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A mixture model for the joint analysis of
latent developmental trajectories and
survival
Rinke H. Klein Entink,a Jean-Paul Fox,b∗† and Ardo van den Houtc

A general joint modeling framework is proposed that includes a parametric stratified survival component for
continuous time survival data, and a mixture multilevel item response component to model latent developmental
trajectories given mixed discrete response data. The joint model is illustrated in a real data setting, where the
utility of longitudinally measured cognitive function as a predictor for survival is investigated in a group of
elderly persons. The object is partly to determine whether cognitive impairment is accompanied by a higher
mortality rate. Time-dependent cognitive function is measured using the generalized partial credit model
given occasion-specific mini-mental state examination response data. A parametric survival model is applied
for the survival information, and cognitive function as a continuous latent variable is included as a time-
dependent explanatory variable along with other explanatory information. A mixture model is defined, which
incorporates the latent developmental trajectory and the survival component. The mixture model captures
the heterogeneity in the developmental trajectories that could not be fully explained by the multilevel item
response model and other explanatory variables. A Bayesian modeling approach is pursued, where a Markov
chain Monte Carlo algorithm is developed for simultaneous estimation of the joint model parameters. Practical
issues as model building and assessment are addressed using the DIC and various posterior predictive tests.
Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

In medical and epidemiological research, questionnaire data are often used to measure a patient’s status
of health or functioning (cognitive or physical). The multiple response observations that are recorded
using a standardized test are used to measure a continuous latent variable. This continuous latent variable
might represent disability in daily living [1], health-related quality of life [2, 3] or cognitive impairment
[4]. The variation in the latent variable might not be fully explained by the usual measurement model
when dealing with a highly heterogenous study population. In practice, the study population may consist
of multiple internally homogenous subpopulations or latent classes, which complicates the measurement
of the latent variable.

The object is to study the relationship of such a continuous latent variable to survival where the study
population is heterogenous. Relationships can be studied between some time to an event (e.g. death)
and changes in the latent variable. Typically, to study the relationship of a latent variable to survival,
longitudinal measurements are required to be able to identify a patient’s latent variable trajectory. The
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latent variable trajectory provides information about the development of the individual’s behavior or
functioning and can also be used to understand how specific changes may be related to covariates
[5, 6]. In case the latent variable trajectories are nested within different subgroups or latent classes, it is
also possible to evaluate group-specific behavior or functioning over time and group differences with
respect to survival.

Item response theory (IRT) models [7] have been developed to take account for measurement error
inherent to a questionnaire, mixed response types and different item characteristics, among other things.
Specifically, the generalized partial credit model [8, 9] will be used to establish a functional relationship
between the observed discrete item responses and the continuous latent variable. The measurement
occasions over time are nested within the individual. Therefore, a multilevel generalized partial credit
model is proposed to model the individuals’ latent developmental trajectories, which relates to the
multilevel IRT model approach of Fox and Glas [10].

Heterogeneity within the population as a result of the presence of unidentified subgroups can be
dealt with by a mixture modeling approach [11, 12]. Mixture models can identify groups of persons
that are relatively homogenous in their developmental trajectories and assign probabilities of group
membership to each person. Moreover, a mixture model provides the means for linking group member-
ship probability to relevant disease-related characteristics [13, 14]. A mixture multilevel IRT model is
defined to model the latent developmental trajectories of the measures such that dependencies between
measures within the same person are accounted for [15, Chapter 6]. As a result, besides allowing for
a deviation in the mean trend of the developmental trajectories of subgroups, the mixture multilevel
IRT model also allows for the stratification of the survival function on group membership. Also, by
assigning group membership probabilities, this avoids the arbitrary classification of persons to a certain
group, which can be important when differences between groups are such that they require different
treatments. Vermunt [16] proposed multilevel latent class models to identify subtypes of related cases
accounting for a nested structure of the data.

The joint modeling of a latent variable and survival is usually done by extending the Cox propor-
tional hazards regression model with a time-dependent latent covariate [17--19]. Larsen [1] and
Wang et al. [2] integrated an IRT model with Cox proportional hazard model. The hazard func-
tion can take on different forms but the hazard functions of different individuals are restricted to
be proportional over time. This assumption is central to the proper estimation and interpretation
of the survival model but very difficult to validate [20]. In the proposed modeling framework, a
general class of parametric survival models that allow for non-proportional hazards will be adopted.
A time-dependent latent covariate is accommodated using the subject-specific latent variable trajec-
tory. Instead of using measurements at fixed time points, the time intervals between the measurements
of individuals are left unspecified. As a result, the exact times of measurement and death can be
used.

Other authors have proposed joint models for longitudinal and time-to-event data; an overview of this
active research area can be found in [21]. However, our proposal builds on previous work by extending
the modeling framework with a mixture multilevel IRT model, and the use of Bayesian methods for
joint estimation, which are implemented using Markov chain Monte Carlo (MCMC) routines, thereby
accounting for measurement uncertainty in the latent covariates that is immediately reflected in the
parameter estimates of the survival function [22].

The joint model is motivated by the following example, which comprehends a follow-up study of
the development of cognitive impairment and survival of elderly participants. On several measurement
occasions, cognitive function of the participants was assessed with the mini-mental state examination
(MMSE), a questionnaire widely used for screening of cognitive impairment and used to detect cognitive
decline that is typical for people suffering from dementia or cognitive impairment seen by Alzheimer’s
disease [23]. Typically, besides individual differences, the study population consists of subtypes since
a group of participants will show cognitive decline over time as normally seen by elderly people and
another group will show a more severe cognitive decline due to the development of Alzheimer’s disease
or dementia. Furthermore, it is reasonable to suspect different life expectancies for groups with different
trajectories of cognitive impairment.

In the next section, the modeling framework is described in more detail. Section 3 discusses the
MCMC algorithm. Section 4 introduces the MMSE and survival data set and describes the results
and conclusions of the application of our model to the data. A discussion of the merits and possible
improvements and extensions of our approach concludes this paper.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 2310--2325
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2. Modeling latent developmental trajectories and survival

The model is composed of a mixture multilevel item response model and a survival model. The mixture
model identifies subpopulations that are relatively homogenous in their developmental trajectories.
Within each subpopulation, a multilevel latent growth model is used to describe the individuals’ latent
developmental trajectories. Subsequently, an item response model maps an individual’s response vector
on several indicator variables to a test score on the latent trait. A parametric survival model is stratified
on group membership, and links (latent) covariates to the hazard of an event.

2.1. Specification of the mixture multilevel item response model

Assume there are g =1, . . . ,G unobserved groups in the population and that subjects (i =1, . . . , N )
belong to one of the subgroups. For each subject i , a latent variable �ij is measured at occasion
j at time tij. The number of measurements can vary across individuals and ni denotes the number
of measurements of subject i . The measures are allowed to be taken at different occasions and the
time intervals between measurements are not necessarily equidistant but are allowed to differ across
individuals and can, for instance, depend on the measurement frequency of covariates.

Let Xg denote the vector of class-specific parameters describing the latent developmental character-
istics of group g. The mixing probability is represented by �g , which is the proportion of individuals
belonging to group g. At level 3, the mixture of distributions that describes the population is given by:

p(h |X)=
G∑

g=1
�g p(h |Xg)=

G∑
g=1

�g

N∏
i=1

p(hi |Xg), (1)

where it is assumed that the vectors of individual measurements are conditionally independent of one
another given the class-specific parameters. The conditional probability that subject i belongs to group
g is given by:

P(Qi =g |hi ,p,X)= �g p(hi |Xg)∑G
g=1 �g p(hi |Xg)

, (2)

where Qi is the underlying discrete latent class variable that can take on values g =1, . . . ,G.
At level 2, a latent curve model is specified to describe the latent developmental trajectories. The

common form of the latent curve model is one based on linear change. However, within the joint
modeling framework, a more general polynomial (such as linear or quadratic) or nonlinear growth
model is also possible. To account for the nesting of measures within subjects in latent class g, a linear
growth model with a random intercept and slope at the individual level is specified by

�ij =�0,g +u0i,g + tij(�1,g +u1i,g)+wi,gc2,g +eij, (3)

where �0,g denotes the class-specific intercept, and �1,g denotes the class-specific slope or the annual
change rate. The individual-level coefficients u0i,g and u1i,g are the person-specific random effects that
represent the deviation from the class-specific intercept and slope, respectively. The set of random effects
is assumed to be multivariate normally distributed as (u0i,g,u1i,g)∼MVN(0,sg). The subject and class-
specific explanatory information are stored in matrix wi,g , and c2,g represent the corresponding (fixed)
effects. The errors, eij, are independently and normally distributed with mean zero and variance �2.

At level 1, the generalized partial credit model [8, 9] is adopted. It relates the latent variable �ij to
K observed responses Yij = (Yij1, . . . ,YijK), and the probability of a response of subject i on item k in
category c (c=1, . . . ,Ck) is defined as

P(Yijk =c |�ij,ak,bk)= exp
[∑c

v=1 ak(�ij −bkv)
]

∑Ck
h=1 exp

[∑h
v=1 ak(�ij −bkv)

] , (4)

where ak is the slope parameter and bk = (bk1, . . . ,bkCk ) are the threshold parameters of item k. The
number of response categories per item may differ. To identify the categories for each item, the threshold
or step parameter bk1 is fixed at zero.
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For polytomous item responses, each threshold parameter in equation (4) is associated with a response
category and defines the difficulty of completing that step or getting a score in that category. The
numerator contains the steps that are completed and the denominator is the sum of all possible numerator
terms.

For binary item responses, the only threshold parameter bk is the item’s difficulty parameter. Then,
the probability of a correct response can be stated as

P(Yijk =1 |�ij,ak,bk)= exp[ak(�ij −bk)]

1+exp[ak(�ij −bk)]
, (5)

where P(Yijk =0 |�ij,ak,bk)=1− P(Yijk =1 |�ij,ak,bk). The difficulty parameter defines a location on
the scale of the latent variable where the probability of a correct response equals 0.50. When increasing
the item difficulty, a similar increase in the latent-variable value is required to have a constant success
probability.

The slope parameter in the generalized partial credit model is also referred to as the discrimination
parameter and is interpreted as a characterization of an item. It influences the increase in probability of
scoring in a response category when increasing the level of the latent variable. An item discriminates
well when persons with different latent-variable levels have different probabilities of scoring in the
same category, where the person with the higher latent-variable level has a higher chance.

If the items in the test measure one latent variable, it can be assumed that the person’s item
responses are independent given the value of latent variable �ij. That is, the latent variable explains all
associations between the item responses. In the generalized partial credit model it is assumed that such
a unidimensional latent variable underlies the item responses. As a result, the joint density of the K
item responses of subject i given the latent variable and item parameters can be factorized as

p(yij1, . . . , yijK |�ij,a,b)=
K∏

k=1
p(yijk |�ij,ak,bk). (6)

2.2. Specification of the parametric survival model

The observed continuous survival time data, t, present the time to a certain event. The survival times
are right-censored for subjects that are still alive at the end of the study. An indicator variable is defined
to identify the uncensored times and the right-censored times. Let Di =1 when subject i experienced
an event before the end of the study, and Di =0 when the event did not occur and a right-censored
survival time is observed.

The distribution of the survival times of subjects in latent class g are characterized by survival
function Sg(t). It represents the conditional probability that subject i in latent class g does not experience
an event before time ti . The latent class-specific survivor function depends on a location parameter �g
and some shape or scale parameters a. The distribution can be any well-known parametric survival
distribution (e.g. exponential, Weibull, lognormal). Let fg(t) denote the density function of the observed
survival time, and the survivor function is related to the cumulative distribution function according to
Sg(t)=1− fg(t).

Consider the time interval [ti0, ti1] where subject i in class g enters the study at time ti0 and is
followed up to time ti1. The distribution of the time ti1 is described by the density function fg(t) when
an event has occurred in the time interval or by the survivor function when subject i is still at risk; that
is,

p(ti1,di1 |�g,a, Qi =g)= Sg(ti1 |�g,a)
1−di1 fg(ti1 |�g,a)

di1

Sg(ti0 |�g,a)
. (7)

Note that the denominator accounts for possible late entry of subject i , and Sg(ti0)≡1 at the start of
the study to simplify the expression.

The survival model is extended to identify risk factors and to allow class-specific individual differ-
ences in survival. Therefore, a loglinear model with class-specific parameters is defined for the location
parameter of the survivor function, which is given by

log�ij,g =xt
ijbg +�ij�g, (8)

where xij is the vector of corresponding time-dependent observed covariates, bg the vector of corre-
sponding class-specific effects, and �g is the class-specific regression weight for the time-dependent

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 2310--2325

2313



R. H. KLEIN ENTINK, J.-P. FOX AND A. VAN DEN HOUT

latent variable �ij. The latent variable is a time-dependent covariate in equation (8), which is measured
infrequently and with measurement error. However, the joint modeling framework for the latent covariate
and survival process can deal with the random error in the measured covariates. Various modeling
approaches for dealing with a latent covariate as a predictor have been proposed [19, 24, 25].

The time-dependent covariates in equation (8) enter the survivor function as time-varying covariates,
which severely complicate the evaluation of the survivor function since it requires integrating the
hazard function over each covariate trajectory [26, pp. 357–358]. Therefore, it will be assumed that the
time-dependent covariates are piecewise-constant within a specified interval. Such a finite partition of
the time axis is a convenient and popular method for semiparametric survival analysis.

For subject i , ni intervals (ti0, ti1), (ti1, ti2), . . . , (ti(ni −1), tini ) are defined, where each time point
reflects a new measurement occasion of the time-dependent covariate(s). Now, the distribution of the
survival times ti given time-dependent covariates is described by

p(ti ,di |gi ,a) =
G∑

g=1
P(Qi =g)

ni∏
j=1

p(tij,dij |�ij,g,a, Qi =g)

=
G∑

g=1
P(Qi =g)

ni∏
j=1

S(tij |�ij,g,a)
1−dij f (tij |�ij,g,a)

dij

S(ti( j−1) |�ij,g,a)
. (9)

2.3. Joint likelihood function

The joint likelihood function is derived for the survival model and the mixture multilevel item response
model. The first part of the likelihood is constructed from the distribution of the survival data using
the expression in equation (9). The second part of the likelihood is constructed from the distribution
of the item response data and the latent variable using the expressions in equations (1) and (6). Due to
the factorizations, the likelihood for the joint model can be written as a series of products:

p(y, t,d |X,a,b,b) =
N∏

i=1

[[
G∑

g=1
P(Qi =g)

ni∏
j=1

p(tij,dij |�ij,g,a, Qi =g)

]

×
ni∏

j=1

∫
p(yij |�ij,a,b)

G∑
g=1

P(Qi =g)p(�ij |Xg, Qi =g)d�ij

]

=
N∏

i=1
p(ti ,di |gi ,a)p(yi |X,a,b). (10)

The first term on the right-hand side denotes the likelihood contribution of the survival component.
A heterogenous population distribution is defined using a mixture model such that different survivor
functions can be defined across subpopulations. The survivor functions vary across individuals within
the same class through time-dependent (latent) covariates. The second term on the right-hand side
denotes the distribution of the item responses given the individual-specific latent trajectory parameters
and item parameters. The characteristics of the latent developmental trajectories are assumed to vary
across the subpopulations, and individual variability in the same class is captured through random
effects.

In this joint likelihood model, interest is focused on how the latent variable trajectory affects the
time to some event. In fact, the questionnaire data are assumed to be informative about the survival data
using a continuous latent variable and a discrete latent class as predictors. Besides the item response
data, the survival data can be used to define the latent class membership. Then, the survival data are
informative about the latent variable trajectory through their influence on the specification of the latent
classes. Larsen [27] recommended to define the latent variable trajectory by the item response data
and not the survival data. This is possible by using the item response data and not the survival data
to define the latent classes. Hogan and Laird [28] defined the joint likelihood model in such a way
that the time to some event, such as informative study dropout, affects a longitudinal outcome. In the
present framework this would mean that the survival data, and not the item response data, define the
latent classes.
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2.4. Model identification

To ensure identification of the measurement model for �, the scale of the latent variable has to be fixed.
This is achieved by specifying the general mean of the latent variable to be zero and the

∏K
k=1 ak =1,

which fixes the location and scale, respectively. Furthermore, the mixture model is yet unidentified and
requires a restriction to be able to distinguish between the G permutations of the mixture components
(label switching). A unique solution requires either a restriction on the means, the variances or the
mixture proportions [29]. In our implementation the mixture model was identified by the restriction
s1<s2< · · ·<sG . For two groups, for example, this was accomplished by restricting s2 −s1 to be positive
definite.

3. Bayesian estimation and inference

Posterior inferences require the specification of prior distributions for all model parameters. The prior
is then updated with the likelihood given by (10) to obtain the posterior. This section discusses the
choices for the priors and outlines the MCMC algorithm for estimation. Furthermore, methods for
model evaluation are discussed.

3.1. Estimation

Within the mixture multilevel IRT model, the hierarchical structure on the latent variable naturally
provides priors for the parameters. Priors need to be specified for the higher-level model parameters
and some level-specific model parameters. First, at the level of response observations, an exchangeable
hierarchical multivariate normal prior is chosen for the item parameters of the measurement model such
that log(ak),bk ∼MVN(lI ,RI ). It will be assumed that there is no prior information to discriminate the
item parameters from one another. A possible within-item dependency is modeled by the multivariate
prior structure to allow correlation between item’s discrimination and difficulty parameter. A normal-
inverse Wishart prior will be used for the hyperprior parameters.

Second, priors are defined for the mixture multilevel model parameters. Normal priors are chosen
for the fixed effects parameters, allowing for efficient Gibbs sampling steps for estimation (see below),
c∼MVN(l�0

,R�0
). A conjugate prior is specified for the mixture proportions �g; that is, the beta

distribution, in the case of two classes, and the Dirichlet distribution, in the case of more than two latent
classes. For the variance components, an inverse-gamma prior is chosen for �2 and its multivariate
generalization, the inverse-Wishart distribution, for sg , sg ∼ I W��(s

−1
0 ), with �� the prior degrees of

freedom and scale s0.
Third, for the survival model, prior distributions for the regression and shape parameters have to

be specified. The regression parameters, b,K, are given independent normal priors that reflect only a
non-informative region of possible parameter values. The specific choices for the mean and variance
are given below. For the shape or scale parameters uniform priors are defined on a finite interval with
sufficiently large bounds and independent of the choice of the survival function.

To obtain parameter estimates, an MCMC method was implemented. MCMC methods are simulation-
based algorithms that construct a Markov chain with the joint posterior distribution as its target distribu-
tion. The joint distribution is broken down into smaller subvectors, conditional on all other parameters.
After providing the algorithm with starting values for all parameters, it alternates between the full
conditional distributions for M iterations. The details of the algorithm are given in the Appendix, but
we illustrate the procedure briefly here:

1. Generate starting values for all parameters
2. At iteration m, draw latent variable h(m) from p(h |y, t,w,a,b, (all other parameters))
3. Draw survival parameters K from p(K |h(m),y, t,w,a,b, (all other parameters))
4. Obtain draws for all other model parameters
5. Repeat steps 2–4 until M draws from the joint posterior have been obtained.

After M draws have been obtained, it is important to assess the convergence of the algorithm before
proceeding with posterior inferences. The BOA R-package [30] for use in R/Splus allows to evaluate
several statistical tests that give an indication of the convergence of the MCMC chains. A burn-in
period for the chains will be estimated and the corresponding draws are ignored for making statistical

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 2310--2325
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inferences. The remaining draws are used to compute summary statistics of the posterior distribution
of the model parameters.

Note that at iteration m, a draw of the latent variable h(m) from the posterior distribution is treated
as a covariate value in the individual survival function. This is done at every iteration. This way
measurement error in the latent covariate is also accounted for in the estimated posterior density of
the survival function parameters. The MCMC algorithm makes it possible to estimate the marginal
posterior densities of the survival parameters by integrating over the posterior density of the latent
explanatory variable.

3.2. Model evaluation

The framework of posterior predictive testing is used to investigate the fit of the model [31, 32]. The
principle is to evaluate general model fit or to test a specific assumption using an appropriate test
statistic. The value of the test statistic is computed given the observed data and its posterior distribution
is computed given replicated or predictive data sampled from their posterior predictive distribution
under the model. The extremeness of the value of the test statistic is evaluated, and a misfit is detected
when the value is more extreme than expected under the model. Values of the test statistics and draws
from the posterior predictive distribution can be obtained as by-products of the MCMC algorithm.
Posterior predictive checks for item response models have been proposed by Sinharay [33]. Fox [15]
provides a general overview of prior and posterior predictive checks for item response models.

Posterior predictive model assessment can also be applied to the general class of survival models.
Ibrahim et al. [26] and Hanson et al. [34] used predictive model selection criteria to compare models.
The posterior predictive survival data can be sampled under the joint model using the MCMC samples.
Here, model fit is assessed by evaluating the quality of the predictions of the time-to-event data under
the joint model. Replications of the event indicator, Drep, are sampled under the joint model. Then, we
define Ot as the cumulative number of events after t years since the start of the study at t =0, and
E(Ot ) as its expectation under the model. The corresponding model fit criterion is defined as

T (Drep, t,x,h,K,b)=∑
t

(O rep
t − E(Ot ))2

E(Ot )
. (11)

The observed cumulative number of events, Oobs, are considered to be extreme under the joint model,
indicating a model misfit, when the posterior probability P(T (Drep, t,x,h,K,b)>T (Dobs, t,x,h,K,b))
is close to zero or one.

Joint models can differ with respect to their survival component and/or the longitudinal component.
The deviance information criterion (DIC) allows to judge the performance of different (non-nested)
models by means of a deviance-based statistic with a penalty term for the number of parameters in the
model [35]. The specification of the deviance function defines the type of model comparison that will
be performed. Here, the DIC is based on the likelihood of the observed data, where the parameters of
interest can be directly identified and the DIC can be computed in a closed form. Therefore, a DIC can
be defined for the observed item responses and for the observed survival times.

When interest is focused on selecting the appropriate survivor function, the deviance function will be
defined as −2log p(t,d |y,b,K,h). Different parametric survival models (e.g. lognormal, Weibull) can
be compared, and specific shape parameters for the survivor functions and the effects of explanatory
variables can be tested. This DIC enables the selection of a parametric survivor function for the observed
survival times. For the item response data, the DIC can also be defined at the level of the observed
data and will be a function of the observed-data likelihood defined by the generalized partial credit
model. Both DICs can be estimated using the MCMC samples and the closed-form expressions of the
deviance functions.

4. Data analysis

Data were obtained from a study of the OPTIMA cohort (Oxford Project to Investigate Memory and
Ageing), which were supported by the NIHR Oxford Comprehensive Biomedical Research Centre. The
sample consisted of 668 participants, aged 65 and older, who were followed over the period 1991–
2003. Participants were interviewed using the MMSE questionnaire to obtain a measure of cognitive
function. Furthermore, background variables such as gender, age, education and a known family history
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of dementia were recorded. Follow-up times varied between as well as within individuals and in total
3668 measurement occasions were available, corresponding to the total number of interviews, right-
censored states and observed deaths. The minimum number of observations per individual was 2, the
maximum 16. The median and standard deviation of the number of individual measurements was 5
and 2.54, respectively.

The data suggested that the participants could be divided into roughly two groups. On the one hand
there were individuals who showed relatively stable test scores over time and who were in the higher
levels of the sum score distribution; on the other hand, there were individuals who showed a decline in
their test scores over time. Therefore, it was assumed that the population consisted of a subpopulation
of participants with latent trajectories showing a decrease in cognitive function and a subpopulation
showing more constant trajectories of cognitive function over time. The latent trajectories as well as
the survival functions were expected to differ across subpopulations and participants. The objective
was to investigate the structure of the population distribution of the latent trajectories, the relationship
of cognitive function with survival and to estimate individual survival functions given the survival data
and the individual latent trajectories of cognitive impairment.

4.1. The mixture multilevel modeling part

The MMSE item response data were modeled by the generalized partial credit model, where the latent
variable represent cognitive function. A linear growth model for the cognitive function was specified
with a random intercept and slope parameter for each subpopulation. The follow-up time was used as
an explanatory variable. It was assumed that the residual variation between measurements was constant
across subjects and subpopulations. This two-component multilevel population model for cognitive
function can be stated as,

p(�ij | ti ,c,s,�
2) = �1�(	ij,1,�

2)+(1−�1)�(	ij,2,�
2),

	ij,g = �0i,g +�1i,gtij,

�0i,g = �0,g +u0i,g,

�1i,g = �1,g +u1i,g,

(12)

for g =1,2. The population of cognitive impairment is a mixture of two populations. The trajectory
function in each subpopulation has its class-specific intercept, slope and population variance. Further-
more, the random intercept and slope models the individual variation within each class. The residuals
(u0i,g and u1i,g) are multivariate normally distributed, and they reflect the individual deviations from
the class-specific mean intercept and slope, respectively.

The MCMC algorithm was run twice for 15 000 iterations, after which convergence was checked
using the BOA R-package. The two separate runs were compared using Gelman’s R-statistic, that
compares the two chains with respect to their target distribution. If the posterior distributions have
converged to approximately the same distribution, this statistic is close to one. Values below 1.1 are
deemed acceptable and in our sample all estimated R statistics were less than 1.07. Furthermore,
Geweke’s Z -statistic, Heidelberg’s stationarity test as well as trace plots and estimated autocorrelations
were evaluated. Results indicated that stability of the chains for all parameters was reached within the
first 1500 iterations. We decided to discard the first 5000 iterations as burn-in, and based our posterior
inferences on the remaining 10 000 samples. This applies to all estimates reported below.

Model fit of the multilevel item response model part was assessed by evaluating an observed score
statistic, which gives an impression of overall model fit by comparing the observed sum scores of
the participants on the MMSE with their replicated sum scores under the model [33, 36]. The results
of 500 replicated data sets under the model showed a good fit for the response data. The local
independence assumption in equation (6) was evaluated using a posterior predictive check based on
residual correlations. The test results showed that less than 5 per cent of the item responses had non-
zero (within-subject) correlations. Therefore, it was concluded that a unidimensional latent variable
explained the dependencies between the response observations.

There was no significant variation detected between the individual slopes of the trajectory function.
Therefore, the random slope was restricted to be constant across individuals within each subpopulation.
The parameter estimates of the mixture multilevel population model (12) are presented in Table I. The
two-group solution is given the labels ‘Decline’ and ‘Stable’, to refer to the group of subjects who showed
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Table I. Estimates of the class-specific developmental trajectories of cognitive function.

Decline (g =2) Stable (g =1)

EAP SD EAP SD

Fixed effects
�0,g Intercept −0.709 0.031 0.776 0.036
�1,g Time slope −0.112 0.012 −0.009 0.006
Variance components

2

g Between individual 0.244 0.124 0.134 0.118
�2 Residual 0.219 0.029 0.219 0.029
Mixture proportion
�g 0.432 0.020 0.568 0.020
DIC 59 866 (pD = 3,452)

a decrease in cognitive function over time and those who showed stable performance, respectively. For
a formal comparison of the two-group mixture solution with the homogenous population assumption,
the DIC was estimated at the level of the observed item responses. The estimated DIC corresponding
with the mixture multilevel population model (equation (12)) was 59 866 (pD =3452), while for the
homogenous population model the DIC was 60 052 (pD =3207), favoring the two-component mixture
population model. A three-component mixture model was also fitted, but this led to a higher DIC
of 67 235. The three-group solution showed a comparable stable group, where the other two groups
shared the characteristics of the decline group. This three-group solution did not provide any additional
information.

The estimated mixing population proportion �̂2 presents the percentage of subjects who were clas-
sified into the decline group. It appeared that around 43 per cent of the subjects belong to the decline
group. Note that the probability of membership to a specific class varies over individuals. The individual
posterior classification probabilities are not given here but they were estimated with the other model
parameters.

The expected a posteriori (EAP) estimates presented in Table I show that the mean intercept of
the stable group (EAP(�0,1)=0.776) was substantially higher than the mean intercept of the decline
group (EAP(�0,2)=−0.709)). A 95 per cent HPD interval for the difference in mean intercepts was
estimated at [1.430,1.550], and clearly excludes the point of equal mean intercept values. The mean
trend in cognitive function over time was almost zero for the stable group, whereas it was negative
for the decline group, who showed a downward trend (EAP(�1,2)=−0.112). An illustration of the
differences between trajectories of cognitive function of the decline and the stable group is given in
Figure 1. It shows the developmental trajectories of ten selected subjects. The subjects were classified
with a membership probability higher than 0.975. Besides the individual variation, it can be seen that
the class-specific mean latent trajectories differ substantially.

4.2. Including the survival modeling part

The modeling structure of the latent growth model for cognitive impairment was identified independent
of the survival component. In a second step, the survival component of the joint model was analyzed
given the growth modeling structure. It was investigated whether the identified latent groups (e.g. stable
and decline) also differ with respect to their survivor functions. Furthermore, the effect of cognitive
function, age, and gender (male=1) on survival was investigated.

Different functional forms of the survivor function were considered; the exponential, Weibull and
the lognormal distribution, which are commonly used in survival modeling [37]. The survival models
were jointly estimated and the mixture multilevel model and the survivor function was stratified
on group membership. This means that (class-specific) survival parameters were estimated for both
subpopulations. The survival functions were extended with the individual time-dependent latent and
observed covariate �ij and Ageij, respectively, and the time-invariant covariate gender. This leads to the
following subject-specific predictor in the survivor function,

log�ij,g =�0,g +Genderi�1,g +Ageij�2,g +�ij�g. (13)

The fit of the different parametric survival distributions was evaluated using the DIC. Table II shows
the estimated DICs of the different joint models where the survival component is altered by choosing a
different survival function (column labeled ‘Survival Distribution’), different covariates (column labeled
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Figure 1. Cognitive developmental trajectories of five subjects in the decline
group and five in the stable group.

Table II. Estimated DICs of different stratified and non-stratified survival models.

Model Survival distribution Covariates Latent classes DIC

M1 Exponential 1 2 2146.0
M2 Weibull 1 2 1872.3
M3 Lognormal 1 2 1905.4
M4 Exponential 1,� 2 2041.7
M5 Weibull 1,� 2 1836.0
M6 Lognormal 1,� 2 1816.1
M7 Weibull 1,�, Male 2 1823.2
M8 Lognormal 1,�, Male 2 1803.0
M9 Weibull 1,�, Male, Age 2 1775.0
M10 Lognormal 1,�, Male, Age 2 1768.1
M11 Weibull 1,�, Male, Age 1 1856.3
M12 Lognormal 1,�, Male, Age 1 1858.3

� represents the latent covariate cognitive function.

‘Covariates’) and different number of mixture distributions (column labeled ‘Latent Classes’). It can
be seen that the exponential survival distribution (model M1 and M4) is too restrictive compared to
the Weibull and lognormal. The Weibull and lognormal distributions are very close in fit as indicated
by the DIC, but the latter is doing better when gender and cognitive function are included (model M9
and M10). Finally, the stratified survival models were compared with the non-stratified survival models
(models M11 and M12), where for the latter the effects across the two subpopulations were assumed
to be equal. From the estimated DICs follow that the characteristics of the survival function vary over
the subpopulations.

The covariates were entered sequentially into the model and the DIC as well as 95 per cent
HPD regions of the estimated coefficients were used to test the statistical significance of the covari-
ates. From Table II it follows that the smallest DIC corresponds to model M10. The model fit was
assessed by means of a posterior predictive check. For the proposed posterior predictive check of
the survival part (equation (11)), the observed cumulative number of deaths per year since baseline
(1,21,67,108,143,198,227,251,266,286) were compared to the replications under the model. The
estimated p-value was p=0.37, which indicates that the observed number of deaths cannot be consid-
ered to be extreme under the model, although the model seemed to slightly underpredict the number
of observed events.

The parameter estimates of the survival component (model M10) are given in Table III. The parameter
estimates are given for the subpopulations labeled Stable and Decline. The residual variance was
restricted to be the same for both groups. The survival probability is lower for the decline group
when comparing it with the stable group since for the last mentioned the intercept value is higher. A
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Table III. Class-specific estimates of the (stratified) lognormal survival model (M10).

Decline (g =2) Stable (g =1)

EAP SD EAP SD

Fixed effects
�0,g Intercept 1.986 0.072 2.561 0.081
�1,g Male −0.270 0.064 −0.282 0.076
�2,g Age (standardized) −0.179 0.080 −0.212 0.090
�g Cognitive Function 0.369 0.041 0.254 0.046
Variance components
�2

S Residual 0.362 0.031 0.362 0.031
P
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u
rv
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)
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Figure 2. The survival probabilities of three females as a function of a five-year trend in cognitive function.

subject’s survival probability is positively correlated with their (grand-mean centered) cognitive function
measured at that same time-point. Therefore, a change in the within-subject’s cognitive function over
time leads to a change in the survival probability. For a decrease in cognitive function, the decrease
in survival probability is much higher for subjects in the decline group than for subjects in the stable
group. The preservation of cognitive function clearly has a positive effect on survival, especially for
those that show cognitive impairment. For both groups, the survival probability is decreasing as a
function of age, where the effect of age is slightly smaller for the decline group. Furthermore, males
have lower life expectancies than females and this effect is almost similar across groups.

The time-dependent explanatory variables age and cognitive function make it possible to estimate
individual-specific survival probabilities. A subject’s latent trajectory of cognitive function can be used
to predict the survival function, which is also influenced by the subpopulation’s trend in survival.
The joint modeling framework makes it possible to predict cognitive function as well as the survival
probabilities. An illustration is given in Figure 2, where the expected survival probabilities are plotted
for three different subjects as a function of the expected cognitive function. One female was classified
in the decline group, one in the stable group and the other one was assigned a probability of 50 per
cent to belong to either group. The predicted trends in cognitive function and corresponding survival
probabilities were plotted for a period of five years. The figure illustrates the differences in expected
trends between the subjects and subpopulations, both in expected survival probability and in expected
cognitive function. Typically, the predicted trend in cognitive function of the subject in the decline
group is much steeper than that of the others. The corresponding predicted survival probabilities are
also decreasing faster.

The key advantage of using a joint modeling framework in this study was that subjects who are
most at risk of developing a major or minor declining trend in cognitive function could be identified.
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The integrated mixture modeling approach extracted meaningful subgroups who differ with respect to
the relationship between survival and cognitive impairment. The identification of subjects nested in
subgroups who are most at risk assists in the development of specific interventions or treatments.

4.2.1. Using sum scores. The individual MMSE item scores can be summed to compute a sum score
for each individual. The sum score can be considered to be an estimate of cognitive function and can
be directly incorporated in the survivor function in Equation (13). However, the use of sum scores
will diminish the power of identifying subject-specific effects and may lead to biased estimates of the
corresponding covariate effect on survival.

The sum scores are treated as measured without an error. The measurement error associated with the
sum scores can have an effect on the estimated covariate effects [25]. The latent variable estimates have
subject-specific measurement errors since the observed item response patterns are not equally likely
to be observed. Furthermore, the generalized partial credit model can handle floor and ceiling effects,
since the latent variable is defined on a continuous scale, handle missing item responses and deal
with item characteristic differences. Finally, some response patterns can be marked as inconsistent or
aberrant. This relates to the fact that a subject who has difficulties to pass the easy items will probably
fail the more difficult items. When using sum scores, this type of inconsistency cannot be detected and
will be ignored.

When using sum scores, the information about the relationship between the test items and cognitive
function is lost. That is, many response patterns lead to equivalent sum scores, though some response
patterns are more likely to be observed than others. The different response patterns lead to different
latent variable estimates under the generalized partial credit model. Therefore, it will be possible to
distinguish respondents from each other given the latent variable estimates, though they are related to
the same sum score. For this reason, a more profound relationship can be expected between the latent
variable scores and survival than the sum scores and survival. That is, the estimated subject-specific
survival probabilities will differ when using sum scores due to a different cognitive-function estimate
and a different covariate effect on survival.

In Figure 3, the sum scores are plotted against the latent variable estimates under the generalized
partial credit model. It can be seen that the discrete sum scores suffer from a floor and ceiling effect and
are not normally distributed. Each individual sum score corresponds to numerous different response
patterns and different individual latent variable estimates. The latent variable estimates are defined on
a continuous scale and show more variation.

The sum scores of the subjects in both latent groups were computed and re-scaled such that the
mean and variance of the distribution of the sum scores correspond with those of the latent variable
scores. The transformed sum scores were used as an empirical proxy covariate of cognitive function in
model M10 (equation (13)). The estimated covariate effect is smaller (0.19) for the Stable group and
slightly higher for the Decline group (0.40), when comparing them to the covariate effects in Table III.
The within-individual change in the sum score is rougher than the change in the latent variable, but the
average within-individual change in each subpopulation does not differ much. This lead to relatively
small differences in estimated covariate effects. Note that the estimated latent classes were assumed to
be known, since the discrete sum scores will violate the normality assumption of the two-component
growth model in equation (12).

In Figure 3, individual predictions of survival are plotted for respondents that have the same sum
score at the baseline (t =0). In the three subplots, the solid line represents the mean predicted survival
probabilities of individuals with a sum score of 15, 20 and 25, respectively. In each subplot, the dotted
lines correspond to predicted survival probabilities based on latent variable estimates of individuals with
the same sum score. The predicted survival probabilities show much more between-subject variation
due to differences in latent variable estimates of cognitive function. For example, for a sum score of
25, an expected difference in survival probability of approximately 0.20 was computed after five years
keeping other variables constant. The more accurate latent variable scores led to improved individual
predictions of survival.

5. Discussion

A mixture multilevel joint model is proposed to model latent developmental trajectory of cognitive
function and survival probability. Cognitive function is considered to be a risk factor of survival, where
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Figure 3. Plot of the sum score against the latent variable estimate of cognitive function. Survival probability
plots as a function of time for individuals with different latent variable estimates but an equal sum score.

effects are allowed to vary across subgroups. Longitudinal questionnaire data are used to estimate
cognitive function over time. In the joint modeling framework the measurement error in cognitive
function is explicitly modeled and the estimated effect of cognitive function on survival does not suffer
from attenuation due to the unreliability of the scale scores.

The use of questionnaires by clinicians is widespread (e.g. the measurement of depression or quality
of life). Item response theory models become more and more popular for measuring the underlying
variable while recognizing the psychometric properties of the measurement instrument being used. The
novel proposed mixture item response modeling approach can handle mixed response types as well as
an unobserved mixed population of respondents.

In the empirical example it was shown how the proposed joint survival model can be applied to
studies where the measures of interest are not directly observable but measured with error by means
of a questionnaire. With the proposed model it is possible to identify subgroups within the population
and study differences in their growth curves as well as the relationship with time-to-event problems.
Neale et al. [38] also studied survival and cognitive decline using the MMSE. An advantage of our
mixture modeling approach is that the arbitrary classification of individuals based on their MMSE
sum scores is avoided. This includes the arguable specification of a cut-off score to identify subjects
with conserved cognitive function and impaired cognitive function. In our approach, the uncertainty in
individual trends of cognitive impairment is also explicitly modeled over time by means of probability
statements.

There is a large literature on joint modeling of (longitudinal) questionnaire data and time-to-event
data. However, only a few applications use an item response model for measuring an underlying
variable given questionnaire data. Larsen [1] combines a two-parameter item response model with the
Cox proportional hazards model. However, a time-independent measurement of physical functioning
is defined, which does not facilitate the modeling of a latent developmental trajectory. Wang et al. [2]
combines an item response model with the Cox proportional hazards model that allows for a longitudinal
measurement of a continuous latent variable representing quality of life. They model the mean latent
trajectory with a first-order autoregressive structure for the covariance matrix. In the present more
general approach, individual latent trajectories of cognitive function are modeled and the time intervals
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between the measurements are allowed to vary over individuals instead of assuming fixed follow-up
time points. Furthermore, a mixture item response model is used to capture the heterogeneity between
meaningful subgroups.

The joint model can also be used for informative dropout in a longitudinal study, where the survival
point is taken to be the time to dropout and interest is primarily focused on modeling the latent trajectory.
The mixture modeling approach can be used to identify trajectories that are more or less likely to
be associated with the dropout. With a focus on the longitudinal modeling part, it is also possible to
define a separate (time-dependent) frailty random effect in the survival model, which is correlated with
the time-dependent continuous latent variable (e.g. quality of life, cognitive function). As discussed in
Wang et al. [2], the frailty parameter in the survival model captures all residual individual variation,
where the correlation parameter between the frailty parameter and the latent variable captures the
dependence in the censoring of the longitudinal process by death.

The statistical inference was performed within the Bayesian framework. An MCMC algorithm is
presented to estimate all parameters of the joint model simultaneously. A DIC is implemented to be able
to select the (survival) model that best fits the data from a couple of candidate models. The assessment
of the joint model is further supported by posterior predictive model checking. However, more research
is needed to expand the class of posterior predictive checks to fit joint models. The posterior predictive
tests are easily integrated within the MCMC algorithm. Currently, there is no readily available software
to fit the proposed joint model. The developed software for the described application will be made
available as an R-package from the authors’ web site.

Appendix A: MCMC algorithm

Step 1. Sampling classification variable for person i . The full conditional that person i belongs to a
specific class is given by (2). Evaluating (2) is straightforward. Subsequently, a classification vari-
able value is drawn given the conditional class-membership probabilities P(Qi =g |hi ,p,X) for g =
1, . . . ,G.

Step 2. Sampling the mixture probabilities. For the two class solution, the number of people in class
1 follows a binomial distribution with N observations. A conjugate and uninformative prior for the
class probability �1 is the Beta(1,1) and �2 =1−�1. Let g1 =∑N

i=1 I (Qi =1) and g2 =∑N
i=1 I (Qi =2).

The posterior distribution for the latent class probability �1 is a Beta:

�1 |g1,g2 ∼Beta(g1 +1,g2 +1). (A1)

Step 3. Sampling latent variable �ij. The likelihood is given by (6), multiplying this by the prior p(�ij |
Xg, Qi =g, tij) gives the posterior p(�ij |yij,a,b,Xg, Qi =g, tij). A Metropolis–Hastings step is used to

update �ij. For iteration m, a proposal �∗ is drawn from Jt (�
∗ |�(m−1)

ij ), where the jumping distribution

Jt was chosen to be �∗ ∼ N (�(m−1)
ij ,�2

Jt
). Subsequently, draw U ∼Uniform(0,1), and evaluate if U<r ,

where r is the ratio given by

r =
p(�∗ |yij,a,b,Xg, Qi =g, tij)/Jt (�

∗ |�(m−1)
ij )

p(�(m−1)
ij |yij,a,b,Xg, Qi =g, tij)/Jt (�

(m−1)
ij |�∗)

. (A2)

When U<r , the proposal is accepted as the new value for �ij, otherwise the previous draw is retained.
Step 4. Sampling item parameters ak and bk . The likelihood is given by

∏N
i=1

∏ni
j=1 p(yijk |�ij,ak,bk).

Multiplying this likelihood with the priors for ak and bk gives the posterior. Metropolis–Hastings steps,
similar to the one in Step 3, can be defined for a and b. A lognormal proposal distribution is specified
for the discrimination parameter.

Step 5. Sampling the fixed effects cg . The likelihood is given by (3) and with a normal prior the
posterior is multivariate normal. Let zg = (1, tg,wg) represent the covariate matrix for all persons in
class g. Also, let h∗ =hg −u0,g −tg ·u1,g , the vector of person effects for all individuals in class g.
Then, the posterior distribution is given by:

cg |h,u,zg,�∼MVN

(
zt

gh
∗�−2 +R−1

�0
l�0

(zt
gzg�−2)−1 +R−1

�0

, ((zt
gzg�

−2)−1 +R−1
�0

)−1

)
,
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Step 6. Sampling the random effects u. let h∗i =hi −c0,g −tic1,g −wic2. Let zi = (1, ti ,wi ). Then,
the posterior distribution is given by

ui |zi ,h,�,sg,cg ∼MVN

(
zt

i�
−2h∗i

�2(zt
i zi )−1 +s−1

g
, (�2(zt

i zi )
−1 +s−1

g )−1

)
.

Step 7. Sampling the parameters of the survival model. For the regression parameters b and K, the
functional form of the likelihood is determined by the choice of the density function (exponential,
Weibull or lognormal). With the normal prior, a Metropolis–Hastings step was implemented with a
normal proposal density. The proposal was evaluated against the previous draw similar as outlined in
Step 3. The same applies forK. For the variance parameters of either the Weibull or lognormal model, the
proposal was drawn from a Gamma distribution and the updating step was again a Metropolis–Hastings
step.

Step 8. The variance parameter �2 was sampled from an inverse-gamma distribution, and sg from
an inverse-Wishart distribution using conjugated priors.

To get good acceptance rates for the several Metropolis–Hastings steps in the algorithm, the accep-
tance rate over a period of 100 iterations were computed. Then, the acceptance rate was evaluated. If
the acceptance rate fell below 0.20 the variance of the proposal distribution was adjusted to a smaller
value, if the acceptance rate became above 0.50, the variance of the proposal was set to a larger value.
This adaptive Metropolis–Hastings procedure was only used in the burn-in period.
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