mean SD Mean SD

Fixed Effects
Socio-Emotional/Community

γ11 (RR) .20 .09 .21 .10
γ21 (Female) .01 .06 .05 .07

Sexual enhancement expectancy
γ12 (RR) .22 .06 .21 .07
γ22 (Female) .03 .04 .06 .05

Community
γ13 (RR) .32 .10
γ23 (Female) −.30 .09

Variance Parameters Mean SD Mean SD

Σθ11 .96 .05 .98 .05
Σθ12 .65 .07 .55 .06
Σθ13 .38 .08
Σθ22 .98 .05 1.06 .05
Σθ23 .42 .08
Σθ33 .99 .07

Information Criteria
-2log-likelihood 20622 19625
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Appendix A: CAPS-AEQ Questionnaire
CAPS: Socio-emotional and community problems
How often (almost always (5), often (4), sometimes (3), seldom (2), almost never (1)) have
you had any of the following problems over the past years as a result of drinking too much
alcohol?

1. Feeling sad, blue or depressed.

2. Nervousness or irritability

3. Hurt another person emotionally

4. Family problems related to your drinking

5. Spent too much money on drugs

6. Badly affected friendship or relationship

7. Hurt another person physically

8. Caused other to criticize your behavior

9. Nausea or vomiting

10. Drove under the influence

11. Spent too much money on alcohol

12. Feeling tired or hung over

13. Illegal activities associated with drug use

AEQ: Sexual enhancement

14 I often feel sexier after I’ve had a couple of drinks

15 I’m a better lover after a few drinks

16 I enjoy having sex more if I’ve had some alcohol

17 After a few drinks, I am more sexually responsive


