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Statistical modelling of school effectiveness in educational research
is considered. Variance component models are generally accepted
for the analysis of such studies. A shortcoming is that outcome
variables are still treated as measured without an error. Unreliable
variables produce biases in the estimates of the other model
parameters. The variability of the relationships across schools and
the effects of schools on students’ outcomes differ substantially when
taking the measurement error in the dependent variables of the
variance component models into account. The random effects model
can be extended to handle measurement error using a response
model, leading to a random effects item response theory model. This
extended random effects model is in particular suitable when subjects
are measured repeatedly on the same outcome at several points in
time.
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1 Introduction

School effectiveness research is concerned with exploring differences within and

between schools. The objective is to investigate the relationship between explanatory

and outcome factors. This involves choosing an outcome variable, such as

examination achievement, and studying differences between schools after adjusting

for relevant background variables. Interest is focused on the relative size of school

differences, and the factors that explain these differences and influence student

learning.

The generally accepted approach to school effectiveness modelling consists of

variance component models, including multilevel analysis techniques. A detailed

discussion and exposition can be found in AITKIN and LONGFORD (1986).

Multilevel models are used to make inferences about the relationships between

explanatory variables and response or outcome variables within and between

schools. This type of model simultaneously handles student level relationships and
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takes account of the way students are grouped in schools. Variance component

models incorporate a unique random effect for each organizational unit. Standard

errors are estimated taking into account the variability of the random effects. This

variation among the groups in their sets of coefficients can be modelled as

multivariate outcomes which may, in turn, be predicted from Level 2 explanatory

variables.

The student outcome variable or response variable (examination results, behavior)

and the characteristics of the student intake (socio-economic status, individual

ability on entrance to the school) has been the subject of much attention and

research. Students’ abilities are regarded as a continuous unidimensional quantity,

and can only be observed indirectly. Since each student can be presented with only a

limited number of questionnaire items, inference about their ability is subject to

considerable uncertainty. This also includes response error due to the unreliability of

the measurement instrument. Further, human response behavior is stochastic in

nature. The development of classical test theory and item response theory (see, e.g.,

LORD, 1980; VAN DER LINDEN and HAMBLETON, 1997) resulted in two classes of

response models that describe the relationship between an examinee’s ability and the

observed discrete responses.

An important problem involves estimation and hypothesis testing regarding the

(latent) abilities whose manifestations are only observable in dichotomous or

polytomous form. In ‘traditional’ multilevel studies, the unobserved student

variables are treated as known, that is, measured without an error. In an earlier

stage, students’ latent abilities are estimated given a set of item responses using a

response model or by simply counting the number of correct responses. In a second

stage, relationships between estimated and observed student variables and other

group characteristics are analyzed using multilevel analysis techniques. This two-

stage estimation procedure can cause serious underestimation of the standard errors

of the model parameters, due to the fact that some parameters are held fixed at

values estimated from the data. Ignoring the uncertainty regarding the latent abilities

within the model may lead to biased parameter estimates and the statistical inference

may be misleading. The standard software packages for fitting variance component

models, mixed models, and multilevel models (HLM: RAUDENBUSH, BRYK, CHEONG

and CONGDON, 2000; Mplus: MUTHÉN and MUTHÉN, 1990; and VARCL: LONG-

FORD, 1990) use numerical optimization algorithms to obtain maximum likelihood

estimates. This approach has the disadvantage that simultaneously estimating all

parameters, of a response model and a structural model, involves high dimensional

integration. As a result, in most cases, users are forced to carry out a two-stage

estimation procedure.

This problem can be circumvented by a Bayesian analysis. New developments in

simulation techniques facilitate Bayesian analysis of complex generalized (random

effects) models. A Bayesian approach provides a natural way for taking into account

all sources of uncertainty in the estimation of the parameters. Adopting a fully

Bayesian framework results in a straightforward and easily implemented estimation
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procedure. A Markov Chain Monte Carlo (MCMC) method can be used to estimate

the parameters of interest. Computing the posterior distributions of the parameters

involves solving high dimensional integrals but this can be carried out by Gibbs

sampling (GELFAND, HILLS, RACINE-POON and SMITH, 1990; GELMAN, CARLIN,

STERN and RUBIN, 1995). Within this Bayesian approach, all parameters are

estimated simultaneously and goodness-of-fit statistics for evaluating the posited

model are obtained.

The design of the observed data of students nested within schools can be referred

to as one-way layout, or two-level design. A random effects analysis of variance

model (see Section 3) is often considered for data with a one-way layout when,

furthermore, interest is focused on the entire population of schools, not only the

schools represented in the sample. In the present paper, one-way layout data will

be analyzed to illustrate the effect of treating the dependent variable as measured

without an error, which also includes the effect of a two-stage estimation

procedure. In particular, the contribution of a school, the so-called school effect,

on the abilities of its students is analyzed by a random effects model. The study on

differences between schools in their effectiveness is sensitive for measurement error

in the estimated abilities of the students. This kind of measurement error will also

be called response error. It will be shown that modelling measurement error

regarding the estimated abilities leads to disattenuated estimates of the school

effects. Various response models are used to model the link between the discrete

outcomes and the underlying latent variables. MCMC methods will be used to

estimate the parameters of the response model and a random effects model

simultaneously. In Section 2, the basic ideas and tools for a Bayesian analysis will

be discussed. In Section 3, it will be shown that unreliable variables produce bias

towards the overall mean in the estimation of the school effects. Modelling the

measurement error with an item response theory model leads to a sharper

distinction between the estimated abilities of the students and the estimated school

effects. This is illustrated with a simulated and a real data set concerning a Dutch

primary school mathematics test.

More accurate estimates of the latent abilities are obtained when parallel or

repeated measurements are used. Then, it is also possible to estimate the

measurement error variance under the classical test theory model. However,

repeated measurements can also be viewed as time dependent observations and

the corresponding estimated time-specific abilities can be used to analyze changes

over time. In Section 4, a random effects model is considered for longitudinal data. It

will be shown that an item response theory model can be used to model the

measurement error in the estimated latent abilities on different time-points in

combination with a random effects model to analyze school effects over time. As a

result, the school effects, which may vary over time, can be analyzed taking the

measurement error in the estimated abilities into account. All parameters are

estimated using an MCMC algorithm. The last section contains a discussion

regarding the obtained results.
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2 A Bayesian analysis

In a Bayesian analysis, inferences are based on the posterior distribution of the

model parameters, where the posterior distribution is a product of the likelihood

(a function of observed data) and the prior distribution of the parameters. Bayesian

inference has a number of advantages. A full Bayesian analysis provides a natural

way of taking into account all sources of uncertainty in the estimation of the

parameters. That is, central in Bayesian inference, uncertainties about parameters

are represented as probabilities. Although the need for prior specification can be seen

as an objection against a Bayesian analysis, the possibility of using prior knowledge

has some advantages. In some cases, prior knowledge is available and cannot be

combined directly with the observed data (MOLENAAR, 1998). An informative prior

can provide identification of the model. Below, item response models are identified

by fixing the latent ability scale using an informative prior. In other cases, when

choosing a prior distribution is difficult, a totally flat prior can be specified. If the

number of observations is large, the influence of the prior is also negligible. In both

cases, Bayesian and frequentist parameter estimates are usually very close.

Bayesian inference is based on the posterior distribution; that is, sampling based

methods provide information regarding posterior distributions of unknown

parameters. Bayesian simulation procedures are only concerned with obtaining

samples from the posterior distribution, where it is no problem if this distribution is

asymmetric or multimodal. Maximum likelihood methods may produce inaccurate

estimates when the likelihood function is asymmetric or multimodal.

The development of powerful sampling-based estimation techniques have

stimulated the application of Bayesian methods. Since the introduction of Markov

chain Monte Carlo (MCMC) methods, such as Gibbs sampling (GEMAN and

GEMAN, 1984) and Metropolis–Hastings (METROPOLIS, ROSENBLUTH, TELLER and

TELLER, 1953) in statistical modelling (GELFAND and SMITH, 1990), many new

methods have been developed for the simultaneous estimation of parameters in

complex statistical models. This growing use of MCMC methods also led to various

implementations for estimating parameters of response models (see, e.g., ALBERT,

1992; BÉGUIN and GLAS, 2001; PATZ and JUNKER, 1999a, 1999b) and other latent

variable models (see, e.g., CONGDON, 2002; PAAP, 2002, and ROBERT and CASELLA,

1999). Also, the parameters of complex generalized multilevel models can be

estimated using MCMC methods (FOX and GLAS, 2001, 2003). A nice feature of

MCMC is that it offers the possibility of estimating arbitrary functions of model

parameters.

3 One-way random effects ANOVA

Suppose a random sample of J schools are sampled from a population of schools

and then a random sample of students is sampled from each school. Interest is
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focused on differences in school effects on the math abilities of the students.

Denote hij, i ¼ 1,…,nj, j ¼ 1,…,J, as the ability of student i in school j. Further

on, n denotes the number of students of school j, dropping for convenience

reasons the subscript j, although the number of students may vary from school to

school. The math abilities of the students can be broken down in a school

contribution (l + aj) and a deviation (eij) for each student from their school’s

contribution, that is

hij ¼ l þ aj þ eij; ð1Þ

where l is the general mean and aj the cluster effect. It is assumed that

eij � N 0; r2
e

� �
aj � N 0; r2

a

� �
Covðaj; aj0 Þ ¼ Eðajaj0 Þ ¼ 0 8 j 6¼ j0

Covðaj; eij0 Þ ¼ Eðajeij0 Þ ¼ 0 8 j; j0

Covðeij; ei0j0 Þ ¼ 0 except for i ¼ i0; j ¼ j0:

Two abilities from the same school are correlated because they will both have the

same random component aj and will differ only because of the error terms. It follows

that

Covðhij; hi0j0 Þ ¼ r2
a for i 6¼ i0, j ¼ j0

0 for j 6¼ j0

�

VarðhijÞ ¼ r2
e þ r2

a:

3.1 Assuming no response error

The abilities of the students cannot be measured exactly. Instead, suppose that the

responses of the students to a test of K math items were observed. Let yijk be the

observed response of student i in school j on item k. Then, the ability of a particular

student can be estimated by the corresponding test score, for example, the sum of the

number of correct items, say
P
kyijk ¼ yij.. The observed scores of the n students in

school j are denoted by yj. ¼ (y1j.,…,ynj.)
t. Usually, interest is focused on the entire

population of schools, in particular, the variability of the school effects. For the

moment, attention is focused on the size of the school effects. Since aj is a random

variable in the random effects model, Equation (1), the unobservable realized value

of aj is predicted.

The observed test scores and random effects are bivariate normally distributed. It

follows that, assuming a balanced data set, known variances, and taking the

hierarchical structure into account,
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aj1n
yj:

� �
� N

0

l1n

� �
;

r2
aIn r2

aIn
r2

aIn r2
aJn þ r2

eIn

� �� �
; ð2Þ

where 1n is a vector of order n with every element equal to unity, Jn is the (n · n)
matrix with all entries equal to one and In is the (n · n) identity matrix. From a

well known property of the bivariate normal distribution (see, for example,

SEARLE, CASELLA and MCCULLOCH, 1992, Section 3.4) it follows that the

conditional distribution of aj Œyj. is normally distributed with parameters;

Eðaj j yÞ ¼ n
11tnr
2
aIn r2

aJn þ r2
eIn

� �
1
yj: 
 l1n
	 


¼ nr2
a

r2
e þ nr2

a
y:j: 
 l
	 


¼ y:j: 
 l
	 



 r2
e=n

r2
a þ r2

e=n
y:j: 
 l
	 


ð3Þ

Varðaj j yÞ ¼
r2

ar
2
e

r2
e þ nr2

a

where 1
n

P
i;k yijk ¼ y:j: and using the identity

r2
aJn þ r2

eIn
� �
1¼ 1

r2
e

In 

r2

a

r2
e þ nr2

a

Jn

� �
: ð4Þ

In estimating the school effects, aj, the overall mean, in this case zero, is biased,

but the unbiased estimator 
y.j. ) l has a larger variance. The result in

Equation (3) is a shrinkage estimator. When 
y.j. exceeds l, the expected school

effect is less than 
y.j. ) l whereas for 
y.j. less than l, the expected school effect

exceeds 
y.j. ) l. But the expected school effect is only corrected by a fraction of

y.j. ) l and not by 
y.j. ) l itself. For large within school variances, and small

numbers of students per school, the shrinkage estimator is much more efficient

than the overall mean or 
y.j. ) l. In this particular case, the unbiased

within sample mean has a large variance. An overview of random effects

models and applications can be found in, for example, LONGFORD (1993) and

SEARLE et al. (1992).

This section showed how the statistical modelling is done to make inferences about

school effects, assuming that there is no measurement error in the estimated abilities.

The fraction defined in Equation (3) is a combination of within-school variance and

between-school variance; that is, the random effects model (1) takes these different

sources of variation into account. But the variance in the estimate of the true math

abilities is ignored in the estimation of the school effects. Estimates of the school

effects should include three sources of variation, variation within-schools, between-

schools and the variance of the errors involved in the observed scores for each

person.
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3.2 Modelling response error using classical test theory

An educational test can be used as a device for measuring the extent to which a

person possesses a certain ability. Suppose that a test is administered repeatedly to a

subject, that the person’s characteristics do not change over the test period, and that

successive measurements are unaffected by previous measurements. The average

value of these observations will converge, with probability one, to a constant, called

the true score of the subject. In practice, due to the limited number of items in the

test and the response variation, the observed test scores deviate from the true score.

Let Yijk, with the realization yijk, denote the observed test score of subject i in school j

on occasion (or item) k, with an error of measurement eijk. Then Yijk ) eijk is the true

measurement or the true score. The hypothetical distribution defined over the

independent measurements on the same person is called the propensity distribution

of the random variable Yijk. Accordingly, the true score of a person, hij, is defined as

the expected value of the observed score Yijk with respect to the propensity

distribution. The error of measurement eijk is the discrepancy between the observed

and the true score. Formally,

Yijk ¼ hij þ eijk : ð5Þ

A person has a fixed true score and on each occasion a particular observed and error

score with a probability governed by the propensity distribution. The classical test

theory model is based on the concept of the true score and the assumption that error

scores on different measurements are uncorrelated. An extensive treatment of the

classical test theory model can be found in LORD and NOVICK (1968).

Assume that the propensity distribution is normal, withmeasurement error variance

r2
y concerning the sum score, yij., as an estimate of the true score, hij. The measurement

error variance will also be called the response variance. It is possible that the response

variance is person dependent. However, in practice, the measurement error variances

for the individual examinees are subject to large sampling fluctuations. In the sequel, a

group specific error variance is used as an approximation of the individual error

variances of which it is the average (LORD and NOVICK, 1968, p. 155). In the present

paper, the group specific error variance will be based on all examinees, although a

school specific error variance can also be computed.

The random effects model, Equation (1), can be combined with the classical test

theory model, Equation (5), using the observed sum score, yij., as an estimate of the

true score, which leads to

yij: ¼ l þ aj þ eij

where eij � Nð0; r2
e þ r2

yÞ. Then, the observed mean test score of the students of

school j is defined by

y:j: ¼ l þ aj þ e:j ð6Þ

where e:j � Nð0; ðr2
e þ r2

yÞ=nÞ. The observed mean test score and random coeffi-

cient are bivariate normally distributed, that is
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aj
y:j:

� �
� N

0
l

� �
;

r2
a r2

a

r2
a r2

a þ r2
e þ r2

y

	 

=n

" # !
: ð7Þ

Similar to the case of assuming no response error, the conditional normal

distribution of aj Œy, suppressing the conditioning on the other parameters, has

parameters

Eðaj j yÞ ¼
nr2

a

ðr2
y þ r2

eÞ þ nr2
a

y:j: 
 l
	 


¼ y:j: 
 l
	 




r2
y þ r2

e

	 

=n

r2
a þ r2

y þ r2
e

	 

=n

y:j: 
 l
	 


ð8Þ

Varðaj j yÞ ¼
r2
y þ r2

e

	 

r2

a

r2
y þ r2

e

	 

þ nr2

a

:

It follows from the comparison of Equation (3) with Equation (8) that the

expected school effects and its variance are affected by the response variance.

That is, the expectations and variances in (3) and (8) are only equal when the

true score is measured without an error. In the case of a small number of

students per school, the variance of the estimated true score will have a larger

effect on the expected school effect and its variance. For a considerable amount

of response variance and/or small n, the expectations of the school effects move

towards zero, the overall mean. When there is little information on the schools

(i.e., few students, high response variance) the expectations are close to the

average over all schools. In conclusion, taking account of the variance of the

estimated true scores results in a more conservative estimate of the school

effects. This is quite reasonable, the amount of information regarding the school

effect depends on the number of students within a school and the variance

concerning the estimated true scores of the students. For example, if there are

many students in each school then these provide a lot of information regarding

the school effects. The estimate of the school effect moves towards 
y.j. ) l. But

if the estimated true scores of the students are based on a few items, resulting in

a high response variance, the estimate moves towards the overall population

mean.

Example 1 (Estimating school effects)

Interest is focused on estimates of the school effects, that is, on a school’s

contribution to the performance of its students. GOLDSTEIN and SPIEGELHALTER

(1996) emphasize the need for interval estimation of the school effects because

otherwise ranking or separating individual schools in league tables can be quite

misleading. Although the within-school and between-school variance may lead to
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imprecise estimates, studies show that schools can often be distinguished from each

other in their effect on students’ abilities (AITKIN and LONGFORD, 1986). These

effects may still be non-significant if response error is taken into account, since

response error in the outcome variable results in estimated school effects that move

towards the overall mean. An illustration of this phenomenon will be given using a

simulated data set.

According to a random effects model without measurement error in the dependent

variable (1), a data set was simulated for j ¼ 100 schools with each n ¼ 10 students.

The overall mean and the variance components were fixed at l ¼ 0, r2
e ¼ 1 and

r2
a ¼ 0:5, respectively. The parameters were re-estimated with the prior knowledge

that the dependent variable was measured without an error. Two other cases were

examined where the measurement error variance, r2
y, equalled 0.5 and 1, respectively.

Without giving specific details of the estimation method, all parameters were

estimated simultaneously using the Gibbs sampler. Conjugate non-informative

priors were used for the variance components and the overall mean, resulting in

proper posterior distributions. Let R denote the covariance matrix of the variance

components, and p(l,R) the prior for the overall mean and the variance components.

The marginal posterior distribution of a school effect follows from Bayes theorem;

that is,

p aj j y
� �

¼
R R

pðyj: j l; aj;RÞp aj j l;R
� �

p l;Rð Þdl dRR R R
pðyj: j l; aj;R; Þp aj j l;R

� �
p l;Rð Þdaj dl dR

: ð9Þ

Numerical methods can be used to perform the integration, but it is much easier to

use the Gibbs sampler to obtain samples from the marginal posterior distribution of

the school effects by sampling from the full posterior conditionals.

Figure 1 displays the results of estimating the school effects, given the model in

Equation (1). In the top figure, the posterior means and the 95% confidence intervals

of the school effects are given. These point estimates are estimated under the

assumption of no response variance within the dependent variable. The figure in the

middle again presents these estimates and 95% confidence intervals. It also includes

95% confidence intervals of the estimated school effects according to the model in

Equation (6) and r2
y ¼ 0:5. These confidence intervals are wider due to response

variance in the dependent variable. The point estimates, when ignoring response

variance, are somewhat biased, since the confidence intervals, given response variance,

are not centered around it. In specific, high and low values of the point estimates are

moving towards the boundaries of these confidence intervals. The figure at the bottom

presents the point estimates and confidence intervals under the assumption of no

response variance, and 95% confidence intervals of the posterior means according to

the model in Equation (6) and r2
y ¼ 1. Obviously, the uncertainty regarding the

ranking of the schools increases due to the response variance. It can also be seen that

the center of each interval moves towards zero, the overall mean.Moreover, the lower-

bounds (upper-bounds) of both confidence intervals are almost equal for low (high)

values of the estimated school effects. In the middle and bottom figures, the school
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effects aremore alike, since the confidence intervals are broader and each center moves

towards the overall mean. As a result, the response variance within the dependent

variables causes the school effects to be smoothed towards the overall mean.

The intra-school correlation coefficient measures the relative size of the between-

school variance. An estimate of this coefficient is highly depended on estimates of the

variance components, since

q ¼ Covðyij:; yij0:Þ
Varðyij:Þ

¼ r2
a

r2
a þ ðr2

e þ r2
yÞ
; ðj 6¼ j0Þ: ð10Þ

This means that the intra-school correlation coefficient increases if the response

variance is ignored. The fraction of the residual variance attributed to between
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Fig. 1. Point estimates assuming no response error and 95% confidence intervals under the correct error

model for the school effects.
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school-variation is highly over-estimated if the response variance is ignored. In the

example, q ¼ 1/3 in the case of no response variance and, q ¼ 1/4 and q ¼ 1/5 in the

case of response variances equal to 0.5 and 1, respectively.

There are some drawbacks regarding the classical test theory model. In principle

the response variance can be estimated from repeated measurements, but there is

often only one measurement available. Besides, it is not realistic to assume that the

repeated measurements are independent. Further, the group specific error variance

as an estimate of the individual response variance assumes homoscedasticity, that is,

all examinees have the same error variance. Often it is assumed that the variance of

the measurement errors are known in advance or that suitable estimates exist.

Obviously, biased estimates of the response variance may have a large influence on

statistical inference. Further, the precision of the estimates of the measurement error

variances affects the other parameter estimates. Assuming that the measurement

error variances are known without error, may lead to an underestimation of the

standard errors of the other parameter estimates.

3.3 Modelling response error using item response theory

Item response theory (IRT) models describe the relationship between an examinee’s

ability and responses based on characteristics of the test. The item characteristic curve,

the regression of the item scores on the latent ability, fully specifies the dependence of

the observed scores on the latent ability. One of the forms of the item response

function for dichotomous scored items is the normal ogive model. It is defined as

P Yijk ¼ 1 j hij; ak; bk
� �

¼ U akhij 
 bk
� �

; ð11Þ

where U(.) denotes the standard normal cumulative distribution function. The item

parameters nk ¼ (ak, bk) are the discrimination and difficulty parameters, respect-

ively. The term bk/ak, the difficulty parameter divided by the discrimination

parameter, is equal to the ability level at which the probability of giving a correct

response equals 0.5. The discrimination parameter is proportional to the slope of the

item characteristic curve in that point. Equation (11) states the probability of a

person indexed ij responding correctly to item k. It is further assumed that the item

scores are independent given the latent abilities, the so-called assumption of local

independence.

Several procedures are available for simultaneous estimation of the ability and the

item parameters. Although the number of parameters increases, as the number of

observations increases, unbiased estimators of item and ability parameters can be

obtained (e.g., BAKER, 1992; BOCK and AITKIN, 1981; LORD, 1980). The estimation

of the parameters of interest can be carried out by integrating with respect to the

other model parameters. Within the Bayesian framework, the Gibbs sampler can be

used to estimate simultaneously all parameters of the normal ogive model (ALBERT,

1992).

Suppose that each examinee tested is randomly drawn from a population in which

the distribution of ability is p(h). The marginal posterior distribution of the latent
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ability of a person indexed ij, given the item response vector yij ¼ (yij1,…,yijK)
t is

specified as

p hij j yij
	 


¼ 1

f ðyijÞ

Z
p yij j hij; n
	 


pðhijÞpðnÞdn; ð12Þ

where p(n) is the prior for the item parameters. The marginal posterior distribution

specifies the uncertainty regarding the latent ability. Notice that the posterior

variance is the variance of the measurement error. Samples of the marginal posterior

distribution are obtained using the Gibbs sampler. Accordingly, the expected value

and variance of the marginal distribution can be estimated.

When the response error is modelled using the normal ogive model, an explicit

equation for the expected school effects is complicated. Consider, for theoretical

purposes, independent random variables Zijk, which are assumed to be normally

distributed with mean akhij ) bk, variance 1 and Yijk ¼ I(Zijk > 0). It follows that

P Yijk ¼ 1 j hij; ak; bk
� �

¼ P Zijk > 0 j hij; ak; bk
� �

¼ U akhij 
 bk
� �

: ð13Þ

The observed indicator variables, Y, are augmented by a set of normally distributed

continuous variables, Z. Such an augmentation of the observed data is very common

in MCMC implementations of latent variable models, in particular item response

models (e.g., ALBERT, 1992; BÉGUIN and GLAS, 2001; FOX, 2001).

An explicit equation of the expected school effect can be derived with the

introduction of this augmented data. Now the response error can be seen as

�ijk ¼ Zijk + bk ) akhijk. Assume that the item parameters are known and assume a

standard normal prior distribution for hij. Although the normal ogive model is not

identified, this prior identifies the model and specifies the scale of the latent ability.

The posterior distribution of the latent ability of student ij, as the product of a

normal prior and normal distributed likelihood, given the augmented data and item

parameters, is again normally distributed with parameters (LINDLEY and SMITH,

1972)

E hij j zij; nk
� �

¼
P

k akðzijk þ bkÞP
k a

2
k þ 1

¼ atðzij þ bÞ
ataþ 1

¼ atað Þ
1
atðzij þ bÞ 
 1

ataþ 1
atað Þ
1

atðzij þ bÞ ð14Þ

Var hij j zij; nk
� �

¼ 1P
k a

2
k þ 1

¼ 1

ataþ 1
;

where (a, b) are the vectors of discrimination and difficulty parameters, and zij the

vector of augmented data of a person indexed ij. The conditional expected ability has

the form of a shrinkage estimator since it consists of a linear combination of two

weighted estimators. For a small number of items, the variance of hij increases, a
ta
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decreases, and the expected value moves towards zero. That is, the least squares

estimate for hij, from the regression of zij + b on a, is corrected by a fraction of this

least squares estimate, and the expected value moves towards the overall mean. For

an increasing number of items, ata increases, and the least squares estimate is less

corrected to the overall mean. This also shows that the estimate of the response

variance is influenced by the number of items and the discriminating power of the

items. With items with a low discriminating power between students, the resulting

posterior variance will be larger.

The normal conditional posterior distribution of the latent abilities, Equa-

tion (14), can be inverted to express the augmented data as a function of the latent

abilities given the item parameters. From combining the random effects model (1)

with the expression for the weighted augmented observed data of students in school

j, it follows that the school effects are normally distributed with parameters

E aj j z; n
� �

¼ nr2
a

nr2
a þ r2

e þ ataþ 1ð Þ
1
	 
 atðz:j þ bÞ

ataþ 1

 l

� �

¼ atðz:j þ bÞ
ataþ 1


 l

� �


 r2
e ataþ 1ð Þ þ 1

nr2
a þ r2

e

� �
ataþ 1ð Þ þ 1

atðz:j þ bÞ
ataþ 1


 l

� �
ð15Þ

Var aj j z; n
� �

¼
r2

a r2
e þ ðataþ 1Þ
1

	 

nr2

a þ r2
e þ ðataþ 1Þ
1

;

where z:j ¼ 1
n

P
i zij1; . . . ;

1
n

P
i zijK

� �t
. The expected school effect is a shrinkage

estimate. The estimate is a weighted sum of the mean of weighted (augmented)

responses of the students of a particular school and the overall population mean. The

factor that determines whether the estimate gets closer to the overall mean consists of

the between-school and within-school variance and the inner-product of the

discrimination parameters. Relatively high discrimination parameters indicate that

the abilities of the examinees can be distinguished quite well from each other given the

response patterns. When there is a lot of information regarding the abilities of the

students, the estimated school effect is based mostly on a weighted sum of the item

parameters and the response patterns of their students, which is characteristic for item

response theory models. On the other hand, relatively low discrimination parameters

move the estimates of the school effects towards the overall mean, since the estimated

abilities of the students cannot be distinguished accurately from each other.

A drawback of the classical test theory model is that the so-called propensity

distribution is specified in advance, and often a normal distribution is assumed.

However, the marginal posterior distribution of the latent ability (12) is flexible in

the sense that it can also model skewed distributions of the ability parameters.

Another drawback of the classical test theory model is that the measurement error

150 J.-P. Fox

� VVS, 2004



variance has to be estimated from repeated independent measurements. The item

response theory model assumes local independence, instead of uncorrelated

measurements and, as a result, the measurement error variance can be estimated

simultaneously with the other parameters. Since the estimation of the ability is

independent of the chosen subset of items, examinees making different subsets of test

items can be compared. Finally, an item response theory model, as a measurement

model, distinguishes between students’ abilities better because it is based on response

patterns instead of sum-scores. With an item response theory model the estimates of

students’ abilities may differ because the response patterns differ, even if the students

have the same number of correct scored items. In theory, persons with a certain

ability level will have the same number of right-true score on a test (LORD, 1980). As

a result, the true score and ability are the same thing expressed on different scales of

measurement, since the true score is an increasing function of the ability.

Example 2 (A Dutch primary school mathematics test)

This example concerns a study of a primary school leaving test. The examination

results of students from grade 8 were used to study the contribution from the

schools. Students of 97 schools were given a mathematics test. The test consisted of

18 mathematics items taken from the school leaving examination developed by the

National Institute for Educational Measurement. The total number of students for

which data were available was 2156. The data set was used in a large study on school

effectiveness research (DOOLAARD, 2002). Here, attention is focused on school effects

and modelling response error using an item response theory model.

A random effects IRT model was used, with a normal ogive model to measure the

latent abilities of the students, to analyze the observed response data taking into

account the nesting of the students in schools and the response error in the observed

item responses. In fact, the model in Equation (1) in combination with the

measurement model in Equation (11) was estimated using the Gibbs sampler. Details

of the algorithm can be found in FOX and GLAS (2001). Conjugated non-informative

priors were used. The Gibbs sampler was run for 10,000 iterations, with a burn-in

period of 1000 iterations. Stable parameter estimates were obtained since the average

of the parameter draws over the iterations did not differ substantially when

increasing the number of iterations.

Table 1 presents the parameter estimates for the random effects IRT model and for

a ‘standard’ random effects model using sum-scores as an estimate for the latent math

abilities. For comparative purposes, the scale of the sum-scores was transformed to

the scale of the marginal posterior distribution of the latent abilities under the random

effects IRT model. The presence of a school-level variance component indicates

differences between schools. Both models show that a substantial proportion of the

variation in the outcome was between the schools. So, schools differ in the

contribution to the performance of their students in a math test.

There are some important differences between the estimates obtained with the two

models. All standard deviations of the estimated parameters of the random effects
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IRT model are bigger than those from the ‘standard model’ since this model takes

the uncertainty in the estimation of the latent abilities into account. Although the

general means are pretty close, the estimated variance components differ substan-

tially. The sum-scores discriminate less between students’ outcomes than the

complete response patterns. The math abilities were estimated using a random effects

IRT model taking account of the item characteristics, given the response patterns. As

a result, the estimated math abilities contain more variability than the sum-scores

and indicate a sharper distinction between the performance of the students. Part of

this variance can be explained at the individual-level and another part at the school-

level. Therefore, both estimated variances are substantially higher than the estimated

variances based on the sum-scores. The 95% highest posterior density (HPD)

intervals for the variance parameter at Level 1, estimated under the random effects

model and the random effects IRT model, do not overlap each other. So, the

difference between the estimated variances at the individual-level differ significantly

from zero. Furthermore, the proportion of variance explained at the school-level is

0.28, under the random effects IRT model, and 0.23, under the random effects model

using sum-scores.

It can be expected that the school effects and school means differ in magnitude, in

comparing both models, since the estimated math abilities, using the normal ogive

model, distinguish better between students’ performances. Figure 2 presents the

school means for both models, and shows a sharper distinction between the school

means under the random effects IRT model. Schools appear to be more alike when

looking at the means of the sum-scores of the students per school. As a result, the

school means based on sum-scores shrunk towards the overall mean. This illustrates

the effect of a shrinkage estimate, since the school means are based on the individual

outcomes and the overall general mean. The sum-scores show less differences

between students’ outcomes than the estimated math abilities using the random

effects IRT model. Accordingly, the estimated school means based on sum-scores

shrank more towards the overall mean.

Table 2 gives the school effects and rankings of the first ten schools in the

sample for both random effects models. It can be seen that the estimated school

effects show more variability using the random effects IRT model. Schools that

have the same ranking under both models, differ regarding the magnitude of the

school effects. For example, school numbers 2 and 7 have the same ranking in both

Table 1. Parameter estimates of the random effects models.

Fixed effects

Random effects Random effects IRT

Coeff. S.D. HPD Coeff. S.D. HPD

l )0.055 0.048 [)0.153, 0.038] )0.067 0.059 [)0.184, 0.046]
Random effects Var. comp. S.D. HPD Var. comp. S.D. HPD

r2
e 0.644 0.020 [0.604, 0.685] 0.756 0.026 [0.706, 0.805]

r2
a 0.187 0.033 [0.125, 0.253] 0.294 0.052 [0.197, 0.396]
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Fig. 2. Point estimates of the ordered school effects of the random effects models.

Table 2. Realized values for the school effects using the random effects models.

School

Random effects Random effects IRT

School effect Rank School effect Rank

1 0.038 44 0.025 45

2 0.400 9 0.518 9

3 )0.654 90 )0.778 88

4 )0.058 57 )0.176 61

5 0.144 30 0.099 37

6 )0.160 64 )0.219 63

7 )0.285 72 )0.355 72

8 )0.866 95 )0.992 95

9 )0.205 66 )0.327 70

10 )0.374 77 )0.440 77
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models, but the school effect under the random effects IRT model is higher for

school number 2 and lower (higher negative) for school number 7. These

differences may influence the statistical inference when adjusting the school effects

for any school characteristics.

4 Longitudinal data

The objective in a longitudinal analysis is often to characterize the way the outcome

changes over time. The outcome is measured repeatedly over time on every subject.

Multilevel linear models or random coefficient models (GOLDSTEIN, 1995; LONG-

FORD, 1993) were developed to analyze hierarchically structured data. The repeated

measurements data have a multilevel structure since the measurements of the

outcome variable are nested within subjects. So, the measurements made on the

subjects are correlated over time.

In the context of educational research, a number of parallel tests may be obtained

for each student. It will generally be assumed that the individual effects remain

constant over the time period. Experimental conditions may however change over

time, such that experimental effects contribute to the within-person variation.

Attention is focused on the effects of measurement error in the outcomes and the

application of response models, in particular item response models. It is assumed

that the data is balanced and complete. The random coefficient models can however

easily be generalized to handle unbalanced data and observations missing at random.

4.1 Random effects ANOVA using repeated measurements

For every student the test scores, yij ¼ (yij1,…,yijT)
t, measured on T occasions are

assumed to be independently normally distributed, with the true score hij as the mean

and variance r2
y. The repeated measurements on student ij can be used to estimate

the true score and error score variance (JACKSON, 1973). It is assumed that the error

scores of different persons are independent. It follows that,

yij: � N hij; r
2
y;T

	 

ð16Þ

where 
yij. ¼ T)1P
tyijt and r2

y;T ¼ T
1r2
y . On the other hand, students are nested

within schools, so there is a contribution from the school on the true scores of its

students. According to Equations (1) and (16),

Var yij:
	 


¼ r2
e þ r2

y;T þ r2
a: ð17Þ

Interest is focused on the expected school effects given the observed scores of the

students. Again, the estimated true scores and random school effects are normally

distributed. It follows that aj Œy is normally distributed with parameters defined in

Equation (8), except that 
y.j. ¼ (nT ))1
P
i,tyijt and r2

y ¼ r2
y;T. When repeated

measurements are available, the classical test theory model defines the relation
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between the observed test scores and the true scores and all parameters can be

estimated. As a consequence, in the same way as in Section 2, the expected school

effects can be estimated. With repeated measurements, the measurement error

variance can be estimated, instead of fixing this variance a priori. Repeated

measurements make it possible to estimate all parameters simultaneously when

using the classical test theory model, including the response variance. It must be

noted that when only one measurement is available it is still possible to estimate

the true score variance by fractionation of the observed item scores (LORD and

NOVICK, 1968). When the number of repeated measurements equals the number of

fractions, the two procedures lead essentially to the same model. Nevertheless, with

repeated measurements the true score can be estimated with a greater precision.

Further, splitting item scores in two or more sub-scores can damage the validity of

the test (KRISTOF, 1969, 1974) and may lead to an underestimation of the true

reliability.

4.2 Random effects IRT model for longitudinal data

In this section, assume repeated measurements of abilities of students; that is, that

item responses y(t) of students nested in schools are observed on T different

occasions. Assume a two-parameter normal ogive model (11) to measure the abilities

given the observed item responses at a specific time-point; that is,

P yðtÞijk j hðtÞij ; a
ðtÞ
k ; bðtÞk

	 

¼ U aðtÞk hðtÞij 
 bðtÞk

	 

; ð18Þ

where t refers to the time-point or occasion. The item parameters are time-dependent

since each test contains different questions. The abilities are also time dependent even

though the tests are supposed to measure the same construct; that is, the tests are

parallel.

For a student ij, the ability measured at time t can be decomposed into an overall

mean, l(t), a between-subject variation, bij, and between-school variation, aðtÞj , that is,

hðtÞij ¼ lðtÞ þ bij þ aðtÞj þ eðtÞij ð19Þ

where eðtÞij represents the within-subject variation. The hierarchical structure becomes

clear by viewing the Level 1 structure for school j

hj ¼ 1n � l þ In � 1Tð Þbj þ 1n � aj þ ej

¼ X l; bj

� �
þHaj þ ej ð20Þ

where l ¼ (l(1),…,l(T))t, bj ¼ (b1j,…,bnj)
t, aj ¼ ðað1Þj ; . . . ; aðT Þj Þt and hj is the vector of

latent abilities for persons in school j, at the different time points. Further,

H ¼ 1n�IT and X ¼ [1n In]�1T. Equation (20) is called a conditional-independence

model, since it will be assumed that the abilities at the different time-points are

independent conditional on l, bij and aj. The between-subject variation is assumed to

be independent of the within-subject variation. Hence, the bij can be regarded as the

ijth random variation from the mean. The school effects are allowed to vary over
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time. The second stage or Level 2 defines the variance structure of the random

components, it follows that

eðtÞij � N
�
0; r2

e

�
bij � N

�
0; r2

b

�
ð21Þ

aðtÞj � N
�
0; r2

a;t

�
;

where it is a priori assumed that the school effects are independent over time. The

variance of a student’s ability measured at time t is determined by three sources of

variation,

Var hðtÞij
	 


¼ r2
e þ r2

b þ r2
a;t: ð22Þ

The covariance between student’s abilities can also be determined by these sources of

variation,

Cov hðtÞij ; h
ðt0Þ
i0j0

	 

¼

r2
b for t 6¼ t0, i ¼ i0, j ¼ j0

r2
a;t for i 6¼ i0, t ¼ t0, j ¼ j0

0 for j 6¼ j0.

8<
: ð23Þ

The covariance matrix of the students’ abilities on school j can be presented as

Var hj
� �

¼ Vj ¼ In � r2
eIT þ r2

bJT

	 

þ Jn � Ra; ð24Þ

where Ra is a diagonal matrix with elements ðr2
a;1; . . . ; r

2
a;TÞ. The total covariance

matrix, V, is block diagonal where each school is represented by a block Vj.

This model resembles the model of LAIRD and WARE (1982) without the nesting of

students in schools and given the latent abilities of the students. It is a special case of

the more general models discussed by GOLDSTEIN (1986), JENNRICH and SCHLUCH-

TER (1986) and LONGFORD (1987). A difference is that the measurement error of the

latent abilities is taken into account in the estimation of the other parameters, while

these ‘traditional’ approaches used observed test scores as an outcome variable.

A two-stage estimation method is feasible, since an iterative generalized least

squares, a Fisher scoring or EM algorithm can be used to compute maximum

likelihood estimates of a mixed effects model using estimated abilities. Obtaining

maximum likelihood estimates of the model parameters taking all sources of

variation into account (19) is more difficult since it involves the computation of high

dimensional integrals. The simultaneous estimation of the parameters can however

be done using the Gibbs sampler. GILKS, WANG, YVONNET and COURSAGET (1993)

showed how the Gibbs sampler can be used to estimate random effects models and

the extension to estimating all parameters of a random effects IRT model is quite

straightforward. Attention is focused on the school effects which may vary over time,

meaning that the contextual effect of the schools may also differ over time regarding

their effect on students’ abilities. The conditional posterior distribution of the school

effects, aj, can be obtained from Equations (20) and (21). It follows that,
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p aj j hj;l; bj; r
2
e ;Ra

� �
/ p hj j aj; l; bj; r

2
e

� �
p aj j Ra
� �

; ð25Þ

where the right-hand side consists of a product of normal distributions. Thus, the

left-hand side is also normally distributed with parameters (see, e.g., GELMAN et al.,

1995, Section 2.6; LINDLEY and SMITH, 1972)

E aj j hj; l; bj; r
2
e ;Ra

� �
¼ HtHþ r2

eR

1
a

� �
1
Ht hj 
 X l; bj

� �� �
ð26Þ

Var aj j hj; l; bj; r
2
e ;Ra

� �
¼ HtHþ r2

eR

1
a

� �
1
:

As can be seen from (26), the posterior expectation of the school effects is again a

combination of the expected school effects based on the abilities of the students and

the prior mean of the school effects weighted by their variances. The expectation

shrinks towards the overall mean when the information from the abilities contains a

lot of variance, more than the prior variance. When the latent abilities can be

measured accurately, the prior information will have little influence on the expected

school effects.

The full conditional distribution of the covariance matrix of between-school

variation over time, Ra, follows from the weighted sum of squares of the school

effects,

R
1
a j a � Wishart m þ J ;D þ

X
j

aja
t
j

 !
; ð27Þ

using a conjugate prior, with m P T and D as the a priori precision matrix. Formulae

(26) and (27) present two steps in the Gibbs sampling algorithm for estimating all

parameters of the random effects IRT model for longitudinal data. The complete

algorithm includes the full conditionals of the other parameters, and obtaining them

is not that complicated.

The posterior distribution of the school effects depends on the time-specific

abilities of the students. The expectation is taken over the latent abilities in

computing the marginal posterior distribution of the school effects. This means

that in the estimation of the school effects, the variability in the latent abilities is

taken into account. The posterior expectation of the school effects given the

observed item responses follows from averaging over all possible values of the

latent abilities,

E aj j l; y; n
� �

¼ E E aj j l; hj
� �

j y; n
� �

ð28Þ

where the outer expectation averages over the latent abilities and the inner

expectation averages over the school effects. Again, the dependence on the variance

components is suppressed. Notice that the expectation over the latent abilities

includes the different normal ogive IRT models for measuring the latent abilities at

the different occasions. The item parameters, n, are also time-dependent, meaning

that each measurement consists of different items with different item parameters.
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The variance of the estimated school effects follows from a well known relation

(see GELMAN et al., 1995, Section 2.2)

Var aj j l; y; n
� �

¼ E Var aj j l; hj
� �

j y; n
� �

þ Var E aj j l; hj
� �

j y; n
� �

: ð29Þ

This illustrates the fact that the posterior variance of the school effects is based on the

sampling variation (first term) and the variation in measuring the latent abilities

(second term). As a result, statistical inference with respect to the expected school

effects takes the measurement errors into account. Without illustrating the effects of

the other sources of variation it must be noted that the marginal posterior

distribution of the school effects has several components of uncertainty. The

components of variance include measurement error variance, within-subject vari-

ation, between subject variation, and between school variation. The random effects

IRT model takes all these sources of variation into account when estimating the

parameters. Shrinkage estimators are used to deal with all sources of information at

different levels and the Gibbs sampler can be used to obtain the parameter estimates.

5 Discussion

In school effectiveness research, the model parameters may be attenuated due to

measurement error in the dependent variable. The random effects model is extended

with a response model to handle response error in the dependent variable. The item

response theory models have certain advantages over the classical true score models.

In particular, the measurement error variance can be estimated simultaneously with

the other parameters, the estimation of the ability is independent of the chosen set of

items, and the estimated abilities discriminate better between students’ abilities.

MCMC methods can be used to estimate simultaneously the parameters of the

random effects model of interest and the response model. By using more

sophisticated IRT models, it becomes possible to handle, for example, polytomous

scored items, guessing behavior, or graded responses.

School effectiveness studies done in the ‘traditional’ way ignore the effects of

unreliable estimates. Outcome variables used for comparing and ranking schools in

an analysis of variance contain measurement errors that influence the statistical

inference. In particular, school effects may appear significantly different when the

measurement error is ignored. When taking measurement error into account using a

classical true score model, school differences turn out to be less important. That is,

school effects shrink towards the overall mean due to measurement error variance in

the outcome variables.

Estimates of latent abilities using an item response theory model may show

more variability between the performances, resulting in greater differences

between schools given all sources of uncertainty. Item response theory models

may lead to better estimates of the school effects, since possible school effects

may be blurred due to measurement error, or differences between schools may
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appear misleadingly non-significant. The simultaneous estimation by Gibbs

sampling takes all sources of variation into account and leads to correct

estimates of the standard deviations. A re-analysis of some school effectiveness

studies may provide insight in this matter.

Outcome indicators can be used for comparing schools but they should be

adjusted for composition differences, such as student status and achievements on

entry to the school or particular characteristics of schools to get a better reflection of

a school’s contribution to the performance of its students. Obviously, most of these

intake variables, examination results and pupil behavior, cannot be measured

without an error. Unreliable measurement of explanatory variables biases regression

coefficients towards zero in the estimation of the parameters of the other variables.

In the same way as demonstrated in this paper for the outcome variation, response

models can be used to model the measurement error in latent explanatory variables

and a MCMC algorithm can be used to estimate simultaneously all parameters (FOX

and GLAS, 2003).
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