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Beta-binomial ANOVA for multivariate
randomized response data

Jean-Paul Fox*
Twente University, Enschede, The Netherlands

There is much empirical evidence that randomized response methods improve the
cooperation of the respondents when asking sensitive questions. The traditional
methods for analysing randomized response data are restricted to univariate data and
only allow inferences at the group level due to the randomized response sampling
design. Here, a novel beta-binomial model is proposed for analysing multivariate
individual count data observed via a randomized response sampling design. This new
model allows for the estimation of individual response probabilities (response rates)
for multivariate randomized response data utilizing an empirical Bayes approach.
A common beta prior specifies that individuals in a group are tied together and the beta
prior parameters are allowed to be cluster-dependent. A Bayes factor is proposed to
test for group differences in response rates. An analysis of a cheating study, where 10
items measure cheating or academic dishonesty, is used to illustrate application of the
proposed model.

1. Introduction

When observing count data, it is often assumed that individual counts are generated

from a binomial distribution. If, however, the counts exhibit extraneous variance,
variance greater than expected under a binomial model, it is further assumed that the

binomial probabilities vary between individuals according to a beta distribution. The

marginal distribution of the counts is then beta-binomial. The beta-binomial model for

psychological and educational testing was proposed by Lord (1965). The binomial

probability function for describing a respondent’s number-correct score is justified

when each response is independent of the other, and when the respondent’s response

rate, the probability of a positive response, remains constant. In mental test theory

where tests are usually measures of maximum performance, it is not to be expected that
the items are of equal difficulty, which makes the binomial model unsatisfactory.

However, items measuring an individual’s interest, attitudes, or a specific type of

* Correspondence should be addressed to Jean-Paul Fox, Department of Research Methodology, Measurement and Data
Analysis, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands (e-mail: fox@edte.utwente.nl).

The
British
Psychological
Society

453

British Journal of Mathematical and Statistical Psychology (2008), 61, 453–470

q 2008 The British Psychological Society

www.bpsjournals.co.uk

DOI:10.1348/000711007X226040



Copyright © The British Psychological Society
Reproduction in any form (including the internet) is prohibited without prior permission from the Society

behaviour (e.g. cheating or criminal behaviour) are often descriptive statements with

which respondents agree or disagree. In personality assessment via questionnaires and

self-report inventories which is focused on assessing an individual’s interests, motives,

or attitudes, it is likely that the individual’s probability of a positive response

remains constant. Domain responses relative to a respondent can be assumed as being

more or less consistent. Further, it will be shown via a simulation study that the beta-
binomial model is robust against violations of a constant individual response probability.

The beta-binomial model has tractable mathematical properties and has proven to be a

good descriptive model (Lord & Novick, 1968). Modifications of the beta-binomial

model have been developed for analysing random guessing on multiple choice tests

(Morrison & Brockway, 1979) and estimating domain scores (Lin & Hsiung, 1994),

among others.

A particular problem is that respondents have a tendency to agree rather than

disagree (acquiescence) and a tendency to give socially desirable answers (social
desirability). Moreover, measuring incriminating or socially undesirable practices

via direct questioning of respondents leads to some degree of evasiveness or non-

cooperation. Obtaining valid and reliable information depends on the cooperation

of the respondents, and the willingness of the respondents depends on the

confidentiality of their responses. Warner (1965) developed a data collection

procedure, the randomized response (RR) technique, in which a randomizing device is

used to select a question from a group of questions and the respondent answers the

selected question. The respondent is protected since the interviewer will not know
which question is being answered. In this article, a related approach, a forced

randomized response design, is used in which the randomized device determines

whether the respondent is forced to say ‘yes’, say ‘no’, or answer the sensitive

question. For example, in the study, described below, concerning cheating behaviour

of students at a Dutch university, two dice were used. The respondents was asked to

roll two dice and answer ‘yes’ if the sum of the outcomes was 2, 3, or 4, answer the

sensitive question if the sum was between 4 and 11, and answer ‘no’ if the sum was

11 or 12. Again, the respondents were protected since the interviewer did not know
the outcome of the dice.

In this paper, the traditional method (Warner, 1965; Greenberg, Abul-Ela,

Simmons, & Horvitz, 1969) for analysing RR data is extended to handle multivariate

RR data such that inferences are not limited to estimating population properties.

Note that, up till now, there has been no straightforward method for analysing

multivariate RR data that enables the computation of individual response estimates

and corresponding variances without having to rely on large-scale survey data.

A challenge in the analysis of RR data is that the true individual responses (that would
have been observed via direct questioning) are masked due to the forced responses.

However, individual response rates can be estimated when multiple RR observations

are measured from each individual. First, the sum of randomized responses is

modelled with a beta-binomial model. Second, a Bayes estimate of the individual’s

response rate and its variance is obtained by utilizing a probabilistic relationship

between the randomized response and the response that would have been obtained

via direct questioning. Different groups are modelled simultaneously in a common

way, and it is shown how a Bayes factor can be used to test for group differences
regarding the response rates, taking account of the RR sampling design. Below, for

example, interest is focused on differences in cheating behaviour across faculties

where a forced response sampling design is used.
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Attempts have been made to modify item response theory (IRT) models for

estimating an underlying construct given RR data. Fox (2005) developed a class of

randomized IRT models within a Bayesian framework. Independently, Böckenholt and

van der Heijden (2007) developed a comparable class of models within a frequentist

framework. These types of models are complex, with many parameters, since all items

and persons are parameterized. Stable parameter estimates are only to be expected for
large data sets (e.g. Embretson & Reise, 2000, suggest the use of more than 500

respondents). Moreover, response patterns obtained via a randomized response

sampling design contain less information about the underlying construct than response

patterns obtained via direct questioning. Larger sample sizes are needed to obtain

parameter estimates of underlying constructs with the same precision as those obtained

via direct questioning data. There is relatively little information about the robustness

of these IRT models for RR data, the computer algorithms for fitting them, and so

far it is unknown how sensitive the models are to violation of the various assumptions.
The main advantages of the proposed beta-binomial model are (1) its simplicity, (2) that

stable parameter estimates can be obtained for small data sets, and (3) that no complex

estimation methods are needed.

This paper is organized as follows. In section 2, the beta-binomial model is described

for RR data and it is shown how RR data affect statistical inferences. Then, attention

is focused on estimating the parameters of the model via parametric empirical Bayes.

A closed-form expression is obtained for the Bayes risk of a Bayes estimator for an

individual response rate. It is shown how to construct confidence intervals and to
estimate probability statements with respect to a response rate. In section 5, a

simulation study is given where (1) the robustness of the beta-binomial model is

investigated, (2) the sensitivity of the proposed Bayes factors to hyperprior parameter

values is shown, and (3) a risk comparison between the proposed Bayes estimator and a

natural unbiased estimator is shown. An example is presented in which RR data from a

cheating study in The Netherlands are used to illustrate the methodology. Finally, other

extensions of the model are discussed.

2. The beta-binomial model

Here there are J groups, and participant i in group j has response probability or response

rate pij. It is assumed that each person responds to k ¼ 1; : : : ;nij binary items.

A random variable uijk is Bernoulli distributed with response probability pij. The random
variable uij· ¼

Pnij

k uijk, the sum of independent Bernoulli trials, has binomial

distribution with parameters nij and pij. This probability varies from respondent to

respondent and has a beta distribution with group-specific parameters aj and bj. The

beta-binomial hierarchy models the variation in individual responses via a binomial

distribution, and models the variation between respondents’ success probabilities via a

beta distribution, that is,

uij�j pij , BIN ðnij; pijÞ;

pij , Bðaj;bjÞ:

This structure allows the conditional mean and variance of the individual success

probability to vary across respondents and clusters. The posterior expectation and
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variance of pij can be derived using Bayesian methodology;

pð pijjuij:;aj;bjÞ ¼
f ðuij�jpijÞpð pijjaj;bjÞÐ
f ðuij:jpijÞpð pijjaj;bjÞdpij

¼
Gðnij þ aj þ bjÞ

Gðaj þ uij:ÞGðnij þ bj 2 uij:Þ
p
uijþaj21

ij ð1 2 pijÞnij2uij:þbj21;

which can be recognized as a beta distribution with parameter uij: þ aj and

nij 2 uij: þ bj. The mean and variance of this beta distribution are

Eð pijjuij:;aj;bjÞ ¼
uij: þ aj

nij þ aj þ bj

;

Vð pijjuij:; aj; bjÞ ¼
ðuij: þ ajÞðnij 2 uij: þ bjÞ

ðnij þ aj þ bj þ 1Þðnij þ aj þ bjÞ2 :

The binary response data u are not observed, but RR data y are observed via a forced

randomized response design. In this sampling design, a response uijk is given to a

sensitive question k with probability w1, and a forced positive response is given with

probability (1 2 f1)f2. A probabilistic relationship can be specified that relates the

observed randomized response yijk with the response uijk:

pð yijkjpijÞ ¼ f1pðuijkjpijÞ þ ð1 2 f1Þf2

¼ f1pij þ ð1 2 f1Þf2

¼ Dð pijÞ;

where D( pij) is a linear function with known parameters f1 and f2 and with

inverse function D2( pij). It follows that for each respondent the sum of the

randomized outcomes, yij., of the nij independent Bernoulli trials has the binomial

distribution,

yij:jpij , BIN ðnij;Dð pijÞÞ; ð1Þ
Dð pijÞ , Bðaj; bjÞ;

using a beta prior distribution for the success probabilities D( pij) with group-

specific parameters aj and bj. The beta distribution describes the variation in the

individual success probabilities of the binomial distribution within each cluster. It

follows that

Eð pijjaj; bjÞ ¼ D2ðmjÞ ¼ D2 aj

aj þ bj

 !
¼ f21

1

aj

aj þ bj

þ 1 2 f21
1

� �
f2;

Vð pijjaj; bjÞ ¼
1

f2
1

mjð1 2 mjÞ
aj þ bj þ 1

 !
¼ mjð1 2 mjÞsj=f

2
1

are the prior mean and variance of pij. The prior mean of pij is a weighted average

of the prior mean, aj/(aj þ bj), and the forced success probability f2. There are no
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randomized responses if f1 ¼ 0 (the prior mean equals aj/(aj þ bj)), and there are

only randomized responses if f1 ¼ 0 (the prior mean equals f2). In the present

application, the beta distribution has zero density at 0 and 1. This is realized with

aj . 1 and bj . 1, and as a result sj , 1/3. Note that the prior variance will

increase due to the RR sampling design, since f1 [ (0,1). The case of only binomial

variation corresponds to sj ¼ 0, where aj and bj have infinite values.

3. Empirical Bayes parameter estimation

The parameters of the two-stage model (1) are estimated using an empirical Bayes

approach. In the empirical Bayes analyses, the parameters at the highest level of the

hierarchy are estimated using the data. That is, there is no hyperprior and the data are

used to provide information about the highest level in the hierarchy. In a parametric

empirical Bayes approach (e.g. Casella, 1985; Morris, 1983), the parameters of the beta
distribution are estimated using the marginal posterior distribution of the data,

pðyja;bÞ. An empirical Bayes estimator of the individual success probabilities is

constructed by replacing these quantities by their estimates in the estimator. That is,

1ð pijjyij:; âj; b̂jÞ is used to estimate 1ð pijjyij:; aj; bjÞ.
The marginal distribution of the prior parameters aj, bj is given by

pð y1j�; : : : ; yIjj:Þjaj;bjÞ ¼
Y
i

ð
f ð yij�jDð pijÞÞpðDð pijÞjaj;bjÞdpij

¼
Y
i

nij

yij

 !
Gðaj þ bjÞ
GðajÞGðbjÞ

Dð pijÞyij�þaj21ð1 2 Dð pijÞÞnij2yij�þbj21

¼
Y
i

nij

yij�

 !
Gðaj þ yij�ÞGðnij þ bj 2 yij�ÞGðaj þ bjÞ

Gðnij þ aj þ bjÞ
Gðaj þ bjÞ
GðajÞGðbjÞ

ð2Þ

and can be recognized as the beta-binomial distribution (Gelman, Carlin, Stern, & Rubin,
1995, p. 476). Note that, for each j, the marginal distributions of the yij.s, after

integrating out the pijs, are identically distributed with parameters aj and bj if nij ¼ nj.

These parameters can be estimated from equation (2).

There are two simple estimation methods for estimating each aj and bj. The method

of moments, one of the oldest methods of finding point estimators (Casella & Berger,

2002, Chap. 7), provides closed-form expressions for the estimators. The first two

sample moments are equated to the mean and variance of the beta-binomial distribution

in equation (2) (Skellam, 1947). The moment estimators are found by solving the
equations, that is,

Eð yij�jaj;bjÞ ¼ nj

aj

aj þ bj

¼ �yj;

Vð yij�jaj;bjÞ ¼ nj

ajbj

ðaj þ bjÞ2

ðaj þ bj þ njÞ
ðaj þ bj þ 1Þ ¼ s2

j ;
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where �yj and s2
j are the sample moments. It follows that the estimators are

âj ¼ �yj
ð �yjðnj 2 �yjÞ2 s2

j

ðnjs
2
j 2 �yjðnj 2 �yjÞÞ

;

b̂j ¼ ðn2 �yjÞ
ð �yjðnj 2 �yjÞ2 s2

j Þ
ðnjs

2
j 2 �yjðnj 2 �yjÞÞ

:

Maximizing the marginal likelihood for each j where the number of observations may

vary across individuals yields the more efficient maximum-likelihood estimates. Ignoring

constants involving only observations, the log likelihood, following from equation (2), is

given by

lðaj;bjjyij�Þ ¼
X
i

Xyij�21

k¼0

log ðaj þ kÞ þ
Xnij2yij�21

k¼0

log ðbj þ kÞ2
Xnij21

k¼0

log ðaj þ bj þ kÞ
" #

:

ð3Þ

There are no closed-form expressions for the maximum-likelihood estimators. However,

the equations of first-order derivatives equated to 0 can be solved iteratively using the

Newton–Raphson method. Griffiths (1973) suggested estimating the parameters jj ¼
aj=ðaj þ bjÞ and vj ¼ 1=ðaj þ bjÞ since these parameters are more stable than aj and bj.

The method-of-moments estimates and the maximum-likelihood estimates are, in most

cases, nearly the same. However, on rare occasions, the method of moments gives poor

results and, therefore, maximum-likelihood estimates are preferred (Wilcox, 1981). The

method of moments has the advantage of yielding explicit answers, and they can also be

used as starting values for obtaining maximum-likelihood estimates.

The posterior distribution of success probability, D( pij ) is Bð yij� þ aj;
bj 2 yij� þ nijÞ. A natural estimator for the response rate, pij, is the mean of the
posterior distribution. This gives the Bayes estimator, where the estimates of aj and bj

are plugged in,

Eð pijjyij�; âj; b̂jÞ ¼ D2ðmjÞ ¼ D2 yij� þ âj

nij þ âj þ b̂j

" #

¼ f21
1

nij

nij þ âj þ b̂j

 !
yij�
nij

þ âj þ b̂j

nij þ âj þ b̂j

 !
âj

âj þ b̂j

" #
þ 1 2 f21

1

� �
f2; ð4Þ

with variance

Vð pijjyij�; âj; b̂jÞ ¼
ð yij� þ âjÞðnij 2 yij� þ b̂jÞ

f2
1ðnij þ âj þ b̂j þ 1Þðnij þ âj þ b̂jÞ2

ð5Þ

¼ mjð1 2 mjÞsj=f
2
1: ð6Þ

The Bayes estimate in (4) combines three kinds of information about pij. The prior

distribution with mean âj=ðâj þ b̂jÞ is combined with the sample mean yij�=nij;where

the weights are determined by nij, âj and b̂j. This weighted average is combined with

the forced success probability f2 where the weight is defined by f1. As a result, the
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Bayes estimate is a linear combination of the prior mean, sample mean, and the forced

success probability.

The parametric empirical Bayes estimate fails to take account of the uncertainty

about aj and bj. Therefore, the corresponding variance term in (6) is too small, and this

term estimates only the variance EðVð pijjyij�; âj; b̂jÞÞ. Kass and Steffey (1989) proposed

a first-order approximation of the term VðEð pijjyij�; aj; bjÞÞ, where V is the variance
with respect to the posterior distribution of aj,bj. By writing Vð pijjyij�Þ ¼
EðVð pijjyij�; aj; bjÞÞ þ VðEð pijjyij�; aj; bjÞÞ and applying first-order Taylor expansions,

straightforward calculation then yields an approximation for the empirical Bayes

variance under the model:

V̂ð pijjyij�Þ ¼ EðVð pijjyij�; âj; b̂jÞÞ þ V̂ðEð pijjyij�; aj; bjÞÞ

¼ mjð1 2 mjÞsj=f
2
1 þ

X
c;d

ŝc;d d̂cd̂d=f
2
1; ð7Þ

where ŝc;d is the (c, d )th component of the negative Hessian of lðaj; bjjyij�Þ; equation

(3), and with d̂c ¼ ð›=›ajÞEð pijjyij�; aj; bjÞ and d̂d ¼ ð›=›bjÞEð pijjyij�; aj; bjÞ evaluated

at aj ¼ âj and bj ¼ b̂j. Note that the accuracy of the approximation of the posterior

distribution of aj,bj based on the normal distribution depends on the number of

observations within each cluster, Ij, for j ¼ 1; : : :; J ; rather than the number of

observations, nij, per individual. When the number of observations per cluster becomes

sufficiently large, with nij remaining small, the first term in (7) will suffice. The accuracy

of the approximation can be improved by restricting the variance terms across clusters
to be equal.

For a squared error loss function, a closed-form expression can be found of Bayes risk

of the Bayes estimator dð yÞ ¼ Eð pijjyij�; âj; b̂jÞ; see equation (4). The Bayes risk, defined

as the expected posterior risk (the mean squared error) with respect to the marginal

distribution of the data of estimator d(y), can be written as

Ey½Epjyðdð yÞ2 pijÞ2� ¼ Ey½EpjyðEð pijjyij�; âj; b̂jÞ2 pijÞ2�

¼ Ey½Vð pijjyij�; âj; b̂jÞ�

¼ Ey½ð yij� þ âjÞðnij 2 yij� þ b̂jÞ�
f2

1ðnij þ âj þ b̂j þ 1Þðnij þ âj þ b̂jÞ2
ð8Þ

¼ âjb̂j=f
2
1ðâj þ b̂jÞðâj þ b̂j þ 1Þðâj þ b̂j þ nijÞ;

where the variance of the Bayes estimator is given in equation (5). Details of the

computation of the expected value in the numerator of (8) can be found in Grosh

(1972). The risk of the Bayes estimator will be compared by simulation with that of

unbiased estimator D2ð yij�=nijÞ.

4. Bayesian inference

The posterior distribution of D( pij) can be used to construct a Bayesian credible

interval for pij. The posterior distribution of D( pij) is Bð ~aj; ~bjÞ, where ~aj ¼ yij� þ aj and
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~bj ¼ bj 2 yij� þ nij� A Bayesian 1 2 2n credible interval equals

1 2 2n ¼ pð pL # Dð pijÞ # pU jyÞ ð9Þ

¼ pðD2ð pLÞ # pij # D2ð pU ÞjyÞ;

where pL ¼ 0 if ~aj # 1 and pU ¼ 1 if ~bj # 1. The computation of pL and pU requires the

evaluation of incomplete beta functions and an algorithm for finding the roots in (9).

This can be circumvented using the property Dð pijÞ=ð1 2 Dð pijÞÞ , ~aj= ~bjF2 ~aj ;2 ~bj
; and a

1 2 2n credible interval for pij is

D2 1

1 þ ð ~bj þ 1Þð ~aj 2 1ÞF2ð ~bjþ1Þ; 2ð ~aj21Þ;n=2

 !
# pij , D2

ð ~aj= ~bjÞF2 ~aj ;2 ~bj ;n=2

1 þ ð ~aj= ~bjÞF2 ~aj ;2 ~bj ;n=2

 !
;

where Faj ;bj ;n is the upper n cut-off from an F-distribution with aj and bj degrees of

freedom. The lower end-point is 0 if yij: ¼ 0 and the upper end-point is 1 if yij: ¼ nij: In

the same way, the posterior probability that pij does not exceed some fixed value p0 can

be computed, that is,

pð pij # p0jyÞ ¼ pðDð pijÞ # Dð p0ÞjyÞ

¼ p Dð pijÞ #
ð ~aj= ~bjÞF

1 þ ð ~aj= ~bjÞF
jy

 !

¼ pðF2 ~aj ; 2 ~bj
# FjyÞ;

where:

F ¼
~bj

~aj

Dð p0Þ
1 2 Dð p0Þ

:

4.1. Homogeneity of proportions
There are J groups and each group has I j ð j ¼ 1; : : : ; J Þ respondents. Attention is

focused on differences in latent response rates across groups. A reparameterization as

suggested by Griffiths (1973), jj ¼ aj=ðaj þ bjÞ and vj ¼ 1/(aj þ bj), is preferable.

These parameters are more easily interpreted, with jj, the mean success probability and

vj a measure of variation in response probabilities in cluster j.

In this parameterization, the beta-binomial distribution becomes the binomial

distribution when vj approaches 0 and this makes it possible to test for the extra-
binomial variation. The Bayes factor can be used to test for the extra variability beyond

binomial variance in each group j. The Bayes factor for testing H0: vj ¼ 0 against H1:

vj . 0 is written as

BF ¼ Pð yjjH0Þ
Pð yjjH1Þ

¼
Ð Q

ijj f ð yij�jjjÞpðjjÞdjjÐÐ Q
ijj f ð yij�jjj;vjÞpðjj;vjÞdjj dvj

: ð10Þ

Careful attention must be paid to the prior choices pðjj; vjÞ and pðjjÞ since

equation (10) is a test that a variance component lies on the boundary of its parameter

space. Hsiao (1997) showed that the parameters jj and vj are null orthogonal and that

the parameters can be considered to be independent. A uniform prior distribution is
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assumed for jj and a half-normal unit information prior is assumed for vj centred at 0

with variance equal to the inverse of a unit information in group j evaluated at the null

for the binomial case (Pauler, Wakefield, & Kass, 1999).

A Bayes factor can also be used to test the hypothesis H0 : j ¼ j1 ¼ : : : ¼ jj against

the alternative that not all location parameters are the same. The Bayes factor for testing

heterogeneity of population proportions between groups and allowing heterogeneity of
variance between groups is written as

BF ¼
ÐÐ Q

j f ð yj�jj; vjÞpðjÞpðvjÞdj dvjÐÐ Q
j f ðyj�jjj; vjÞpðjjÞpðvjÞdjj dvj

: ð11Þ

The same prior distributions can be used for jj and vj terms, and a uniform prior is

assumed for j. The Bayes factor in (11) is easily adjusted when assuming homogeneity of

variance between groups, since it is possible that the groups may differ notably with

respect to jj but not to vj.

5. Simulation study

In a first simulation study, the robustness of the model was investigated. A second

simulation study was performed in order to compare the risks of the proposed moment
and maximum-likelihood estimators.

5.1. Robustness
The effects of a violation of the assumption of a constant response rate per

individual across items were investigated. For each respondent, two response rates

were simulated from a beta distribution, and each response rate was used to

generate binomial distributed response data based on n/2 items. Within individuals,
the response rates were allowed to vary in such a way that the approximately

normally distributed differences had a mean of 0 with, under condition 1, a variance

of 0.05 and, under condition 2, a variance of 0.10. In the so-called ‘no-noise’

condition, both data sets of n/2 items were analysed separately. In the other two

conditions, the scores on both tests were summed to create one score based on n

items. Subsequently, these scores for n items were analysed given the assumption of

a constant individual response rate.

In Table 1, the results are given under the heading ‘constant response rate’. Under
each condition, the maximum-likelihood estimates of the beta parameters are reported

under the heading ML. Furthermore, a mean squared error (MSE) of the estimated

response rates was computed such that the estimated individual response rate(s) were

compared with the true individual response rates. This means that in conditions 1 and 2

both individual response rates were estimated by an overall estimate based on the

summed score. All estimates in Table 1 are averaged outcomes over 100 independent

samples. Under the no-noise condition, the estimated beta parameters are close to the

true values. The estimated beta parameters under conditions 1 and 2 are slightly biased
due to the fact that the mean values of the generated beta-distributed response rates

were not exactly beta distributed. The bias increases when the differences between

individual response rates increase. It follows that a more informative prior leads to a

lower MSE. The estimated MSEs in condition 1 are smaller than the estimated MSEs in

the no-noise condition. Moreover, the estimated MSEs in condition 2 are also smaller
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than those in the no-noise condition. It can be concluded that the reduction in variance

is larger than the increase in bias due to a violation of a constant response rate. The

reduction in variance is caused by the fact that in conditions 1 and 2 more item

information is available for estimating the response rates than in the no-noise condition.

For the cases considered, the reduction in bias by taking account of different individual
response rates across items has a smaller impact on the MSE than the reduction in

variance by assuming a constant response rate. The differences between MSEs become

smaller when increasing the number of items and persons, and only for large sample

sizes does it become attractive to allow for different individual response rates.

The robustness to violations of the assumption of beta-distributed response rates was

investigated. Therefore, two symmetric beta distributions for the response rates were

specified, with a ¼ b ¼ 2 and a ¼ b ¼ 4. The generated response rates were

contaminated with noise. Subsequently, binomial response data were generated given
the noisy response rates. The noise was generated under two different conditions.

Random noise was generated from a truncated normal distribution with a standard

deviation of 0.2, denoted as condition 1, and 0.4, denoted as condition 2. In Table 1, it

can be seen, under the heading ‘Beta prior’, that the estimated beta population

parameters resemble the true values in the case of no noise. The estimated population

parameters under the other two conditions are slightly biased. Although the simulated

response rates do not follow the assumed beta prior distribution under conditions

1 and 2, even for small sample sizes both estimated beta prior parameters are close to
the true values. It can be seen that the MSE of the estimated response rates given the

estimated beta parameters is just slightly increasing when increasing the noise level. In

conclusion, the model is robust against random disturbances in response rates since

they hardly influence the estimates of beta parameters and response rates.

Table 1. Robustness of the beta-binomial model against different within-person response rates

No noise Condition 1 Condition 2

(N,n) (a, b) ML MSEP ML MSEP ML MSEP

Constant response rate
(100,10) a ¼ 2 2.028 0.047 2.064 0.032 2.292 0.036

b ¼ 2 2.034 2.071 2.284
a ¼ 4 4.143 0.034 4.157 0.027 4.289 0.029
b ¼ 4 4.041 4.291 4.333

(200,20) a ¼ 2 2.017 0.029 2.165 0.020 2.210 0.022
b ¼ 2 2.058 2.218 2.210
a ¼ 4 4.042 0.024 4.479 0.017 4.640 0.021
b ¼ 4 4.071 4.307 4.380

Beta prior
(100,10) a ¼ 2 2.017 0.014 1.899 0.015 1.655 0.018

b ¼ 2 2.103 2.120 2.037
a ¼ 4 4.062 0.012 3.980 0.014 3.585 0.016
b ¼ 4 4.081 4.472 4.300

(200,20) a ¼ 2 2.014 0.008 1.776 0.009 1.622 0.013
b ¼ 2 2.026 2.010 2.026
a ¼ 4 4.078 0.008 3.812 0.008 3.500 0.012
b ¼ 4 4.075 4.409 4.265
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The robustness of the model was further examined by investigating its sensitivity to

different item difficulties. Therefore, response data were generated under the Rasch

model with item difficulties equal to 0 (no-noise condition), and item difficulties

generated from a normal distribution with mean 0 and standard deviation 0.25

(condition 1) and standard deviation 0.50 (condition 2). A sum score was computed for

each simulated item response vector, and response rates were estimated given the sum
scores. Besides different item difficulties, a second model violation was introduced since

the true simulated response rates were not beta but logistic distributed according to the

Rasch model. The estimated response rates were compared with the true simulated item

response probabilities at the item level by computing an MSE of the estimated response

rates. In Table 2, the estimated MSEs based on 100 independent samples are given. The

estimated MSEs in the no-noise condition in Table 2 are comparable to the estimated

MSEs in the no-noise condition under the heading ‘Beta prior’ in Table 1. Thus, although

the simulated response rates were not beta distributed, the estimated response rates are
close to the true values. The estimated MSEs are quite small, and increasing the number

of items and persons leads to a reduction of MSE values. It can be concluded that the

estimated response rates are close to the true simulated values given the estimated

MSEs. The beta-binomial model is quite robust against violations of varying item

difficulties for small sample sizes.

5.2. Risk comparison
Binomial data were generated for different values of the RR sampling design parameter

w1 with a fixed forced success probability of f2 ¼ :60: Note that this parameter reflects

the amount of noise in the simulated data due to forced randomized responses. For

convenience, the binomial sample size selected was the same for each respondent,

n ¼ nij. A binomial sample size of 8 and 12 was selected and the number of respondents

was set to 300. The beta prior distribution parameters were varied to allow for
symmetric as well as for skewed prior distributions. A vague symmetric prior was

specified with a and b equal to 1, and a more informative symmetric prior with a and b

equal to 2. The symmetric priors both have a prior mean of 1/2 and a variance of 1/12

and 1/20, respectively. A skewed prior was specified with a ¼ 2 and b ¼ 3,

corresponding to a prior mean of 2/5 and a variance of 1/25.

In Table 3, the estimates are presented. The estimates given are averaged outcomes

over 100 independent samples. The Bayes risks given moment estimates and maximum-

likelihood estimates are denoted as dM( y) and dML( y), respectively. The moment
estimates of the beta parameters are quite comparable to the maximum-likelihood

estimates for different values of the binomial sample size and parameter f1. The Bayes

risk reduces when the proportion of forced responses decreases. This follows from the

fact that there is less noise in the data when f1 increases. An extreme case is when there

are no randomized forced responses, that is, when f1 equals 1. The Bayes risks

for f1 ¼ .70 and n ¼ 12 are comparable to the Bayes risks for f1 ¼ .80 and n ¼ 8.

Table 2. Robustness of the beta-binomial model against varying item difficulties

No noise Condition 1 Condition 2
(N,n) MSEp̂ MSEp̂ MSEp̂

(100,10) 0.014 0.023 0.047
(200,20) 0.008 0.019 0.046
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This means, in this case, that a comparable risk is found when the proportion of forced

responses is increased from .20 to .30 and the number of items is also increased from 8

to 12. This is important since interest is focused on obtaining truthful answers and

respondents are more willing to share sensitive answers when the probability that the

randomizing device dictates a forced response is apparent. On the other hand, interest is

also focused on obtaining an accurate and reliable estimate of the response rate which
means a low risk of the corresponding empirical Bayes estimator.

This trade-off is further explored in Figure 1, where the risks are plotted for the

empirical Bayes estimator and the unbiased estimator as a function of the probability f1

that the randomizing device dictates a truthful answer from the respondent, keeping the

forced success probability constant f2 ¼ :60 for N ¼ 300 and n ¼ 8. The risk functions

are given for a vague beta prior with a and b equal to 1, a symmetric more informative

prior with a and b equal to 3, and a skewed more informative prior with a ¼ 1 and

b ¼ 3. The prior distributions correspond to a prior mean of 1/2, 1/2, and 1/4, and a
variance of 1/12, 3/80, and 1/28, respectively. Several conclusions can be drawn by

comparing the risk values. It follows that more informative priors lead to lower risk

values. The empirical Bayes estimator outperforms the unbiased estimator with respect

to a risk comparison. The risk functions are decreasing for increasing f1 values. The risk

function of the empirical Bayes estimator corresponding to a more informative beta

prior has a less steep slope for decreasing values of f1 in comparison to a risk function

corresponding to a less informative risk function. This is not true for the unbiased

estimator since the risk corresponding to the prior Bð3; 3Þ is higher than the risk for the
vague prior Bð1; 1Þ. Finally, the functions in Figure 1 can be used in practice since they

Table 3. Moment and maximum-likelihood estimates and corresponding Bayes risks for Bayes

estimator given simulated RR data

n ¼ 8 n ¼ 12

Estimator Bayes risk Estimator Bayes risk

f1 (a,b) Moment ML dM( y) DML( y) Moment ML dM( y) dML ( y)

.70 a ¼ 1 1.012 1.013 10.178 10.187 1.009 1.019 7.277 7.290
b ¼ 1 1.016 1.008 1.010 1.013
a ¼ 2 2.074 2.026 10.158 10.151 2.043 2.024 7.635 7.624
b ¼ 2 2.071 2.044 2.037 2.024
a ¼ 2 2.004 2.061 9.404 9.400 2.009 2.037 7.176 7.216
b ¼ 3 2.999 2.933 3.023 2.987

.80 a ¼ 1 1.008 1.014 7.789 7.775 1.010 0.995 5.571 5.843
b ¼ 1 0.998 1.005 1.007 1.005
a ¼ 2 2.054 2.053 7.764 7.756 1.991 2.003 5.563 5.834
b ¼ 2 2.055 2.055 2.044 2.014
a ¼ 2 2.061 2.111 7.149 7.229 2.000 2.042 5.514 5.538
b ¼ 3 3.094 3.014 2.976 2.962

1.00 a ¼ 1 0.993 0.998 4.983 4.981 1.009 1.000 3.564 3.736
b ¼ 1 0.987 0.994 1.007 0.997
a ¼ 2 2.069 2.009 4.961 4.954 2.033 2.049 3.571 3.735
b ¼ 2 2.078 2.022 2.020 2.038
a ¼ 2 2.038 2.091 4.590 4.539 2.036 2.072 3.571 3.534
b ¼ 3 3.053 2.979 3.040 3.018
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provide information about the risk in estimating the latent response rates for various

values of f1 when population parameters are known.

6. An application using cheating data

Students at a university in The Netherlands were surveyed on the subject of to cheating
in exams. Responses to questions were obtained via a forced randomized response

technique, since it is known that most students are not eager to share information about

frequency of and reasons for cheating in exams. Data were available from 349 students

(229 male and 120 female) from one of the seven main disciplines at this university:

Computer Science (CS), Educational Science and Technology (EST), Philosophy of

Science (PS), Mechanical Engineering (ME), Public Administration and Technology

(PAT), Science and Technology (ST), and Applied Communication Sciences (ACS).

Within these seven disciplines, a stratified sample of students was drawn such that
different studies were represented in proportion to their total number of students.

The students received an e-mail in which they were asked to participate in the

survey. The forced alternative method was explained to increase the likelihood that

students (1) participate in the study and (2) answer the questions truthfully. A web site

Figure 1. Bayes risk of empirical Bayes and unbiased estimator, N ¼ 300, n ¼ 8, and three different

beta priors.
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was developed containing 10 statements concerning cheating on exams and

assignments (for the content of these items, see Appendix) and students were asked

whether they agreed or disagreed with each statement. When a student visited the web

site, an on-web dice server rolled two dice before a question could be answered. The

result of both rolls determined whether the student should answer ‘yes’ (sum of the

outcomes equalled 2, 3, or 4), ‘no’ (sum is 11 or 12), or answer the sensitive question
truthfully. That is, the forced response technique was implemented with f1 ¼ 3=4 and

f2 ¼ 2=3. Respondents were guaranteed confidentiality, and the questionnaires were

filled in anonymously.

The posterior estimates of the mean response rate in the population and its variance

equal .288 and .025, respectively, and these estimates indicate that student cheating is a

serious problem. The estimated posterior distribution of the latent response rates,

pðpjyÞ; is plotted in Figure 2. It can be seen that relatively high latent response rates of

more than .5 are no exceptions. The estimated beta prior, pðpja;bÞ; is shifted towards
the right with parameters j ¼ :383 and v ¼ :112 in comparison with pðpjyÞ; since it

is the conjugated prior for the probabilities D(p). The corresponding beta prior

parameters ~a and ~b for the response rates p can be obtained from the equations

j ¼ D
~a

~aþ ~b

� �
;

jð1 2 jÞ
v21 þ 1

¼ f2
1 ~a

~b

ð ~aþ ~bÞ2ð ~aþ ~bþ 1Þ

Figure 2. Posterior and prior distribution for the response rates.
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since the transformed prior mean and variance of p are equal to the prior mean and

variance of D(p). The corresponding estimated values of ~j and ~v are .288 and .259,

respectively. Finally, the posterior probabilities that the latent response rates in the

sample exceed .5 are plotted (corresponding to the right y-axis).

Via BF defined in (10), it was concluded that the response rates in the sample exhibit

extraneous variance, that is, the null hypothesis v ¼ 0 was rejected. Then, attention

was focused on testing differences in mean response rates across gender and studies.

In Figure 3, the reciprocal of estimated BFs is given for a uniform prior for jj and a
half-normal prior for vj; N ð0;svÞ; where sv ranged between 0 and 1. The plotted BFs

correspond to the null hypothesis j j ¼ j j0 ; and vj ¼ vj0 for j – j0 against the alternative

jj – jj0 ; vj – vj0 : Values of BF21 greater than 3 indicate substantial evidence against the

null. In the case of grouping respondents by studies, the null hypothesis was rejected for

all values of sv between 0 and 1. In the case of grouping respondents by gender, the null

was rejected when sv . :170. However, the null was rejected since the prior variance,

defined as the inverse of the expected Fisher information, equalled .022. Note that

increasing values of the normal variance, indicating more uncertainty about v, result
in values of BF that support the null hypothesis. It was concluded that separate

beta-binomial models can be fitted for the different groups.

In Table 4, the parameter estimates of jj and vj are given for the transformed

response rates, D( p), and in brackets for the response rates, p, of the beta-binomial

models. It can be seen that the males have a mean response rate lower than the females,

meaning that females admit to cheating more than males do. Further, the response rates

differ significantly across studies, and the largest difference was found between CS and

ACS students.

Figure 3. Bayes Factors for various prior variances of v for testing differences in response rates

between gender and studies.
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Finally, the assumption of a constant response rate per individual was tested using a

Bayes factor. The items were randomly grouped in two equal sets of five items, and the

null hypothesis stated that the response rate to the first set of items, pij1, equals the
response rate to the second set of items, pij2. Both response rates follow a beta

distribution with parameters aj and bj. For each individual, a marginal likelihood was

computed for the sum of responses and for the two sums of grouped item responses.

In both cases, a log likelihood was defined based on equation (3) and the parameters

were integrated out given a uniform prior for jj and a half-normal prior for vj. In Figure 4,

the reciprocal of the estimated BFs is plotted. An (inverse) Bayes factor value exceeding

Table 4. Posterior estimates of mean response rates and variation per group. Bayes factors for testing

homogeneity in mean and variance between groups

Group N ĵ v̂ BF21

Gender 349 .383 (.288) .112 (.259) 4.735
Male 229 .368 (.268) .124 (.302)
Female 120 .411 (.326) .085 (.181)

Study 349 .383 (.288) .112 (.259) 179.087
CS 50 .299 (.176) .119 (.374)
PAT 53 .396 (.305) .238 (.626)
ACS 53 .420 (.337) .068 (.140)
ST 46 .405 (.317) .142 (.325)
EST 66 .411 (.325) .091 (.195)
ME 49 .369 (.269) .058 (.130)
PS 32 .371 (.272) .016 (.034)

Figure 4. Bayes factors for testing non-constant individual response rates.
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3 for the model with a constant response rate against the model with a non-constant

response rate provides positive evidence in favour of a (non-)constant response rate. It

can be seen that the null hypothesis is rejected for only nine respondents since each of

the corresponding BF
21 value is greater than 3. The respondent with the maximum

BF
21 value had a score of 0 for the first set of items and score of 5 for the second set of

items, and this respondent can be marked as an outlier. It is concluded that the data do
not support a non-constant response rate since the null was rejected for less than 2.6%

of the respondents.

7. Discussion

In this paper, a beta-binomial model was proposed for analysing multivariate binary RR

data. The model allows the computation of individual response rates, although the true

individual responses are masked due to the RR sampling design. Moment estimates are

easily obtained using the method of moments, and maximum-likelihood estimates can

be obtained via the Newton–Raphson method. The empirical Bayes estimate of the

individual response rate is a linear combination of the prior mean and sample mean and

the forced success probability. As a result, the accuracy of the estimated response rates

depends not only on the available prior knowledge, the binomial sample size, but also
on properties of the randomizing device used in the sampling design.

An important problem is to compare proportions of a characteristic in several

groups. A Bayes factors for testing homogeneity of proportions in the presence of over

dispersion, given RR data, is presented. It is shown that the BF is sensitive to changes in

the prior for parameter v. The unit information prior is used but information for use in

determining a prior for v can be helpful.

The model can be extended in several ways. A generalization to multinomial data

rather than binomial observations may be accomplished using the conjugated Dirichlet
prior distribution. Explanatory variables can be incorporated by modelling the logit of

response rates as a linear function of some covariates. This way, it is possible to model a

grouping structure or to test for a group effect. Finally, the model can be extended to

handle the entire class of related and unrelated or forced response sampling designs

which are the two broad classes of RR designs. This can be difficult since the

relationship between observed randomized responses and masked true responses is not

necessarily linear as in the forced RR sampling design.
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Appendix: Cheating questionnaire

During an exam or test (1–5):

(1) Tried to confer with other students.

(2) Allowed others to copy your work.

(3) Used crib notes or cheat sheets.

(4) Used unauthorized material such as books or notes.

(5) Looked at another student’s test paper with their knowledge.

(6) Added information to authorized material.

(7) Taken an exam illegally.
(8) Lied to postpone a deadline.

(9) Submitted coursework from others without their knowledge.

(10) Paraphrasing material from another source without acknowledging the author.

470 Jean-Paul Fox


