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Abstract Complex dependency structures are often con-
ditionally modeled, where random effects parameters are
used to specify the natural heterogeneity in the population.
When interest is focused on the dependency structure, infer-
ences can be made from a complex covariance matrix using
a marginal modeling approach. In this marginal modeling
framework, testing covariance parameters is not a bound-
ary problem. Bayesian tests on covariance parameter(s) of
the compound symmetry structure are proposed assuming
multivariate normally distributed observations. Innovative
proper prior distributions are introduced for the covariance
components such that the positive definiteness of the (com-
pound symmetry) covariance matrix is ensured. Further-
more, it is shown that the proposed priors on the covariance
parameters lead to a balanced Bayes factor, in case of test-
ing an inequality constrained hypothesis. As an illustration,
the proposed Bayes factor is used for testing (non-)invariant
intra-class correlations across different group types (public
and Catholic schools), using the 1982 High School and Be-
yond survey data.
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1 Introduction

Data with a grouped structure, e.g., math scores of students
from different schools or repeated measurements of differ-
ent persons, are modeled such that the dependency structure
is taken into account. In a conditional modeling approach,
normally distributed observations within a group j are i.i.d.
given the random group effect; that is,

yij = μ + μ0j + eij (1)

where

eij ∼ N (0, σ 2)

μ0j ∼ N (0, τ ).

Besides the common parameters, independent group-
specific parameters are introduced with a common distri-
bution function, usually normal, with a common mean and
variance parameter. In this conditional modeling framework,
the random effects parameters as well as the variance com-
ponents need to be estimated to make inferences about the
dependency structure.

The random intercept model in (1) is particularly popular
in educational research to model the nesting of children in
classes or in schools (e.g., Fox 2010; Gelman and Hill 2007;
Raudenbush and Bryk 2002; Snijders and Bosker 1999). In
such a two-level nesting, the within-class observations are
positively correlated, which is represented by the intraclass
correlation coefficient (τ/(τ + σ 2)). The random intercept
model provides useful information through the partitioning
of the total variation in between and within classes such as
an estimate of the degree of dependence within each class.

In many cases the random effects are considered to be
nuisance parameters and the structure of dependence is of
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main interest. When interest is focused on the dependency
structure, inferences can be made from a complex covari-
ance matrix using a marginal modeling approach. The im-
plied marginal model defines the same dependency structure
within a group (e.g., subject or school). Therefore, the obser-
vations are assumed to be multivariate normally distributed
with a compound symmetry covariance matrix, that is,

yj ∼ N (μ1nj
,�nj

), with �nj
= σ 2Inj

+ τJnj
, (2)

where μ is the overall mean across all groups, Inj
is the

nj × nj identity matrix, Jnj
is a nj × nj matrix contain-

ing ones. The vectors yj are exchangeable for all J , which
means that the vectors are i.i.d. given μ (e.g., sampling from
an infinite population without replacement). Note that the
covariance between two observations in the same class is
τ under the random intercept model, (1), and the marginal
model, (2). The marginal modeling approach is more gen-
eral since complex dependency structures can be defined for
which a conditional model may simply not exist, for exam-
ple, when within-group observations are not homogenously
correlated.

Testing a covariance structure using the marginal model
(2) has certain advantages. For normally distributed ob-
servations, testing the existence of a random effect, i.e.,
H0 : τ = 0, is a boundary testing problem in the conditional
model because τ ≥ 0. This is not the case in the marginal
model because the covariance parameter τ can be negative
in (2), which will be shown later on. Note that more gen-
eral complex dependency structures can also be tested via
the marginal model, where the corresponding conditional
framework requires multiple random effects assumptions.
For example, Verbeke et al. (2001) considered the study of
longitudinal effects in the presence of cross-sectional effects
where the longitudinal effects may be highly influenced
by the cross-sectional effects. Then, the object is to iden-
tify longitudinal dependencies independent of any cross-
sectional assumptions.

One problematic aspect is to specify prior distributions
on the variance components τ and σ 2 such that positive def-
initeness of the entire covariance matrix is ensured. How-
ever, it will be shown that for a compound symmetry struc-
ture priors can be defined in such a way that an expression
can be obtained for the posterior distribution of the covari-
ance parameters. This allows one to test the support of a
random effect, i.e., H0 : τ = 0 versus H1 : τ > 0 under the
marginal modeling framework. If hypothesis H1 is favored
against H0, the considered dependency structure is preferred
and as a result the use of the conditional model is justifiable.
For tests on τ under the conditional model, see for instance
Kato and Hoijtink (2004) and Snijders and Bosker (1999).
The test outcome can be informative for model building to
justify any conditional independence assumptions.

A Bayesian test is described for testing invariance of τ

across different group types, which is often implicitly as-
sumed in the conditional modeling framework. In the case
of A different types of groups, the test problem is considered
of H0 : τ1 = · · · = τA against H1 : τ1 < · · · < τA, where τa is
the between-group variance of type a = 1, . . . ,A. Hypothe-
sis H0 states that the variance at the level of groups is equal
across all group types and hypothesis H1 states that there is a
specific ordering. A numerical procedure is proposed to es-
timate the Bayes factor of H0 against H1 based on the prior
and posterior sample of τ . The proposed methodology to
calculate Bayes factors is based on the encompassing mod-
eling approach (e.g., Berger and Mortera 1999; Klugkist and
Hoijtink 2007). The procedure is illustrated using the 1982
High School and Beyond (HSB) survey data, which include
information on math tests of 7,185 students nested within
90 public schools and 70 Catholic schools (Raudenbush and
Bryk 2002). The Bayes factor is used to test whether stu-
dents in Catholic schools are more alike than students in
public schools with respect to their math performances.

The paper is organized as follows. First, prior densities
are given for the covariance parameters that define a sym-
metric positive definite covariance matrix when dealing with
a compound symmetry structure. The posterior density is de-
rived for the covariance parameters, and a sampling mech-
anism is described for the marginal model parameters as-
suming a common nesting of groups. In a short example,
covariance structures are marginally tested using two small
data sets, which were discussed in Box and Tiao (1973). In
the first data set, the random intercept model was applicable,
and in the second this was not the case. In the proposed mod-
eling framework this is tested by evaluating the marginal
posterior probability of the null hypothesis τ > 0. In the
following section, a generalization is made for testing het-
erogenous compound symmetry structures where equality
or inequality constrained hypotheses of covariance param-
eters are considered. It is discussed how to test homogeneity
of τ across different group types using the Bayes factor as a
selection criterion. The test is also applied to the HSB data
to test homogeneity of τ across public and Catholic schools.

2 Testing compound symmetry: prior specification

A multivariate normal distribution with compound symme-
try covariance matrix can be used for modeling a vector
with dependent continuous observations with approximately
equal variances and covariances. When jointly modeling
J vectors of length nj , independently and identically dis-
tributed according to (2), the marginal model can be written
as

y = N(μ1N,�N), with
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Fig. 1 In (a) the allowed
parameter space of (τ, σ 2) for
the compound symmetry
parameterization
�CS1

nj
= σ 2((1 − τ)Inj

+ τJnj
),

and in (b) for the
parameterization
�CS2

nj
= σ 2Inj

+ τJnj

�N =

⎡
⎢⎢⎢⎣

�n1 0 · · · 0

0 �n2

. . .
...

...
. . .

. . . 0
0 · · · 0 �nJ

⎤
⎥⎥⎥⎦ (3)

where y′ = (y′
1, . . . ,y′

J ), μ is the overall mean across obser-
vations, �nj

is a nj × nj compound symmetry covariance
matrix, and N = ∑

j nj .
The compound symmetry structure implies identical di-

agonal elements and identical off-diagonal elements. Two
commonly used parameterizations of the compound symme-
try structure are used,

�CS1
nj

= σ 2

⎡
⎢⎢⎢⎣

1 τ · · · τ

τ 1
. . .

...
...

. . .
. . . τ

τ · · · τ 1

⎤
⎥⎥⎥⎦ and

�CS2
nj

=

⎡
⎢⎢⎢⎣

σ 2 + τ τ · · · τ

τ σ 2 + τ
. . .

...
...

. . .
. . . τ

τ · · · τ σ 2 + τ

⎤
⎥⎥⎥⎦ ,

(4)

which can be written as

�CS1
nj

= σ 2((1 − τ)Inj
+ τJnj

),

�CS2
nj

= σ 2Inj
+ τJnj

,

respectively, where Inj
is the identity matrix of dimension

nj ×nj and Jnj
is a matrix of dimension nj ×nj containing

ones. Note that the multivariate model in (3) can be written
as in (2) with either �CS1

nj
or �CS2

nj
as the covariance matrix.

In the parametrization �CS2
nj

, the intra-class correlation is

parameterized as τ/(τ +σ 2) and the total variance as σ 2 +τ .
This intra-class correlation coefficient is represented by τ

and the total variance by σ 2 in the parametrization of �CS1
nj

.
Therefore, in this parameterization τ will also be referred to
as the intra-class correlation.

In a Bayesian modeling approach, the likelihood model
in (3) requires a specification of the prior for the variance

components σ 2 and τ that results in a positive-definite co-
variance matrix �N . The covariance matrix is positive defi-
nite if the blocks on the diagonal, i.e., �nj

for j = 1, . . . , j ,
are positive definite. For the parameterization �CS1

nj
, this is

the case for the set {τ, σ 2|− (nmax −1)−1 < τ < 1, σ 2 > 0},
with nmax = maxj (nj ). For the parameterization �CS2

nj
, this

is the case for {τ, σ 2|τ > −σ 2/nmax, σ
2 > 0. Figure 1 gives

graphical representations of the allowed parameter spaces.
For the parameterization �CS2

nj
, a noninformative

improper prior of the variance components π(σ 2, τ ) =
π(σ 2)π(τ |σ 2) ∝ σ−2(τ + σ 2/nmax)

−1 was used by Box
and Tiao (1973). This prior cannot be used for Bayes fac-
tor testing because it is improper (Jeffreys 1961). Different
complex methods have been proposed for constructing au-
tomatic proper data-based priors, which are relatively non-
informative and located around the likelihood that lead to
so-called default Bayes factors (e.g., O’Hagen 1995; Berger
and Pericchi 1996).

The specification of a prior for the variance components
that results a positive definite covariance matrix with com-
pound symmetry structure is simpler when using the param-
eterization �CS1

nj
. For this parameterization we consider a

noninformative improper prior for estimation and a nonin-
formative proper prior for hypothesis testing using the Bayes
factor. The noninformative improper prior that is used is
given by

π(μ, τ, σ 2) ∝ σ−3(1 + (nmax − 1)τ )−1(1 − τ)−1. (5)

This prior corresponds with the reference prior where the pa-
rameter τ is considered as more important than the param-
eters (μ,σ 2) (Berger and Bernardo 1992; Chung and Dey
1998). This prior is optimal in the sense that inference is
maximally based on the data at hand.

For testing constrained hypotheses on intra-class correla-
tion coefficients, which is discussed in Sect. 3, we consider
the following proper prior

π(μ, τ, σ 2) = π(μ)π(τ)π(σ 2) (6)

with

π(μ) = U(−1e10,1e10)
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π(τ) = U(−(nmax − 1)−1,1)

π(σ 2) = inv-χ2(1,1).

As will be shown, this prior results in Bayes factors that
are balanced for testing inequality constrained hypotheses
on multiple τ ’s. This prior can be easily generalized to a hi-
erarchical prior such that the prior parameters are modeled
at a higher level. The hyperprior for the prior parameters can
be used to specify the parameter region instead of fixing the
prior parameters.

Another useful property of the parameterization �CS1
nj

is
that τ corresponds with the intra-class correlation, which
is an important quantity for grouped data. A large intra-
class correlation implies a strong resembles of the obser-
vations within a group, and therefore corresponds with a
relatively small within-group variance and a relatively large
between-group variance. Furthermore, σ 2 can be interpreted
as the total variance, i.e., the sum of the within-group vari-
ance and the between-group variance. Finally note that the
conditional version of the marginal model with parameter-
ization �CS1

nj
would be yij = μ + μ0j + εij , where εij ∼

N(0, σ 2(1 − τ)) and μ0j ∼ N(0, σ 2τ).

2.1 Posterior computation: sampling of the mean and
variance components

Let the compound symmetry covariance matrix �CS1
nj

be

denoted by σ 2�τ,nj
, with �τ,nj

= (1 − τ)Inj
+ τJnj

, and
�τ,N = diag(�τ,n1 , . . . ,�τ,nJ

) where N = ∑
j nj .

The likelihood function of the marginal model in (3) is
given by

f (y | τ, σ 2,μ)

= (2πσ 2)−N/2|�τ,N |−1/2

× exp

{
− 1

2σ 2
(y − μ)′�−1

τ,N (y − μ)

}
, (7)

where �−1
τ,N = diag(�−1

τ,n1
, . . . ,�−1

τ,nJ
) and �−1

τ,nJ
= (1 −

τ)−1Inj
− τ

(1−τ)(1+(nj −1)τ )
Jnj

.

2.1.1 Multiple-blocked MCMC scheme

A straightforward Markov chain Monte Carlo (MCMC) im-
plementation is based on the full conditional posterior dis-
tribution of the model parameters and iteratively draws are
made from the full conditionals. Therefore, the conditional
posterior distributions of μ, σ 2 and τ are derived using the
reference prior in (5) and the likelihood in (7).

The conditional posterior of μ is normally distributed
given by π(μ | τ, σ 2,y) = N((1′

N�−1
N 1N)−11′

N�−1
N y,

(1′
N�−1

N 1N)−1). For equal group-sizes, nj = n, ∀j , the con-
ditional posterior density simplifies to

π(μ | τ, σ 2,y)

= N

(
ȳ, σ 2

(
Jn

1 − τ
− Jn2τ

(1 − τ)((1 − τ) + nτ)

)−1)
,

where ȳ is the overall mean of y.
The conditional posterior of σ 2 has a scaled-inverse χ2

distribution. First note that

yj ∼ N
(
μ1nj

, σ 2(τJnj
+ (1 − τ)Inj

)
)

�− 1
2 B′yj ∼ N

(
μ�− 1

2 B′1nj
, σ 2Inj

) (8)

where � is a diagonal matrix with eigenvalues of τJnj
+

(1 − τ)Inj
, given by 1 + (nj − 1)τ (with multiplicity 1) and

1 − τ (with multiplicity nj − 1), and B is a nj × nj matrix
with the orthogonal eigenvectors as columns. Consequently,
by multiplying the likelihood with the noninformative im-
proper prior in (5), the conditional posterior yields

π(σ 2 | τ,μ,y) = inv-χ2(s2
σ 2,N + 1

)
, (9)

where

s2
σ 2 = (N + 1)−1

∑
j

(y′
j − μ1′

nj
)B�−1B′(yj − μ1nj

).

The conditional posterior of τ does not have a common
distribution, and therefore, τ needs to be sampled using a
Metropolis-Hastings (M-H) step (Metropolis et al. 1953;
Hastings 1970). The kernel of the conditional distribution
of τ is proportional to the likelihood in (7). Browne (2006)
explored how to sample variance components using differ-
ent Metropolis-Hastings algorithms. In the illustration dis-
cussed below, a truncated normal proposal density in the in-
terval (−(nmax − 1)−1,1) with standard error of 0.35 was
used resulting in an acceptance rate of approximately 0.47.
Note that due to the nonsymmetric proposal density the ac-
ceptance bound in the Metropolis-Hastings sampling step
also depends on this proposal density.

2.1.2 Single-blocked MCMC scheme

It is often better to block highly correlated parameters such
that, for example, proposal densities can be defined that
improve the mixing and convergence properties of the al-
gorithm. Following, among others, Andrieu and Thomas
(2008) and Chib and Greenberg (1995), an adaptive M-H al-
gorithm is defined such that a multivariate proposal density
is optimized during a finite period of the chain. This leads to
a more efficient M-H algorithm, when the target distribution
is faster explored due to better proposals. This is not always
the case and the behavior of the chains should be guided
using MCMC diagnostic methods (Roberts and Sahu 1997).
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The implementation of a single-block adaptive M-H al-
gorithm requires a proposal density for μ, τ , and σ 2. As
discussed in, for instance, Chib and Greenberg (1998), the
proposal density should be tailored to the target density
which in our case is p(μ, τ, σ 2|y) ∝ π(μ, τ, σ 2)f (y|μ,τ,

σ 2)I{(−(nj −1)−1,1)}(τ )I{(0,∞)}(σ 2). This can be done using
the following approximation of the target density.

First, in each group, ỹj1 is computed as the sum of the
first half wj observations, where wj = nj/2 if nj is even
and wj = nj/2 + 0.5 if nj is odd. The sum of the other
nj −wj observations is denoted as ỹj2. Second, the bivariate
normal distribution of ỹj1 | ỹj2 is used to approximate the
likelihood of the model parameters, which is given by

ỹ1 | ỹ2 = N

(
X̃

[
μ

τ

]
, σ 2D̃

)
, (10)

where the j th row of X̃ is (wj , zj1) and D̃ is a diagonal
matrix where the (j, j)th element equals zj2. Furthermore,

zj1 = wj(nj − wj)(ỹj2 − μ(nj − wj))

× ((nj − wj)(nj − wj − 1)τ + nj − wj)
−1

zj2 = wj(wj − 1)τ + wj − τ 2w2
j (nj − wj)

2

× ((nj − wj)(nj − wj − 1)τ + nj − wj)
−1.

From (10), independent proposal densities for (μ, τ)′ and
σ 2, can be derived. It follows that,

q(μ∗, τ ∗) = N
(
m1, ρ

2
1V

)

q(σ 2∗) = N
(
m2, ρ

2
2v

)
,

where m1 is the posterior mean and V is the posterior covari-
ance matrix. They can be obtained from (10) by substituting
σ 2 = σ 2(s), where s denotes the MCMC iteration number.
Furthermore, m2 is the posterior mean and v is the posterior
variance of the inverse gamma distribution of σ 2. They can
be obtained from (10) by substituting (μ, τ) = (μ(s), τ (s))

multiplied with the improper prior σ−2.
The proposal density needs to be tuned during a finite-

period of the chain using the tuning parameters ρ1 and ρ2.
This tuning is carried out until a beforehand chosen accep-
tance rate is established. In iteration s + 1, the proposal
μ∗, τ ∗, σ 2∗ is accepted when

u ≤
p(μ∗,τ∗,σ 2∗|y)

q(μ∗,τ∗,σ 2∗|μ(s),τ (s),σ 2(s))

p(μ(s),τ (s),σ 2(s)|y)

q(μ(s),τ (s),σ 2(s)|μ∗,τ∗,σ 2∗)

, (11)

where u is an observation from random variable U , which
is uniformly distributed in the interval [0,1]. Note that the
proposal density q do not have to be truncated in the region
{τ, σ 2} = (−(nj − 1)−1,1) × (0,∞) because these bounds
are incorporated in the target density p. For this reason, the

proposals are accepted with probability zero when they fall
outside the allowed region.

2.2 Illustration

As an illustration we consider two data sets from Box and
Tiao (1973, pp. 246–247), which contained J = 6 groups
with nj = 5 observations per group. These data sets have
been analyzed more often, for instance, by Gelfand et al.
(1990), who used a random intercept model to fit the data.
The purpose of the illustration is to justify our prior choice,
to show that the multiple-blocked M-H sampler and the one-
blocked sampler (Sect. 2.1) work effectively to fit the data,
and to show how to test the hypothesis H0 : τ ≤ 0 against
H1 : τ > 0. Note here that a random effects model is only
appropriate under H1. Hypothesis H0 will be tested by eval-
uating the posterior probability

P(H0 | y) = P(τ ≤ 0 | y)

=
∫

τ≤0
π(τ | y)dτ

≈ S−1
∑

s

I (τ (s) ≤ 0), (12)

where τ (s) is the sth posterior draw of τ under the marginal
model (3). The null hypothesis is accepted when the poste-
rior probability of the null is greater than the posterior prob-
ability of the alternative.

A posterior sample of size 100,000 was obtained us-
ing the multiple-blocked M-H sampler and the one-blocked
sampler discussed in the previous section. In the multiple
blocked sampler, τ was sampled using a normal proposal
density centered at the previous draw τ (s) with a standard
deviation of 0.35 resulting in an acceptance rate of approx-
imately 0.47 for both data sets. The tuning parameters in
the one-blocked sampler were chosen equal to ρ1 = 0.9 and
ρ2 = 0.6 for both data sets resulting in acceptance rates of
approximately 0.22 and 0.18 for data sets 1 and 2, respec-
tively. In the lower panels of Fig. 2, the resulting poste-
rior sample densities of τ are presented using the multiple-
blocked sampler (solid line) and the one-blocked sampler
(dashed line). The figure illustrates that the posterior sam-
ples are equivalent.

In the upper panels of Fig. 2, contour plots are given
based on the posterior sample of (τ, σ 2) based on the
multiple-blocked sampler (the one-blocked sampler was
equivalent). The plots show that the posterior is well-
behaved and is not multi-modal when using the reference
prior in (5). This can be seen as an important justification of
our prior choice.

Finally, the hypothesis H0 : τ ≤ 0 was tested against
H1 : τ > 0 based on the posterior draws of τ . The poste-
rior probability estimates P(H0 | y) were equal to 0.005 and



Stat Comput

Fig. 2 Upper panels: Posterior contour plot of (τ, σ 2) based on data
set 1 (left) and data set 2 (right) using the multiple-blocked M-H sam-
pler. Lower panels: Posterior sample densities of τ for the data set 1
(left) and data set 2 (right) using the multiple-blocked M-H sampler
(solid line) and the one-blocked M-H sampler (dashed line)

0.747 for data sets 1 and 2, respectively. Hence, hypothesis
H0 was rejected for data set 1 and accepted for data set 2.
Based on these results it was concluded that the use of a ran-
dom intercept model is justifiable for data set 1 but not for
data set 2.

3 Testing invariance of the compound symmetry
structure

Homogeneity of the intra-class correlation parameter, τ , is
generally assumed when using the random effects model
(1). However, there are numerous examples where the as-
sumption of homogeneity of the variance components across
groups is violated (Votaw 1948; Szatkowski 1982). The
case will be considered that the observations are nested
within groups, a compound symmetry structure holds, but
the strength of within-group correlation can vary across
groups. This violates the invariance assumption of common
intra-class correlations across groups.

As a motivating example, the 1982 High School and Be-
yond (HSB) survey data are considered, which include in-
formation of mathematical grades of 7,185 students nested
within 90 public schools and 70 Catholic schools (Rauden-
bush and Bryk 2002). The general assumption of an invari-
ant compound structure across schools will be investigated.
For example, it will be tested whether the grades of students
within Catholic schools are more alike than the grades of

students within public schools. In Sect. 4, the example is
described in more detail.

Assume that the observations yj are multivariate nor-
mally distributed, where the covariance matrix has a com-
pound symmetry structure with a sector-specific covariance
parameter τa (a = 1, . . . ,A); that is,

yj ∼ N
(
μ,σ 2((1 − τaj

)Inj
+ τaj

Jnj
)
)
, (13)

where aj = a if group j corresponds to sector a. Then, the
following hypotheses can be formulated

H0 : τ1 = · · · = τA

H1 : τ1 < · · · < τA (14)

Hu : τ1, . . . , τA.

Under the equality constrained hypothesis H0, it is assumed
that the compound symmetry structure is invariant over sec-
tors. Hence, homogenous intra-class correlations are as-
sumed under H0. Under the inequality constrained hypoth-
esis H1, an ordering is defined on the sector-specific intra-
class correlations. Under the unconstrained hypothesis Hu,
sector-specific intra-class correlations are assumed.

The Bayes factor of hypothesis Ht against hypothesis Ht ′
is defined as the ratio of the marginal likelihoods under the
two hypotheses, i.e.,

Btt ′ = mt(y)

mt ′(y)
, (15)

with

mt(y) =
∫

ft (y | θ t )πt (θ t )dθ t ,

where ft (y | θ t ) is the likelihood of the data under Ht given
its parameters θ t . The Bayes factor Btt ′ can be interpreted
as the amount of evidence in favor of hypothesis Ht against
Ht ′ .

Hence, in order to obtain the Bayes factors between
these hypotheses, the marginal likelihoods need to be cal-
culated. Because this calculation can be computationally in-
tensive, different methods have been proposed for comput-
ing marginal likelihoods, e.g., Chib and Jeliazkov (2001),
Kass and Raftery (1995), and the references therein.

As was shown by Klugkist and Hoijtink (2007), how-
ever, the Bayes factors between the hypotheses H0, H1, and
Hu can be obtained without computing the marginal likeli-
hoods because the constrained hypotheses H0 and H1 are
nested within the larger, unconstrained hypotheses Hu. It
will be shown that analytical expressions for the Bayes fac-
tor concerning inequality (Sect. 3.1) and equality (Sect. 3.2)
constrained compound symmetry structures can be derived.
This will greatly simplify the computation of the Bayes fac-
tor. However, an adjustment is needed for the standard Bayes
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factor when testing inequality constrained hypotheses. For
the general case, a numerical procedure will be proposed
(Sect. 3.2.1) based on a posterior (and prior) sample of the
parameter vector of interest.

3.1 Balanced BF for inequality constrained compound
symmetry structures

It is generally stated that the Bayes factor works as an Ock-
ham’s razor, which means that it balances fit and complex-
ity when quantifying the relative degree of support of two
hypotheses. However, the choice of the prior is essential
in order for this to hold. This is for instance illustrated by
Bartlett’s paradox for testing equality constrained hypothe-
ses (Bartlett 1957; Jeffreys 1961) or by Mulder et al. (2010)
for testing inequality constrained hypothesis. Berger and
Pericchi (1996) use the term ‘balanced’ for Bayes factors
that effectively balances fit and complexity. When the inter-
est is in testing simple order restrictions of the parameters of
interest, such as H1 : τ1 < · · · < τA in (14), we shall adopt
the following definition for a balanced Bayes factor.

Definition 1 A Bayes factor is called balanced for testing
simple order restrictions of A parameters when the prior
probability that each ordering holds is equal across all A!
possible permutations.

Our goal is to obtain a Bayes factor that is balanced for
testing order constrained hypotheses on τ . In this section,
it will be discussed how to specify a prior that satisfies this
requirement.

A straightforward choice for the prior of (τ , σ 2,μ) is to
use a uniform prior for τ , which is proper and noninforma-
tive, and vague proper priors for σ 2 and μ, i.e.,

πu(τ1, . . . , τA,σ 2,μ) =
∏
a

πu(τa)πu(σ
2)πu(μ) (16)

with

πu(τa) = U(−(nmax,a − 1)−1,1), for a = 1, . . . ,A

πu(σ
2) = inv-χ2(1,1)

πu(μ) = U(−1e10,1e10),

where nmax,a is the size of the largest group in sector a, the
prior of σ 2 is a scaled-inverse χ2 distribution, and a vague
uniform distribution is chosen for μ (Sect. 2).

Under the inequality constrained hypothesis Ht , the
prior is a truncated version of the prior under Hu, i.e.,
πt (τ , σ 2,μ) = c−1

t πu(τ , σ 2,μ)I (τ ∈ Ht) (Berger and Mor-
tera 1999; Klugkist and Hoijtink 2007). In this notation, ct

is a normalizing constant, which is equal to the prior prob-
ability that the inequality constraints of Ht hold under the

unconstrained hypothesis Hu. The normalizing constant can
be expressed as ct = ∫

τ∈Ht
πu(τ )∂τ . This prior specifica-

tion results in a posterior density under Ht that is also a
truncated version of the posterior density under Hu, i.e.,
πt (τ1, . . . , σ

2,μ|y) = f −1
t πu(τ1, . . . , σ

2,μ|y)I (τ ∈ Ht).
The normalizing constant ft = ∫

τ∈Ht
πu(τ |y)∂τ equals the

posterior probability that the inequality constraints of Ht

under the larger unconstrained hypothesis Hu.
For this prior specification, Klugkist and Hoijtink (2007)

showed that the Bayes factor of the inequality constrained
hypothesis Ht against the unconstrained model Hu can be
expressed as the posterior probability that the inequality
constraints of Ht hold divided by the prior probability that
the inequality constraints of Ht hold, i.e.,

Btu = ft

ct

=
∫
τ∈Ht

πu(τ | y)∂τ∫
τ∈Ht

πu(τ )∂τ
, (17)

where the numerator is the posterior probability that the in-
equality constraints of Ht hold, which is as a measure of
relative fit of the inequality constrained hypothesis Ht (in
comparison to Hu), and the denominator is the prior proba-
bility that the inequality constraints of Ht hold, which is as a
measure of relative complexity of Ht (in comparison to Hu).
When the same unconstrained prior πu is used for calculat-
ing Btu and Bt ′u for two inequality constrained hypotheses
Ht and Ht ′ , it holds that Btt ′ = Btu/Bt ′u.

Proposition 1 A uniform prior on τ under the uncon-
strained hypothesis Hu does not result in a balanced Bayes
factor for testing order constraints of τ when nmax,a1 �=
nmax,a2 for at least one pair a1 �= a2.

Proof Let Q be the set of all A! disjoint subspaces im-
plied by simple order constraints on τ , e.g., Qt = {τ |τ1 <

· · · < τA} ∈ Q. Hence,
⋃A!

t=1 Qt = (− 1
nmax,1

,1) × · · · ×
(− 1

nmax,A
,1) is the complete unconstrained space of τ . In or-

der for the Bayes factor to be balanced, Pπu(τ ∈ Qt) must be
equal for all t = 1, . . . ,A!. Without losing generality let us
assume that nmax,1 < nmax,2. Consequently, Pπu(τ1 < τ2 <

τ3 < · · · < τA) > Pπu(τ2 < τ1 < τ3 < · · · < τA), and there-
fore, the Bayes factor will not be balanced for testing simple
order constraints of τ (see Fig. 3 for a sketch for A = 2). �

Two modifications can be considered to obtain a balanced
Bayes factor for testing order constraints of τ in a marginal
modeling framework. First, the uniform prior for τ under
Hu can be changed such that Pπu(τ ∈ Qt2) = Pπu(τ ∈ Qt1)

∀t1, t2 = 1, . . . ,A!. Second, the prior probability of each or-
dering of the elements of τ must be calculated by adding
τ > 0 as extra constraints, i.e., Pπu(τ ∈ Qt1 ∩ τ > 0) =
Pπu(τ ∈ Qt2 ∩ τ > 0) must be equal ∀t1, t2 = 1, . . . ,A!. We
adopt the second method to avoid (unnecessary) complex
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Fig. 3 Allowed parameter space of M3 : τ1 < τ2 and M4 : τ1 > τ2
with (τ ∗

1 , τ ∗
2 ) = (− 1

nmax,1−1 ,− 1
nmax,2−1 ). If nmax,1 < nmax,2 and assum-

ing a uniform distribution over (− 1
nmax,1−1 ,1) × (− 1

nmax,2−1 ,1), the
probability mass in the constrained spaces of M3 is larger than the
probability mass in the space of M4, resulting in a biased Bayes factor
towards model M4

prior specification for πu(τ ). Furthermore, the restriction
τ > 0 is reasonable because ordering intraclass correlations
only makes sense if the τa > 0, ∀a = 1, . . . ,A.

Proposition 2 A uniform prior on τ under the uncon-
strained hypothesis Hu results in a balanced Bayes factor
for testing order constraints of τ by adding τ > 0 as extra
set of constraints.

Proof The prior probability of a simple ordering of the A

τ ’s and τ > 0 under a uniform prior under Hu equals

Pπu(τ ∈ Qt ∩ τ > 0) =
(

A!
A∏

a=1

nmax,a

nmax,a − 1

)−1

,

for all t = 1, . . . ,A!. �

Hence, we consider the following hypotheses instead of
(14),

H0 : 0 < τ1 = · · · = τA

H1 : 0 < τ1 < · · · < τA (18)

Hu : τ1, . . . , τA.

Note that the inequality constraint τ > 0 is also added to
the equality constrained hypothesis H0 for argument of sym-
metry. Using a uniform prior for τ under the unconstrained
hypothesis Hu, the balanced Bayes factor of the inequality
constrained hypothesis H1 against Hu equals

B1u =
∫

0<τ1<···<τA
π0(τ |y)∂τ∫

0<τ1<···<τA
π0(τ )∂τ

= A!
A∏

a=1

nmax,a

nmax,a − 1

×
∫

0<τ1<···<τA

π0(τ1, . . . , τA|y)∂τ1 . . . ∂τA

≈ A!
A∏

a=1

nmax,a

nmax,a − 1
S−1

×
S∑

s=1

I (0 < τ
(s)
1 < · · · < τ

(s)
A ), (19)

where τ
(s)
a is the s-th posterior draw of τa .

3.1.1 Comparison with likelihood ratio tests

Although likelihood ratio tests are most often used, they may
not be optimal when testing inequality constrained hypothe-
ses such as H1 : 0 < τ1 < · · · < τA in (18). When hypotheses
of different complexity levels are equally supported by the
data, the likelihood ratio test will not prefer the simplest hy-
pothesis. This is now illustrated.

Let the likelihood under H1 be given by g1(y|τ , σ 2,μ)

= gu(y|τ , σ 2,μ)1τ∈T1(τ ), where T1 = {τ |0 < τ1 < · · · <

τA} and 1{·} is the indicator function. Now, assume that
the maximum likelihood estimates under both hypotheses
are equal, i.e., τ̂ 1 = τ̂u. Consequently, the likelihood ra-
tio statistic of H1 against the unconstrained hypothesis Hu

is equal to one when τ̂ 1 = τ̂u, which means that both hy-
potheses are equally supported by that data. This is a result
of ignoring a difference in parsimony between the hypoth-
esis H1 and Hu. The more complex hypothesis H1 should
be preferred when there is enough additional supporting in-
formation. Otherwise, the simpler null hypothesis is to be
preferred, which refers to Ockham’s razor principle.

Furthermore, in order to obtain p-values for testing an
inquality constrained hypothesis against the unconstrained
hypothesis, so-called level probabilities must be computed
which serve as chi-square weights. This is described by Sil-
vapulle and Sen (2005) when testing inequalities on mean
parameters. When testing inequality constraints on intra-
class correlations such as H1, such methods are not avail-
able.

The parsimony of H1 and Hu is incorporated in the Bayes
factor through the prior probabilities that the inequality con-
straints hold. When the likelihood is completely located in
the inequality constrained space of H1, this also holds for the
posterior, and

∫
0<τ1<···<τA

π0(τ |y)∂τ = 1. It follows that,
the Bayes factor, defined in (19), supports H1 against Hu

with B1u = A!∏A
a=1

nmax,a

nmax,a−1 > 1.

3.2 Bayes factor for equality constrained compound
symmetry structures

A generalization can be made to test the equality of multiple
(intra-class) parameters such as H0 : τ1 = · · · = τA against
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the unconstrained hypothesis Hu. This generalization leads
to a Bayes factor with a comparable structure as in (17),
which is proven in the following theorem.

Theorem 1 Consider the selection problem of the equal-
ity constrained hypothesis H0, where τ = τ1 = · · · = τA,
against the unconstrained hypothesis Hu. Let πu(τ , σ 2,μ)

denote a proper prior of (τ , σ 2,μ) under Hu and let
π0(τ, σ

2,μ) = πu(τ1A,σ 2,μ)/c0 under the equality con-
strained model with

c0 =
∫

τ

πu(τ1A)dτ. (20)

Then, the Bayes factor can be expressed as

B0u =
∫
τ
πu(τ1A|y)dτ∫
τ
πu(τ1A)dτ

. (21)

Proof First note that g0(y | τ, σ 2,μ) = gu(y | τ1A,σ 2,μ).
Furthermore, when taking into account that π0(τ, σ

2,μ) =
πu(τ1A,σ 2,μ)/c0 where c0 is defined in (20), the Bayes
factor can be expressed as

B0u = m0(y)

mu(y)

=
∫

g0(y | τ, σ 2,μ)π0(τ, σ
2,μ)dμdσ 2dτ∫

gu(y | τ , σ 2,μ)πu(τ , σ 2,μ)dμdσ 2dτ

=
∫

gu(y | τ1A,σ 2,μ)πu(τ1A,σ 2,μ)/c0dμdσ 2dτ∫
gu(y | τ , σ 2,μ)πu(τ , σ 2,μ)dμdσ 2dτ

=
∫ gu(y|τ1A,σ 2,μ)πu(τ1,σ 2,μ)∫

gu(y|τ ,σ 2,μ)πu(τ ,σ 2,μ)dμdσ 2dτ
dμdσ 2dτ

c0

=
∫

πu(τ1A,σ 2,μ | y)dμdσ 2dτ

c0

= f0

c0
, (22)

where f0 = ∫
τ
πu(τ1A|y)dτ , which completes the proof. �

In expression (22), f0 can be interpreted as a measure
of fit and c0 can be interpreted as a measure of complexity.
Note that in the case of the inequality constrained hypothesis
H1, f1 and c1 were probabilities which is not the case in (22)
where f1 and c1 can be seen as the surfaces under the pos-
terior and prior density, respectively, on the line τ1 = · · · =
τA. Therefore, the Bayes factor B0u of H0 : τ1 = · · · = τA

against Hu : τ1, . . . , τA is unbounded which is not the case
for B1u ≤ c−1

1 of the inequality constrained hypothesis H1

against Hu. For this reason, the unconstrained hypothesis
can be seen as infinitely more complex in terms of allowed
parameter space in comparison to an equality constrained
hypothesis such as H0.

When testing equality constrained hypotheses using the
Bayes factor, it is important that a proper prior is chosen
that is not too vague. The reason is that the Bayes factor
for the equality constrained hypothesis against the uncon-
strained hypothesis becomes arbitrarily large when chosen
the prior vaguely enough. This is also known as Bartlett’s
paradox (Bartlett 1957; Jeffreys 1961). In this setting, how-
ever, the parameters of interest τ are bounded. For this rea-
son, a uniform prior on τ is a natural choice and the paradox
is not an issue.

It is interesting to note the resemblance of (17) and (22)
with the Savage-Dickey density ratio of the Bayes factor
(Dickey 1971), i.e., B0u = π0(τ

∗|y)
π0(τ

∗) , for testing H0 : τ = τ ∗

against Hu : τ which holds if π0(μ,σ 2) = πu(μ,σ 2 | τ =
τ ∗). This was mentioned by Wetzels et al. (2010).

3.2.1 Numerical procedure for estimating B0u

For the multivariate normal model with compound symme-
try covariance structure (13), an explicit expression for the
Bayes factor of H0 : τ1 = · · · = τA (or H0 : 0 < τ1 = · · · =
τA) versus Hu : τ1, . . . , τA cannot be obtained because the
marginal posterior of τ does not have a common distribu-
tion.

For this reason, we propose a numerical procedure for
estimating f0 and c0 in B0u based on prior and posterior
samples of the parameter vector τ , respectively, under the
unconstrained hypothesis. Based on these samples, non-
parametric multivariate density estimates (Scott 1992), such
as multivariate histograms or multivariate kernel density es-
timation, can be used to approximate the marginal prior and
posterior density of τ . Subsequently, the marginal poste-
rior density can be estimated on the line τ1A by collect-
ing pairs (τ (s), π̂u(τ

(s) | y)) where π̂u(·|y) is the estimated
posterior density, for some set of values τ (s) = τ (s)1A, for
s = 1, . . . , S. Finally f0 can be estimated as the surface of
the cross section of the marginal posterior through the line
τ1A, i.e.,

f̂0 =
S−1∑
s=1

π̂u(0.5(τ (s+1) + τ (s)) | y)‖τ (s+1) − τ (s)‖E

= √
A

S−1∑
s=1

π̂u(0.5(τ (s+1) + τ (s))1A | y)

× (τ (s+1) − τ (s)), (23)

where ‖ · ‖E is the Euclidian norm. The estimate of c1 can
be obtained in a similar way using the estimated marginal
prior density estimate denoted by π̂u(·).

Example 1 A data set was generated for (τ1, τ2, σ
2,μ) =

(0.4,0.5,1,0) with 6 groups of size nj = 6 for sector a = 1
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Fig. 4 Cross section on τ1 = τ2
of the unconstrained posterior
sample density (obtained using
kde2d of the R-program) for a
posterior sample of (τ1, τ2) of
size 10,000 by dividing the
space of (τ1, τ2) in a 10 × 10
grid (a) and a 60 × 60 grid (b).
The estimate f̂0 is computed as
the surface of the cross section
(2.78 and 2.82, respectively)

Table 1 Estimates of f0 for different sample sizes and number of grid
points

Sample size

5,000 10,000 50,000

10 2.83 2.78 2.71

Grid points 30 2.85 2.82 2.77

60 2.85 2.82 2.76

and 6 groups of size nj = 4 for sector a = 2. The Bayes fac-
tor was calculated of H0 : τ1 = τ2 against Hu : τ1, τ2 using
the unconstrained prior (16) with πu(τ1, τ2) = 3·5

4·6 = 0.625

for (τ1, τ2) ∈ (− 1
5 ,1)× (− 1

3 ,1). Hence, c0 = √
2 6

5 ·0.625 =
1.06. The estimates of f0 can be found in Table 1 for differ-
ent numbers of grid points on the interval (− 1

3 ,1) and differ-
ent sample sizes. Figure 4 displays the estimate of f0 as the
surface of the cross section of the unconstrained posterior
sample density estimate (obtained using the 2-dimensional
kernel density estimator kde2d of the software package R)
on the line τ1 = τ2 for the sample of size 10,000 and for 10
and 60 grid points, respectively. The Bayes factor is approx-

imately B̂0u = f̂0
c0

= 2.6 which can be interpreted as small
evidence in favor of H0 against Hu.

4 Empirical data example: 1982 HSB survey data

The 1982 High School and Beyond (HSB, Raudenbush and
Bryk 2002) Survey are considered, which include informa-
tion on 7,185 students nested within 160 schools: 90 public
and 70 Catholic. The sample from each school varies from a
minimum of 14 to a maximum of 67 with an average of 45
students per school.

The outcome variable of interest was a standardized mea-
sure of math achievement. The observed score of student i

in schools j is denoted as yij . A two-level multilevel model
was defined to model the math scores: a student level and
a school level. According to the study of Raudenbush and
Bryk (2002), student’s socioeconomic status (SES), school-
average socioeconomic status (MSE), and the distinction in
Catholic (SECTOR = 1) and public schools (SECTOR = 0)
were important predictors in explaining variance in the math
achievements. The following random intercept model was
considered

yij = β00 + β01(MSES)j + β02(SECTOR)j

+ β10((SES)ij − (MSES)j )

+ β11(MSES)j ((SES)ij − (MSES)j )

+ β12(SECTOR)j ((SES)ij − (MSES)j )

+ u0j + εij ,

= x′
ijβ + u0j + εij (24)

where β = (β00, β01, β02, β10, β11, β12)
′, xij is a vector of

length 6 containing the corresponding predictors. When us-
ing the parametrization of ΣCS1

n , the random school effect
is distributed as u0j ∼ N(0, τσ 2), and the random error on
the student level as εij ∼ N(0, (1 − τ)σ 2).

Students are assumed to be nested within schools and
the random intercept model in (24) assumes that the corre-
lation between student-level math achievements is constant
across public and catholic schools. The invariant correlation
implies that the school’s contribution to student-level math
achievement is constant over public and catholic schools.
This follows directly from the fact that the variance in math
achievements is explained by an invariant between-school
and between-student variance. Given socioeconomic differ-
ences, it is reasonable to assume that the average public
school’s contribution to student achievement differs from
the average Catholic’s contribution.
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Fig. 5 Prior density (a) and
approximated posterior density
(b) of (τP , τC) for the HSB
data. The surface of the cross
section through the line τP = τC

(grey area) was equal to√
2 · 0.97 = 1.37 and 0 for the

prior and posterior, respectively

When assuming heterogenous intra-class correlations,
y = (y′

1, . . . ,y′
160)

′ are assumed to be multivariate normally
distributed according to (13), such that

y = N(Xβ, σ 2diag(�τ1,n1, . . . ,�τJ ,nJ
)), (25)

where

τj =
{

τC if school j is a Catholic school
τP if school j is a public school,

X = (X′
1, . . . ,X′

J )′, Xj = (xj1, . . . ,xj,nj
)′, �τj ,nj

=
τj Jnj

+ (1 − τj )Inj
, with Jnj

a nj × nj matrix containing
ones and Inj

a nj × nj identity matrix.
Interest is focused on which of the following three model

assumptions is most supported by the data,

M1 : τC = τP > 0

M2 : τC > τP > 0

M3 : τP > τC > 0.

In model M1, it is assumed that the math achievements
within each school resemble each other to the same degree
across public and catholic schools, conditional on explained
differences by SES and MSES. In model M2, it is assumed
that the student-level math achievements are stronger corre-
lated within Catholic schools than within public schools. In
model M3, the contrary of M2 is assumed.

A prior under the unconstrained model M0 is speci-
fied according to (16). Let C denote the set of indices j =
1, . . . ,160. Then, maxj∈C {nj } = 67 and maxj /∈C {nj } = 61,
which are both Catholic schools. Then, the following prior
can be defined

π0(τ ,β, σ 2) = π0(τC, τP )π0(β)π0(σ
2),

where

π0(τC, τP ) = (1 + 1/66)−1(1 + 1/60)−1

× I (−1/66 < τC < 1)I (−1/60 < τP < 1)

π0(β) =
6∏

d=1

U(−1e10,1e10)

π0(σ
2) = inv-χ2(1,1).

In Fig. 5a, the uniform prior of the intra-class correlations
(τC, τP ) is displayed in the region (0,1) × (0,1). Because
the interest is in τC and τP which have proper noninforma-
tive priors, the hyperparameters are simply chosen such that
they are relatively vague.

The likelihood of model (25) is given by

f (y | τ , σ 2,β) ∝ |σ 2�τ |− 1
2

× exp

{
−1

2
(y − Xβ)′

[
σ 2�τ

]−1
(y − Xβ)

}

where �τ = diag(�τj ,n1 , . . . ,�τj ,nJ
). The joint posterior of

the model parameters can be expressed as π0(τ , σ 2,β|y) ∝
f (y | τ , σ 2,β) π0(τ , σ 2,β).

An analytical expression of the marginal posterior of the
intra-class correlations can be found by integrating out σ 2

and β of the joint posterior. In the Appendix it is shown
that the resulting kernel of the marginal posterior of τ =
(τC, τP )′ is given by

π(τ |y) ∝ |�τ |− 1
2 |X′�−1

τ X|− 1
2

× (
y′�−1

τ y − y′�−1
τ X(X′�−1

τ X)−1

× X′�−1
τ y + 1)−

N−5
2 .

Although this posterior does not have a common form,
samples can be obtained in a straightforward way us-
ing Metropolis-Hastings (Metropolis et al. 1953; Hastings
1970). The proposal density was a truncated normal with the
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mean equal to the previous draw and a standard deviation of
0.03 in the interval (−1/66,1) for τC and (−1/60,1) for
τP . A graphical representation of the posterior sample can
be found in Fig. 5b.

Based on the posterior sample, the posterior probability
of H1 : τC, τP > 0 was estimated as

P(H1 | y) = P(τC, τP > 0|y)

=
∫

τC,τP >0
π(τC, τP |y)∂τC∂τP

≈ S−1
∑

s

I
(
τ

(s)
C , τ

(s)
P > 0

) = 1.

This suggests that student achievements are positively cor-
related within schools, with invariant intra-class correlations
over public and Catholic schools, given differences in socio-
economic status. Furthermore, the posterior estimates of the
fixed effects β did not change when fitting this model with
separate intra-class correlations τC and τp instead of using
a single τ = τC = τp .

The justification of an invariant intra-class correlation is
tested using Bayes factors, which are estimated using the
uniform prior density and posterior sample of (τP , τC) ac-
cording to the methodology described in Sect. 3. This yields
the following Bayes factors,

B̂10 = 0√
2(1 + 1/60)−1(1 + 1/66)−1

= 0

B̂20 = S−1 ∑
s I (τ

(s)
C > τ

(s)
P > 0)

0.5(1 + 1/60)−1(1 + 1/66)−1
= 1

0.4844629

= 2.06

B̂30 = S−1 ∑
s I (τ

(s)
P > τ

(s)
C > 0)

0.5(1 + 1/60)−1(1 + 1/66)−1
= 0

0.4844629
= 0.

Consequently, the Bayes factors between the constrained
models were given by B̂21 = B̂20/B̂10 = ∞ and B̂23 =
B̂20/B̂30 = ∞, from which it can be concluded that the ev-
idence for model M2 against both M1 and M3 is over-
whelming. Hence, there is decisive evidence that the intra-
class correlation is significantly larger in Catholic schools in
comparison to public schools, given socio-economic differ-
ences. Furthermore, the 90% credible intervals of τC and τp

were equal to (0.11,0.17) and (0.03,0.05), respectively. It
can therefore be concluded that there is hardly any within-
school clustering of students in public schools but a strong
clustering in Catholic schools. As a result, the school’s con-
tribution to the student-level math performance is signifi-
cantly higher for Catholic schools than for public schools.
For the public schools, the total variance in the student-level
math achievements is almost equal to within-school residual
variance since the between-school variance is very small.

5 Summary

Bayesian tests on covariance parameter(s) of a compound
symmetry structure in the marginal model are proposed,
where observations are multivariate normally distributed.
The outcome of the test can be used in model building to
justify any conditional independence assumptions from a
marginal modeling framework. In our approach, innovative
proper prior distributions were introduced for the variance
components, such that the positive definiteness of the (com-
pound symmetry) covariance matrix was ensured.

A generalization was made to Bayes factors for testing
heterogenous compound symmetry structures, where equal-
ity or inequality constrained hypotheses of covariance pa-
rameters were considered. In the case of inequality con-
strained hypotheses, it was shown that the proposed pri-
ors defined a balanced Bayes factor, which correctly bal-
ances between model fit and model complexity. The prior
and posterior samples can be used to obtain the Bayes fac-
tor for testing equality of the parameter vector of interest.
This latter procedure was used for testing heterogeneity of
the intra-class correlation of public and Catholic schools
for the 1982 High School and Beyond Survey data. It was
concluded that the intra-class correlation between Catholic
schools was larger than for public schools, and therefore, the
use of a conditional model with a homogeneous intra-class
correlation for all school types is not advisable.

Bayesian tests were developed for normally distributed
observations. However, the compound symmetry covariance
structure can also be defined for non-normally distributed
categorical data within the class of generalized linear mod-
els. When a normal underlying augmented variable can be
defined, the proposed Bayesian tests can be defined con-
ditional on the augmented variable. To integrate over the
augmented data the MCMC algorithm needs to be extended
with an additional step. As a result, the compound sym-
metry covariance structure can be tested with the proposed
Bayesian tests for categorical data.

Although this paper focused on a compound symmetry
covariance structure, similar tests can be constructed for
variance components in other structured covariance matri-
ces, such as auto-regressive or Toeplitz. A challenge here is
the specification of proper prior distributions for the vari-
ance components that result in a positive definite covariance
matrices with the appropriate structure. When this can be
achieved, effective and flexible statistical tools can be de-
signed for testing complex dependency structures.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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Appendix: Derivation of the marginal posterior of �τ

The model is given by

yj = N (Xjβ, σ 2�τj ,nj
), (26)

with

�τj ,nj
=

⎡
⎢⎢⎢⎢⎣

1 τj · · · τj

τj 1
. . .

...
...

. . .
. . . τj

τj · · · τj 1

⎤
⎥⎥⎥⎥⎦

= (1 − τj )Inj
+ τj Jnj

,

where τj is the intraclass correlation in group j , and β con-
tain the D fixed effects. Furthermore,

y = N (Xβ, σ 2�τ ), (27)

with �τ = diag(�τ1,n1 , . . . ,�τJ ,nJ
), X = (X′

1, . . . ,X′
J )′

and y = (y′
1, . . . ,y′

J )′. The likelihood is given by

f (y|τ , σ 2,β) ∝ |σ 2�τ |− 1
2

× exp

{
−1

2
(y − Xβ)′

[
σ 2�τ

]−1
(y − Xβ)

}
.

The following noninformative proper prior is used under
the unconstrained model M0 : τ1, . . . , τA,

π0(τ ,β, σ 2) = π0(τ )π0(β)π0(σ
2), where

π0(τ ) =
A∏

a=1

π0(τa)

=
A∏

a=1

U
(
−

(
max
j∈Ja

{nj } − 1
)−1

,1
)

π0(β) =
D∏

d=1

U(−1e�,1e�)

π0(σ
2) = inv-χ2(1,1), (28)

where Ja is the set of group numbers belonging to sec-
tor a = 1, . . . ,A. The bound � in the multivariate uniform
prior of the nuisance parameter vector β is chosen such
the likelihood is essentially zero outside (−1e�,1e�)D , e.g.
� = 1e10. Consequently, the joint posterior is essentially
proportional to π0(σ

2)f (y|τ , σ 2,β), i.e.,

π(τ , σ 2,β|y)

∝ (σ 2)−
N+1

2 −1|�τ |− 1
2

× exp

{
− 1

2σ 2
((y − Xβ)′�−1

τ (y − Xβ) + 1)

}
.

First, σ 2 is integrated out of π(τ,σ 2,β|y) using a scaled
inv-χ2 distribution for σ 2 with hyper-parameters

νσ 2 = N + 1

s2
σ 2 = (N + 1)−1((y − Xβ)′�−1

τ (y − Xβ) + 1),

by

π(τ ,β|y) ∝ s
−ν

σ2

σ 2

�(νσ 2/2)

(νσ 2/2)νσ2 /2
|�τ |− 1

2

∫
σ 2

(νσ 2/2)νσ2 /2

�(νσ 2/2)

× s
ν
σ2

σ 2 (σ 2)−ν
σ2 /2−1 exp

{
−νσ 2s2

σ 2

2σ 2

}
dσ 2

∝ |�τ |− 1
2 s

−ν
σ2

σ 2

∝ |�τ |− 1
2
(
(y − Xβ)′�−1

τ (y − Xβ) + 1
)− N+1

2 .

When denoting

β̂ = (
X′�−1

τ X
)−1X′�−1

τ y

Vβ = (
X′�−1

τ X
)−1

ξ = y′�−1
τ y − β̂

′
V−1

β β̂ + 1,

we can rewrite

(
(y − Xβ)′�−1

τ (y − Xβ) + 1
)− N+1

2

= (
ξ + (β − β̂)′V−1

β (β − β̂)
)− N+1

2

= ξ− N+1
2 (1 + ξ−1(β − β̂)′V−1

β (β − β̂))−
N+1

2 .

Furthermore, let

Sβ = (N − K + 1)−1ξVβ

mβ = β̂

νβ = N − K + 1,

which are the hyperparameters of the multivariate t distri-
bution of β which we can integrate out of π(τ,β|y). This
results in

π(τ ) ∝ |�τ |− 1
2 ξ− N+1

2
�(

νβ

2 )ν
K/2
β πK/2

�(
νβ+K

2 )
|Sβ | 1

2

×
∫

β

�(
νβ+K

2 )

�(
νβ

2 )ν
K/2
β πK/2

|Sβ |− 1
2

×
(

1 + 1

νβ
(β − mβ)′S−1

β (β − mβ)

)− νβ+K

2

∂β

∝ |�τ |− 1
2 ξ− N+1

2 |(N − K + 1)−1ξVβ | 1
2
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∝ |�τ |− 1
2
(
y′�−1

τ y − y′�−1
τ X

(
X′�−1

τ X
)−1

× X′�−1
τ y + 1

)− N−K+1
2 |X′�−1

τ X|− 1
2 ,

where

|�τ | =
J∏

j=1

|�τj
|

=
J∏

j=1

((nj − 1)τj + 1)(1 − τj )
nj −1

and

�−1
τ = diag(�−1

τ1,n1
, . . . ,�−1

τJ ,nJ
)

with

�−1
τj ,nj

= ζI,nj
Inj

+ ζJ,nj
Jnj

with

ζI,nj
= 1 + (nj − 1)τj

1 + (nj − 2)τj − (nj − 1)τ 2
j

= (1 − τj )
−1

ζJ,nj
= −τj

1 + (nj − 2)τj − (nj − 1)τ 2
j

= −τj

(1 − τj )(1 + (nj − 1)τj )
.
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