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Abstract

Run-to-run variability is a common problem for modeling batch-wise and semi-continuous operated processes. Although observed
reactor runs show the same trends in process behaviour, each specific reactor run also shows its own characteristics. Until now, available
modeling methods were unable to describe the observed between run variance. In this paper, we present a hierarchical modeling method
to solve this problem. A case study for a semi-continuous operated polymer process is analysed to illustrate the hierarchical modeling
approach. It was shown that, using the applied modeling method, it is possible to obtain a model which is robust over several reactor
runs and which provides a tool for process analysis. Also, the hierarchical model was shown to be superior to a model which lacked an

appropriate description of the differences between reactor runs.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Polyolefins are used in a wide variety of applications.
For example, polypropylene fibers are used for in carpet
as well as car parts. These different applications of the same
polymer require different polymer properties. Therefore,
for most polyolefins, multiple polymer quality grades are
produced to be able to specify the different properties.
Manufacturers are driven by market demands to produce
stringent polymer qualities and minimize their operational
costs. For that reason, quality control is vital in polymer
production [1,2]. Unfortunately, polymer properties such
as density and molecular weight are difficult to measure
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online. As a result, polymer quality measurements are
available infrequently, which complicates polymer quality
control. Conversely, process variables such as flows, pres-
sures, temperature and concentrations are easily and fre-
quently measured. Therefore, an interesting area of
research for the polymer industry is the development of
mathematical models, which draw inferences about poly-
mer quality from these process measurements [3].

A good review of current modeling techniques is given
by Kiparissides [1]. Models can be categorized into two
groups:

e phenomenological (white box) models, based on first-
principles studies of the process

e empirical (black box) models, based on laboratory
experiments or operational data

For a good understanding of a polymer process, a first-
principles modeling approach should be followed. How-
ever, such an approach is often complicated by lack of
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understanding of the process, due to the complexity of the
reaction mechanisms of polymerization. This is one of the
reasons that black box techniques are often applied. For
this reason, a statistical approach is developed in this study
for process monitoring purposes.

For our investigation, we show results of a real indus-
trial data example below. We collected process data of
116 reactor runs of two polymer quality grades from a
semi-continuously operated polyolefin process. The data
include polymer quality measurements, as well as process
variables as flows, temperatures and pressures. Although
observed reactor runs show the same trends in process
behaviour, each specific reactor run also shows its own
characteristics: run-to-run variability is observed. Terwi-
esch et al. [4,5] recognized run-to-run variations in their
survey, which were probably due to (unmeasured) impuri-
ties or up-stream disturbances. An analogy of run-to-run
variability can be seen in the behavioural sciences, for
example, in pupil performance studies. In the analysis of
pupils’ abilities, usually performances of pupils, nested
within schools, are studied. Then, school-to-school vari-
ability is observed in the pupils’ performances, which is
often the result of e.g., a different teacher or variations in
class or school-specific background variables. Longford
and Aitkin [6] recognized the homogeneity between pupils
within the same school, sharing a common educational
environment, compared to pupils from different schools.
Further, they argued that the stratified sampling of pupils
nested within schools and the analysis should accordingly
recognize and model variance components at each sam-
pling level, that is, the level of individuals and the level
of schools.

The fact that measurements are obtained from different
reactor runs complicates in two ways a straightforward sta-
tistical modeling approach. First, the process circum-
stances can vary across reactor runs and therefore
influential process variables may have different effects on
the polymer quality within each reactor run. A proper sta-
tistical model that specifies a relation between the measured
polymer qualities and various process variables should take
into account that the relationships may vary across reactor
runs. Second, polymer quality measurements obtained
from a specific reactor run are more alike than polymer
quality measurements from different reactor runs. A set
of reactor run measurements share the same process condi-
tions and for that reason they will presumably have corre-
lated errors. For that reason the observed data of polymer
quality measurements of all reactor runs are not indepen-
dently distributed. In general, the polymer quality measure-
ments within a reactor run are more homogeneous than
those of a random sample of measurements from a set of
observations from several reactor runs. This greater homo-
geneity is naturally modeled by a positive within-reactor
run correlation among measurements obtained in the same
run. This leads formally to a multilevel model where one
variance component represents random sampling error

and where another variance component represents a posi-
tive covariance structure between measurements from the
same reactor run.

Common statistical techniques used to monitor batches
are, amongst others, principal component analysis (PCA),
partial least squares (PLS) and their multi-way counter-
parts [7-9]. In PCA and PLS a new set of variables is
defined through the projection of the variables onto new
orthogonal subspaces. The new variables are a linear com-
bination of the original variables. The statistical models are
developed from past batch runs that are “in control” and
show similar behaviour. That is, the batches should operate
in reactors of similar design, with the same catalysts and
the same operational program etc (see, e.g., Nomikos and
MacGregor [10]). The process can subsequently be moni-
tored by comparing the process variable trajectories
against the “optimal trajectories”. As long as the batches
show similar behaviour and similar run-to-run variation,
this is a valid approach. Process dynamics can be
accounted for by incorporating lagged variables in the
analysis. In that case the principal components capture
the variables that show the largest variability in a steady
state situation as well as dynamic situations. As Kassidas
et al. [11] pointed out, this is a valid approach as long as
dynamic relationships remain the same. When batches have
different length, however, it may be expected that the
dynamic relationships between variables is not the same
from run-to-run. In addition, models capable of dealing
with batches of different length suffer from poor statistics
[12]. To deal with this situation Kassidis et al. proposed
to use Dynamic Time warping (DTW), a method originat-
ing from the area of speech recognition. DTW is a pattern
matching method that can expand and compress patterns
(scaling) such that similar patterns are matched. In
DTW, every process variable receives a certain weight
and every warped batch is connected to a reference batch.
Kassidas uses the batch which has a run length that is clos-
est to the average run length of all batches as the reference
batch. Ramaker et al. [12] suggest to choose the batch
which gives the best result in terms of process monitoring
as the reference batch. The result of the application of
the DTW algorithm is the calculation of an optimal warped
time profile that every “normal” batch should follow.

It will be shown that multilevel models are well suited to
analyse data from both batch and semi-continuous pro-
cesses. In comparison to the mentioned traditional statisti-
cal techniques, a multileve]l model can handle varying
effects of process variables across reactor runs and the reac-
tor runs are allowed to be of different lengths without the
assumption that all batches show similar behaviour. The
analysis of hierarchically structured data (e.g., polymer
quality measurements are nested within reactor runs) from
the process under consideration shows the need of multi-
level models that can handle correlations among observa-
tions and allow for varying effects of important process
variables across reactor runs. It can be expected that the
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polymer quality measurements are influenced by reactor
run specific characteristics and by characteristics operating
at a different process level over reactor runs. In our real
industrial data example, polymer quality measurements
are influenced by accumulation of fouling over reactor runs
but also by specific concentration values of the catalyst
which are controlled by an operator. Note that collective
statistical judgments can be made about relationships
between the observed polymer quality measurements and
relevant process variables, across as well as within reactor
runs, due to a multilevel modeling approach. In the pro-
posed approach all observed data are modeled simulta-
neously such that information can be used from other
reactor runs in the estimation of reactor run specific
parameters. As a result, stable and accurate parameter esti-
mates can be obtained even for a small number of measure-
ments per reactor run.

2. The process

In this study, data are collected from a polyolefin pro-
duction process. Examples of polyolefin processes are poly-
ethylene, poly(1-butene) and polypropylene production.
Different polymer grades are produced for most polyole-
fins, for general descriptions of such processes see [13].
The structure of the polymer produced is influenced by
the addition of a comonomer in varying concentrations,
usually of the order of only a few weight per cent. By addi-
tion of the comonomer, the reaction mechanism is influ-
enced, since the comonomer also acts as a chain transfer
agent. Higher relative concentrations of the comonomer
therefore influence the polymer structure, and thereby the
properties of the polymer are altered.

2.1. Process description

The process studied is a copolymerization, during which
a few different polymer qualities (grades) are produced.
Polymer quality setpoints are controlled with the feed flow
ratio of the two monomers. The monomer feed streams are
mixed and, just before entering the reactor, the catalyst is
added. The reaction is carried out semi-continuously in a
stirred vessel. The process operates at such a temperature,
that polymerization is favored over chain transfer, since the
latter has a relatively higher activation energy. Due to the
exothermic nature of the reaction, cooling is provided by
a cooling liquid in the reactor jacket. Fouling of the reactor
vessel leads to a decrease of heat transfer, due to which the
reaction must be stopped after a certain run length for rea-
sons of safety and production capacity. After reaction, the
product stream is fed to a separation unit to obtain the
polymer product. The remaining raw materials are recycled
to a separation train to remove poisons, chain transfer
agents and other by-products from the reaction. The major
time constants of the process are the reactor residence time
and the residence time of the separation unit.

Purification
train
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Catalyst Feed Separator
i
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N
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Fig. 1. Schematic process flow diagram.

At the plant, four identical reactors are available for
production. A schematic representation of the process is
shown in Fig. 1. The main control variables are the feed
flow rate and the catalyst to feed flow ratio.

2.2. Data collection

Polymer quality samples were available every hour.
Measurements during the first hour were excluded so to
ignore start-up variation. The reactor runs were of differ-
ent lengths. However, each reactor run produced a mini-
mum of 10 measurements, since estimates of within-run
sampling variance become unstable for shorter runs.
Besides the polymer quality indicated by ¥, measured pro-
cess variables are reactor slurry temperature (at 4 points),
catalyst concentration, pure parts catalyst, monomer con-
centrations at the reactor feed, monomer A conversion,
monomer B conversion, catalyst to feed flow ratio, feed
flow rate, catalyst efficiency, reactor pressure, stirrer
power, reactor heat release and poisons concentration.
These variables are indicated by xi,...,xo where
Q = 13. Further, for each process variable the mean value
of the reactor run measurements are stored in a variable
indicated by z; (k= 1,...,K) that represent process infor-
mation across reactor runs.

Data were collected from two polymer grades, namely
grade A and grade B. For grade A, data of 76 reactor runs
from three reactors were collected; in total 966 data points
for every variable were collected. For grade B, 40 runs from
two reactors were available, with 501 data points for every
variable. Each of the four reactors can produce polymer
grades A and B. The data were collected by a Dutch com-
pany and for reasons of competitiveness specific numerical
details are not given. However, this does not complicate the
illustration of the multilevel modeling approach towards
batch data.
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2.3. Synchronization of the measurements

Every hour a polymer sample is taken at the outlet of
the separation unit. All other process measurements are
made upstream the sample point with a sampling time
of one minute. The residence times of the reactor and
the separation unit thereby introduce large time delays.
In order to relate these measurements to the correspond-
ing polymer quality measurement, a dynamic filter is
applied. Assuming the reactor and the separation vessel
are ideally stirred tanks and assuming isothermal condi-
tions, Roffel and Betlem [14] derived that the response
function for each variable x,, (¢ =1,...,0), as a function
of the flow rate F is a constant C, but with a first order
time delay. In the Laplace domain, the response function
is given by:

0x, 1
ﬁ‘clﬂbs'

(1)

This means that the measurements of the process variables
should be corrected for the residence times of the reactor
and the separation vessel, according to a first order filter

as (1) which means multiplying with ﬁrﬁv Written in expo-
nential form the filtering equation is:
x;fﬁlltered = x; ’ eil/(bl + (1 - eil/d)l) : x;+17 <2>

where ¢, corresponds to the residence time of the reactor
and ¢ denotes the time step. After correcting for the reactor
residence time, the same procedure is applied for the resi-
dence time of the separation vessel. At the plant, the resi-
dence times were experimentally determined as a function
of the feed flow rate. This way a relationship was specified
between the process measurements and the corresponding
polymer quality sample. A similar derivation for the time
response behaviour of ideally stirred tanks can be found
in Westerterp, Van Swaaij and Beenackers [15].

3. Development of the multilevel model

In this section, a short introduction on the theory of
hierarchical modeling will be presented, as far as it is rele-
vant to this investigation.

3.1. Design

In statistics, a common assumption is that measure-
ments are randomly drawn samples from an infinite popu-
lation, drawn independently from each other. However, the
semi-continuous operation of the process causes depen-
dences in the sampled process measurements. A polymer
quality sample is not drawn independently, but is depen-
dent on the sampled (selected) reactor run. This sampling
method is known as multi-stage sampling, and in this study,
the design is two-stage: level-1 with “within-run” informa-

tion and level-2 with “between-run” information. This
sampling structure implies that there is sampling variance
at the reactor run level as well as sampling variance at
the process measurements level. Hierarchical models are
well suited to analysing data with a multi-stage design.
The modeling hierarchy then describes the grouping of
the reactor runs at level-2, and the measured process vari-
ables at level-1. At level-2, the group level, the between-run
variation is described, while at level-1 the model describes
the within-run variation.

3.2. Model development

To disentangle the information contained in the data,
two sources of variation will be identified; within-reactor
run variance and between-reactor run variance. Let Y}
denote the the polymer quality of measurement 7 in reactor
run j, i=1,...,n, j=1,...,J. The number of measure-
ments n; may vary from run to run. For example, for
J =10 there are ten reactor runs. The observed between-
reactor run variance is defined as the variance between
the ten reactor run quality means. Within-reactor run var-
iance is variation of measurements around their reactor run
mean. In this case the within-reactor run variance will differ
from reactor run to reactor run but a weighted average of
the variances can express the within-reactor run variability
for all ten reactor runs. The general idea is to identify the
two sources of variation and to identify process variables
that explain the variation within-reactor runs and to iden-
tify process variables that explain variation between-reac-
tor runs.

In a more general approach attention is focused on an
empty multilevel model, so called because it does not con-
tain explanatory variables. This model is also known as the
one-way random effects ANOVA model. In this model, Y
is considered to be the sum of a general mean yg, the over-
all mean of polymer quality measurements over reactor
runs, a random reactor run effect Uy (the deviation of
the reactor run mean from the overall mean), and a ran-
dom measurement effect R;; (the deviation of the measure-
ment from the reactor run mean), that is:

Yii =7y + Uy +Ry (3)

with Uy ~ N(0,7%), and R, ~ N(0,07). Further, it is as-
sumed that

cov(Uy;, Ugy) =0, Vj#J
cov(Up;, Ryy) =0, Vj,j
cov(R;,Ryy) =0, exceptfor i=1i, j=]j.

Hence, measurements within the same reactor run are cor-
related, due to the fact that they share the same random
component Ujy. This means that only quality measure-



R H. Klein Entink et al. | Journal of Process Control 17 (2007) 349-361 353

ments within the same reactor run are correlated. It follows
that:

il =]
0, # /.

)

cov(Yy, Yiy) = {

The total variance of Y;; can thus be written as:
var(Y;;) = var(Uy,) + var(R;) = > + ¢° (4)

which is the variance introduced at the level-2 of quality
measurement means, 12, the between-reactor run variance,
plus the variance introduced at level-1 of quality measure-
ments, 62, the within-reactor run variance. The partitioning
of the total variance enables the computation of an intra-
class correlation coefficient, denoted by p, that represents
the proportion of variance that is accounted for by the
grouping of quality measurements in reactor runs:

‘L'2

P=a iy (5)

Let x;=(xy;,...,%p;) denote the O-dimensional vector
with observed values of relevant process variables (e.g.,
stirrer power, feed flow rate, and the catalyst to feed flow
ratio) all measurements in reactor run j. Typically, the
first column of x; is a vector of ones for the intercept,
while the other columns are variables (process measure-
ments) that vary within a run. The level-1 regression
model is given by:

Yy = x1;Bo; + x2B1; + - + X0iiB o1y, + Ry
which can be written in matrix notation as:
Yy =x;B; + Ry, (6)

where f; represents the Q x 1 vector of regression coefli-
cients for run j and R; ~ N(0,6%) forj=1,...,J.

Let z,,=z1,,...,2k, denote the K-dimensional vector
of covariates, with values of process variables like the
thickness of the fouling layer at the wall of the reactor ves-
sel, and the poisons concentration in a reactor run. They
may influence the quality measurements across reactor
runs. The level-2 regression model is given by:

Bai = 21470 + 22071 + + 2y Vg-1) + U

for g=0,...,(Q—1)and j=1,...,J. In matrix notation,
it follows that:

Bi=zy+ U, (7)

where U;~ N(0,7T) and y is the matrix of level-2 fixed
regression coefficients. The diagonal elements of covariance
matrix 7 represent the variation across reactor runs of ran-
dom regression coefficients f;. The non-diagonal elements
are not necessarily zero. That is, the random regression ef-
fects are allowed to correlate. Substitution of the level-2
model (7) into the level-1 model (6) yields the combined
model:

Yy =x;(zjy + U)) + Ry = x;z;y + x,U; + R (8)

From (8) it follows that the total variance of Y; is given by:
Var(Yi,) = Var(ijZ/y + X,‘jUj + Rij)

= Var(X[jUj -+ RU)
= X;iVar(Uj)Xij + Var(Rij)

! 2
=x; Ix; + 0",

using the assumption that the residuals at different levels
are uncorrelated. As a result, the two-level model presented
in Eq. (8) allows for correlations of process measurements
within each batch. Finally, the structure of the matrices are
presented below which represents the unit-level representa-
tion for the entire sample. The level-1 model can be pre-
sented as

Y11 111 Q11
Yni1 Tingl TQni1
Y1 T11J TQ1J
| Yo7 L Tin,J TQnyJ |

Bo1 Ri1
Be-11 Rnq1
........ ) e o
|| R
L Be-1J | Bnjr |
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The level-2 model can be presented as

It is possible to generalize this two-stage model to three
or more levels. Interested readers, also in other generaliza-
tions, are referred to, e.g., Bryk and Raudenbush [16],
Goldstein [17] or Snijders and Bosker [18].

4. Estimation and testing

There are various approaches for estimating the param-
eters of a multilevel model. These include full maximum
likelihood, restricted maximum likelihood, and Bayesian
methods. These methods will give comparable estimates
in large samples but somewhat different results can be
obtained in small samples. Maximum likelihood methods
are most often used for the multilevel model given in Eq.
(8) where both error terms R and U are normally
distributed.

Obtaining maximum likelihood estimates requires at
least two steps since there is a no-closed expression for
the maximizer of the likelihood, and an iterative scheme
is required. The EM algorithm [19] and Fisher scoring
[20] can be used to determine the estimates. The EM algo-
rithm considers the problem of maximizing the likelihood
as a problem in missing data. Substituting the level-2 model
into the level-1 model yields the combined model,

Y, =x;z;y +x;U; + R, (11)

where R; ~ N(0,¢°1,,) and U;~ N(0,T). The random ef-
fects or level-2 error terms U; are considered as missing
data. The so-called complete data that includes the missing
data are (Y}, U;). Then, full maximum likelihood estimates
can be easily obtained if the missing data were observed.
That is, an ordinary least squares (OLS) estimate can be
computed for the fixed effects, y, and maximum likelihood
estimates for ¢° and T,

[ Bo1 [ 2101 ---  2KO1 17 Y00 I Uo1 |
Bos 2107 ZK0J Yo(K—1) Vo
........ ) ) o
ﬁ(Qim ........................... Z 1(@4)1 ........ ZK(Qim . W(Qim . U(Qim
Bo-1)s L 21(Q-1)7 zr@-1s | [ YNe-nx-ny | | Ve-ns |

-1
7= (Z z}x}x_,«z,-) > Zx(y; — xi)
' J

J
& =J iy (12)

t

J
T=N">(y, - xz — x;i)(y; — x;29 — X))
7

This completes the M-step of the EM-algorithm. From the
standard normal distribution theory follows the condi-
tional distribution of U; given y; from their joint normal
distribution. This gives the conditional expectation of the
missing data given the observed data, namely:

E(U; |y;,y,0°T) = (x}xj + JZT)flx;.(yj —X;z;7), (13)
which defines the E-step of the EM-algorithm. The formu-
lae for the restricted maximum likelihood estimates differ,
and one indication of the difference is that restricted max-
imum likelihood estimates of the variance components take
into account the loss of degrees of freedom resulting from
the estimation of the fixed effects. However, the difference
between the estimates is not expressible in simple algebraic
form. Technical details can be found in, e.g., Bryk and
Raudenbush [16] or Longford [21,22].

In some cases, estimates of the random regression coef-
ficients f;, Eq. (10), are required. This multilevel model sug-
gests two different estimates, one based on level-1
information, and one based on level-2 information. In a
similar way to deriving the expected value of U, an empir-
ical Bayes estimate [23] of ; can be obtained that combines
the two types of information. Formally, given estimates of
the variance components and the fixed effects, the empirical
Bayes estimate can be expressed as:

B = (67°xx; + Tﬁl)_l(a’fzxj-yj +T7'z%)
= QB + (1—Q))z, (14)
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where B; is the OLS estimator for f;, and

-1
o =T(T+axx)") . (15)
In the present context, this shrinkage estimate of the
random regression coefficients is constructed out of a
weighted average of a within-reactor run regression esti-
mate and a between-reactor run regression estimate. The
weighting factor is defined as the ratio of the uncertainty
regarding the regression estimate relative to the total vari-
ance of the quality measurements y; The resulting esti-
mates are said to be strengthened and shrink towards a
regression plane defined by the set of process variables z.
It can be seen that high within-reactor run variance and/
or a small number of level-1 quality measurements result
in random regression estimates that are shrunken towards
the overall mean since the within-reactor run information
is unreliable. In the same way, the estimates of the random
regression coefficients are mainly based on the within-reac-
tor run information when the number of reactors is small
and/or the between-reactor run variances are high.

As with ordinary linear regression, a -test can be used
to test hypothesis concerning a single fixed effect. A likeli-
hood ratio or deviance test, defined as minus twice the log-
likelihood, can be used to test several fixed parameters pro-
vided that full maximum likelihood estimates are used. The
deviance can be interpreted as the lack of fit between model
and data, and the larger the deviance, the poorer the fit to
the data. In general, the deviance can be used to compare
multilevel models with different fixed parts. The difference
in deviance values, corresponding to two multilevel models
fitted to the same data, is approximately y* distributed with
the difference in the number of fixed parameters as the

355

degrees of freedom. The deviance constructed out of the
restricted maximum likelihood parameters can be used to
compare models with different random parts but the same
fixed part. Another approach is based on standard multi-
variate Wald tests (e.g., Snijders and Bosker [18]), which
are approximately > distributed. They can be used to test
the fixed part of the model but requires standard errors of
the estimates and also the covariances among them.

5. Case study analysis
5.1. Analysing the data

Fig. 2 shows the distribution of polymer quality for the
data of reactor 1 — grade A. It can be seen that the polymer
quality produced differs considerably within and between
the 20 reactor runs observed. The empty multilevel model
(also called the one-way ANOVA with random effects),
Eq. (3), provides useful information about the variation
in the outcomes. In this case, data sets were available for
both polymer grades (A and B) related to four different
reactors. An empty model was fitted to each data set. All
maximum likelihood estimates were obtained within three
to six iterations using the EM algorithm. The estimation
results are presented in Table 1.

The statistic to test formally whether the estimated var-
iance in polymer quality across reactor runs is significantly
greater than zero reduces to:
H=>Y n(¥;—jn)’ /6’ (16)

J
which has a large sample y° distribution with J — 1 degrees
of freedom under the null-hypothesis. Note that this

o o o
Q] ° 5 g
o
§_ ° 4 o o 80
o O o o
- oogg go 6 é
%8- o ) 0 goo8 e
27 g g o ¢ o o8 °8,
s | o & 83,8 88g-°q .
Pl it s
S ls.g° 8%, g 8° o8 o 8
o
= go 0 o 8 o 88 8§°
o g o o
o )
8- e °
o o o
2 T T T T
5 10 15 20

Reactor run

Fig. 2. Distribution of polymer quality for 20 runs of reactor 1, for production of polymer grade A. The horizontal line represents the general mean of the

grade A polymer quality produced.
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Table 1

Estimated model parameters for the empty model, and corresponding
intraclass correlation coefficient (ICC) estimates for the data of grade A
and grade B

Grade — reactor Parameter Coefficient se

A-1 Yoo 181.50 1.90

A2 Yoo 175.50 1.60

A-3 Yoo 176.50 0.85

B-3 Yoo 231.50 3.35

B-4 Y00 36.50 2.40

Grade — reactor Parameter Coefficient ICC

A-1 2 67.30 49
o? 71.30

A-2 2 53.30 31
¢? 116.30

A-3 2 18.00 21
¢? 64.00

B-3 7 222.30 35
¢? 416.00

B-4 7 75.30 .16
¢? 390.80

statistic is just a weighted average of the squared differences
between reactor run means and the general mean. In this
case, all estimated variance components were significantly
different from zero. As a result, for each grade and for each
reactor, the produced polymer quality varied significantly
both within and between runs. A 95% confidence interval
for the grand mean yq, equals:

Joo + / — 1.96%, (17)

and gauges the magnitude of the variation among reactor
runs in their mean polymer quality per reactor. For the
sample data of grade A of reactor 1, it is expected that
95% of the reactor run means fall within the range
(165.43,197.57). This indicates a substantial range in aver-
age polymer quality in this sample data. The other data sets
show comparable ranges in average polymer quality. The
intraclass correlation coefficient represents a quantification
of the amount of variability between the reactor runs. For
example, for the sample data of grade A of reactor 2, it fol-
lows that,

7.30
par =/ (F*+6%) = =0.31.

~ 7.30+10.80

Therefore, around 31% of the total variance in polymer
quality can be attributed to variance between reactor runs.
For the other reactors and grades, the results are shown in
the last column of Table 1. It can be concluded that a con-
siderable amount of variance can be assigned to the vari-
ability between the reactor runs.

5.2. Several nested sources of heterogeneity

From Table 1, it can be seen that the estimated general
mean, yg9, of polymer quality varies across reactors and
grades. Therefore, it can be expected that the observed pro-
cess data are not only nested between runs (level-2), but

also between reactors (level-3) and between polymer grades
(level-4). Thus, a multilevel model consisting of four levels
is required to model the variation at different levels. Let
Yy denote an observation of polymer quality 7 in reactor
run j, and reactor k of grade /. The simplest multilevel
model is fully unconditional and represents the variation
in the outcome variable across the four levels (observa-
tions, reactor runs, reactors, grades), namely:

Y = Vo000 + Aooor + Boowr + Uojrr + Rijus, (18)

where R;j; ~ N(0,0%), Uy ~ N(0,7°), Boors ~ N(0,$?), and
Agoor ~ N(0,%). As a result, the total variability in the ob-
served polymer quality is partitioned into four compo-
nents. This representation allows the computation of
variation within reactor runs, between reactors runs within
reactors, and among reactors for different grades. Develop-
ing one model for this entire data set has the following
three advantages:

e For analysis and process control, a model is desirable
that generalizes over all reactors and polymer grades.
This model can describe potential variations between
reactors and grades. Making inferences across reactors
and grades is much more complicated when using sepa-
rate models.

e A model that generalizes over all reactors and grades is
more robust than a model that is only valid for one reac-
tor and/or one grade. However, this depends on to what
extent the polymer processes in the different reactors/of
different grades act in similar ways. A joint modeling
approach of all measurements does not necessarily lead
to a more robust model when there are no similarities
between the polymer processes.

e An important argument for combining the sample data
lies in the computational advantages. The random
regression effects are estimated using shrinkage estima-
tors, as discussed in Section 4. For example, a shrinkage
estimate of the random regression effect B, consists of
composite estimates based on reactor means and esti-
mates based on grade means of polymer quality, where
the amount of shrinkage depends on the reliabilities of
the reactor means and the grade means. These compos-
ite estimators are robust since they are based on different
levels of information. The polymer processes in the dif-
ferent reactors/of different grades should act in a some-
what comparable way otherwise the information of
other reactors/grades is not very useful for reactor/grade
specific parameter estimation.

In the present case, at the polymer grade level only two
polymer grades and at the reactor level only four different
reactors were observed. With such a limited number of
units at the grade and reactor level, it is not possible to con-
sider them as samples from a population, but should rather
be seen as selected grades and reactors. Therefore, the ran-
dom effects Ay, and By, defined in the four-stage multi-
level model in Eq. (18), are considered to be fixed effects. In
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this ANOVA approach, the reactors and the polymer
grades are represented by dummy variables.

The measurements of polymer quality in each reactor
run are regressed on the known predictors or covariates.
It is assumed that these regressions are exchangeable (De
Finetti [24]). This means that there is no information, other
than the observed data, available to distinguish any of the
random regression coefficients from any of the others. For
example, in Eq. (7), the a priori assumptions about random
regression coefficient f; are independent of j. As a result,
the same parametric structure for both polymer grades is
assumed. That is, it is assumed that the mechanism of the
process is similar for both grades. A justification for this
assumption follows from process knowledge: the process
is operated and controlled in the same way for both grades
with the same variables, the difference between grades is
due to the varying monomer feed ratios. Subsequently,
the same parametric structure for the four reactors is
assumed. A justification for this assumption is analogous
to the previous assumption.

5.3. Model selection

Two influential level-1 explanatory variables were iden-
tified: the catalyst-to-feed-flow ratio (x,;) and the feed flow
rate (x,;). These variables had the most explanatory power
for polymer quality, and additional level-1 variables did
not improve the proportion of explained variance by the
model. The multilevel model with these predictor variables
was also selected from all possible multilevel models given
the level-1 variables via the deviance statistic. It is known
that the operators adjust the values of the catalyst-to-
feed-flow ratio and the feed flow rate in order to maintain
a stable product quality. That is, the most influential
explanatory process variables are the control variables of
the operator. It can be expected that the effects of these
variables on the polymer quality measurements fluctuate
across reactor runs since, for instance, operators may act
in different ways in controlling the process, and it is known
that poisons influence the activity of the catalyst.

The matrix of level-1 covariates equals x; = (1,x1;, x2;).

The level-1 model is given by:
Yij = xyB; + Ry, i=1..,J (19)

i=1,..., n,

with R; ~ N(0,0?). The random regression coefficients, f;,
are allowed to vary across reactor runs. Furthermore, the
ANOVA approach is used to model variation in the regres-
sion coefficients across reactors and grades. This results in
the following level-2 model:

Boj = 700 + Y0141 + 022 + Vo33 + yoadas + Uy,
Bij = v10 T 7nd1 + y12da + y13d5 + P1ada + Uy, (20)
Baj = V20 + 72141 + Yada + Y3ds + Pauda + Usj,
where U, = (Uy;, Uy, Usj) ~ N(0,T). The design matrix

d=(1,d,,...,d4) consists of indicator variables d; to ds,
that represent variation in polymer quality across the four

reactors, and variable d; represents variation in polymer
quality across grades. The design matrix d is defined such
that yg is the average intercept across level-2 reactor runs,
yo1 the effect of reactor 1, yq, the effect of reactor 2, and yg3
the effect of reactor 3. Subsequently, the sum of these
parameters equals the effect of reactor 4. Fixed effect
parameter yo4 represents the effect of polymer quality grade
B. The variation in the other random regression effects are
defined in the same way. It is not possible to incorporate
interaction effects in the model since there are only two
reactors producing grade A and grade B.

Egs. (19) and (20) represent a full multilevel model,
denoted as M,. Deviance tests were performed to test
assumptions of model M,. That is, it was tested whether
the observed polymer quality measurements varied across
runs, reactors and grades. This led to the following reduced
level-2 model:

Bo; = 700 + Yoada + Uy,

Bij = V10 + V14da + Uy (21)
:82/ =720 + Uy

The parameter estimates of model M, represented in Eq.

(19) and (21) were obtained with restricted maximum like-
lihood. Convergence was achieved in 24 iterations, after

which  the log-likelihood reached stability at
logL = — 3372. The parameter estimates are given in Table
2.

Model M, allows the level-1 random regression coeffi-
cients to vary across reactor runs. Variations in polymer
quality within a run are partly explained by the variations
of the two control variables, the catalyst-to-feed-flow ratio
and the feed-flow rate. The proportion of variance
explained by these variables at level-1 can be computed
by comparing the estimated variance in the empty model
and the estimated variance based on the level-1 model in
Eq. (19). Thus:

Proportion variance explained at level-1

188.96 — 100.32
= 15306 * 47. (22)

Table 2

Estimated parameters for model M,

Fixed effect Coefficient se t ratio p value
Y00 189.81 1.80 105.30 .00

Yo4 -9.49 1.70 —5.60 .00

Y10 -8.72 .52 —16.80 .00

Y14 6.95 49 14.10 .00

Y20 —.05 .03 —1.70 .09
Random effect Variance df 7 p value
2 207.73 113 694 .00

e 8.05 113 214 .00

3, .05 114 317 .00

a 1100.32
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Adding the predictors at level-1 reduced the within-reac-
tor run variance by 47%. It can be concluded that the var-
iability in random regression effects across reactor runs
cannot be explained by the different reactors. That is, the
polymer quality produced does not vary significantly
across reactors. Polymer measurements of grade B have
significantly higher means, which follows from the fact that
the mean polymer quality is supposed to differ between the
two grades. Further, a notable feature is that f3,;, which are
the within reactor run polymer quality — catalyst-to-feed-
flow ratio slopes, are substantially less steep for polymer
of grade A. This grade effect is probably the result from
the different monomer feed ratios for both grades, which
leads to differences in the reaction mechanism. As a result
the sensitivity for the catalyst concentration can differ for
both grades. This grade effect was not found in the polymer
quality-feed flow rate. That is, the average value of f3,;, for
all j corresponding to grade A, do not differ significantly
from the average value of f3,y, for all // corresponding to
grade B.

The relative large variance component for ;; shows that
there is a large variability in measurements due to changes
in the catalyst to feed flow ratio between reactor runs.
Given the sensitivity of the catalyst to poisons, this result
might be an indication that, due to the recycle in the pro-
cess, varying poison levels influence the activity of the cat-
alyst. The variability in f;; is shown in Fig. 3. The plot
shows the regression lines for polymer quality against the
catalyst to feed flow rate. Although the slope is negative
for most lines, a large variation in slopes and intercepts
can be observed.

Finally, the maximum likelihood point estimates for the
covariance matrix 7T are:

2, 2 1 207.73 —15.60 2.00
r=|%, # #,|=]|-1560 805 —.20
2, 2, i 200  —20 .05
(23)
o
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Fig. 3. Regression lines of polymer quality against catalyst to feed flow
ratio (mean centered) for a random sample of 10 reactor runs.

There is a negative correlation between the random
regression coefficients f8;; and f,; of 32%. This means that
relatively high polymer quality-catalyst to feed flow ratio
slopes within a reactor run correspond to relatively high
negative polymer quality-feed flow rate slopes. Here, inter-
est was focused on maintaining a stable product quality,
and the feed flow rate was used to control the effect of
the catalyst to feed flow ratio. That is, when the reaction
rate increases, an adjustment of the feed flow was necessary
to control the reactor temperature.

5.4. Model assessment

Inferences based on the multilevel model depend on
their validity on the justifiability of the assumptions of
the model. Assumptions are made at each level of the
model, and misspecification at one level can affect results
at other levels. The multilevel model with two levels, Eq.
(19) and (21), contains several assumptions. It is assumed
that level-1 residuals are identical, independent and nor-
mally distributed, and the level-2 residual vectors U; are
identical multivariate normally distributed, and that they
are independent among the J reactor runs. The residuals
at level-1 and level-2 are assumed to be independent. The
predictors at each level are independent of the residuals
at level-1 and level-2.

Most of the diagnostic tools used for detecting inade-
quacies within a linear regression model can also be used
for checking the adequacy of a multilevel model. In this
paper, only a number of diagnostics are mentioned, see,
for a complete overview, e.g., Bryk and Raudenbush [16],
Goldstein [17], Snijders and Bosker [18]. The normality
assumption of the residuals at level-1 was checked by com-
puting separate normal probability plots, in which each
estimated residual value is plotted against its expected
value under normality, for each reactor run. Only some
of the plots suggested that the error distribution was not
normal. In general, if the normality assumption at level-1
fails, it will introduce bias into standard errors at both lev-
els that influences the computation of confidence intervals
and hypothesis tests. Failure of normality at level-2 affects
the confidence intervals and hypothesis tests for the fixed
effects at level-2. Checking for normality at level-2 is more
complicated since the random effects are not directly
observed. Further, often a relatively small number of
level-2 units are observed and tests for normality, like the
chi-square test, and the Kolmogorov—Smirnov test are
based on sufficiently large samples. Here, only 116 observa-
tions at level-2 were observed which makes it difficult to
verify the assumption of normality at level-2.

The rate of convergence of the EM-algorithm can be
considered as a diagnostic tool since rapid convergence
indicates that the data are highly informative and slow con-
vergence indicates numerical difficulties and/or that the
data are sparse which may suggest that one or more ran-
dom coefficients should be modeled differently. Further,
an analysis of the correlations among level-1 residuals



R H. Klein Entink et al. | Journal of Process Control 17 (2007) 349-361 359

can be informative about the number of random effects.
That is, one or more random effects can be constrained
to be zero when a high degree of multicollinearity is found.
Finally, plots of residuals against predictors can identify
relationships between them. These formal and informal
diagnostics were performed for the fitted multilevel models
given the polymer quality data. None of the diagnostics
suggested a serious violation of one of the model
assumptions.

A goodness-of-fit measure is the explained variance R
that summarizes the fit of the regression by the proportion
of variance explained. Gelman and Pardoe [25] developed
an R? based on the proportion of variance at each level
of the multilevel model. The proportion of variance
explained at level-1 is defined by:

J nj 5\2
R% _ _]%/Z/ 121 l(ytj Xijﬁj) (24>
j= 121 l(ylj )
and at level-2:
I~J (5 N A
1S (B Dy, D,
R% 1l $ﬁj ; 3’/) (?12 VJ) ’ (25)
72 (=)

where design matrix D represents the structure as defined in
Eq. (21). The R? is close to zero when the estimated resid-
ual variance in the numerator is approximately equal to
the estimated variance of the denominator, the variance
of the data. Thus, the R in Eq. (24) and (25), can be con-
sidered to summarize the explained variance of the regres-
sion within reactor runs and of the regression across
reactor runs.

Here, this method can be generalized by splitting the
total proportion of variance explained by the polymer
quality grade. Let subscript g denote the polymer quality
grade, J, the number of batches in grade g, and y, the mean
polymer quality of grade g in the sample. Then R2 and R2
respectively equal:

R —1_ N%Z/eg(yj - X/}j)t(y/‘ —xB))
" N% e (Y = 72)'(¥; = Fe) 26)
) =3 (B — D) (B, — D))

R, =1-%

N
Jlg ng(yf_yg)

As a result, the proportion of explained variance at level
1 is obtained by calculating R} , and Rj ;. For multilevel
model M, the amount of explained variance obtained is
Ri,=0.62 and R}, =0.70. At level-2, the amount of
explained variance obtained is R} , = 0.98 and R} 5 =095

Finally, note that the proportlon of variance explained
by both grades, as defined in Eq. (24) and (25) overestimate
the true amount of explained variance since the reactor run
polymer quality means of grade A and grade B substan-
tially differ. Consider ¥, and yp to be predictions under
the multilevel model for grade A and B, respectively.
Further, let yo # yp and let yg > ya. Then, ya <y < ¥,
and it follows that for any grade g that

3y (3= 50/, = 34) < ey, = 3)/ (3, = 9)- As a result,
the denommator of R}, in Eq. (24), represents the variance
in the data which is much larger than the residual variance
defined in the numerator due to substantial differences in
polymer grade means.

5.5. Prediction of future observations

After carrying out a multilevel analysis, prediction of
polymer qualities given level-1 and level-2 characteristics
is considered. Let, y; denote an unobserved measurement
in the jth reactor run, where reactor run j is not necessarily
in the observed sample of measurements. A well-known
multilevel prediction rule is given by,

5’] = ijﬁj? (27)

where if_,- is the empirical Bayes estimate in Eq. (14), and X;
the level-1 characteristics corresponding to the unobserved
measurement from a reactor run in the sample. Afshartous
and De Lecuw [26] showed some analytical results for this
multilevel prediction rule. They showed that the estimator
in Eq. (27) minimizes the mean square error, namely:

Y) = x,8;. (28)

The data set was split up into an estimation set and a
validation set, by selecting every final measurement of each
reactor run for the validation set. The parameters of model
M; were estimated given the estimation data. Subse-
quently, the estimates of ifj where used to predict the new
observations y; for every run j. The results are shown in
Fig. 4. It can be seen that predictions of high polymer qual-
ities show more variation and are less close to the true
observed values. However, after recalculating the R* for
both grades, the level-1 fit-statistic showed just a small
decrease for both grades with R} , = .60 and R7 ; = .68.

Predicting the outcome of a polymer quality,
vy (' #jforj=1,...,J) from an unobserved reactor run
is more difficult. Then, the reactor run specific random
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Fig. 4. Predicting a new observation for every reactor run. Measured
versus model predicted values.
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coefficients are unknown and are to be predicted at level-2
given characteristics Z; of the unobserved reactor run j'.
That is,

In the present case, the limited amount of level-2 informa-
tion causes the predictions to shrink towards the polymer
quality grade mean. Within this approach, the predictions
can only be improved by useful level-2 variables. Another
approach is to observe a new reactor run j' for a certain
time 7, such that n, quality samples are obtained. The mul-
tilevel model parameters are estimated given the sample
including a relatively small sample of reactor run j'. Then,
random regression coefficient estimates are obtained for all
reactor runs, including j=;’. Due to the advantage of
shrinkage estimators, and the advantage of borrowing
strength, the random regression estimates are stable and
will improve the multilevel predictions. In an online appli-
cation, this technique can be applied iteratively. Every time
a new polymer quality sample of the reactor run is ob-
tained, the model can be updated to improve its
performance.

6. Comparison with alternative models

One alternative model is a fixed effects model for the
entire sample of measurements with dummy variables for
grades and reactors. In this ANOVA model, variation in
the measurements across reactors and grades are recog-
nized but the clustering of measurements within a reactor
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run, and run-specific covariates are not included. This
model M, is given by,

Y=xf+e
B=dy,

where d represents the design matrix. Note that the regres-
sion coeflicients are considered to be fixed effects and are
not allowed to vary randomly across reactor runs. That
is, the equation for the regression coefficients does not in-
clude a random error term as in model M. The residuals,
e, are independent and normally distributed. To illustrate
the modeling error when the within reactor run dependen-
cies between measurements are ignored, the parameters of
this fixed effects model, Eq. (30), are estimated given the
sample data. In Fig. 5 the model fitted versus the measured
values are plotted for model M; (on the left) and M, (on
the right). A significant difference in model performance
is observed when comparing the left plot with the right plot
of Fig. 5. The explanatory capability of model M, is con-
siderably weaker than that of model A;. This result is in
agreement with the calculated intraclass correlations coeffi-
cients (see Table 1) that indicate a high proportion of ex-
plained variance at the level of reactor runs.

An ANOVA approach for the reactor runs in model M,
analogous to that for the four reactors, is not possible since
this would require 115 x 3 extra model parameters, which
would result in highly unstable parameter estimates.

A second alternative is to fit separate regression models
within each run. However, estimates of run-specific coeffi-
cients can be very imprecise or even impossible to obtain,
and the standard deviations would be much larger than
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Fig. 5. Fitted values based on model M, (left) and based on model M, (right) plotted against the measured values of polymer quality.
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those from a multilevel model due to the absence of pool-
ing information across runs.

7. Discussion

The performed analysis showed that the semi-continu-
ous operation mode leads to dependencies in the data col-
lected. It was shown that when ignoring the grouping
structure of the data, it is not possible to obtain a robust
model for multiple reactor runs. However, by applying a
hierarchical modeling approach, the proportion of
explained variance in polymer quality improves consider-
ably. With the model developed, important factors which
explain polymer quality variance have been identified.
From the measured process variables there are two control
variables of the process: the feed-flow rate and the catalyst-
to-feed-flow ratio.

The model also provides opportunities for process anal-
ysis, from which useful information for operation can be
obtained. It is important to note that, when grouping of
the process data is significant (indicated by high intraclass
correlation) ignoring the grouping structure can lead to
serious modeling errors and thereby to false interpretations
of operation of the process. Therefore, it is argued that an
analysis of batch-wise and semi-continuous operated pro-
cesses data should take account of the hierarchical struc-
ture of the data.

Nonetheless there still remain some possible develop-
ments in this research for the future. First of all, it was
identified that it is difficult to validate the assumption of
normality of the model. The ideal solution to this problem
would be obtaining considerably more data. However, in
most cases this is not possible due to the characteristics
of the process. An alternative could be to investigate the
use of a t-distribution at level-1 or/and level-2. Seltzer
[27] showed that a t-distribution provides robust estimates
of the fixed effects that are less sensitive to outlier values.
Secondly, there is still a proportion of unexplained vari-
ance by the model. Considering the process and its time
constants, it is possible that there might be a moderate
autocorrelation between subsequent polymer quality sam-
ples. Improvement of explained variance by the model
could be achieved by applying an autoregressive model
structure. However, a problem with estimating autoregres-
sive multilevel models is that such models are complex and,
as a result, it is yet not possible to estimate them using
existing standard software.
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