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Chapter 1

Introduction

1. Multilevel Data

In a wide variety of research areas, analysts are confronted with hier-
archical structured data. Examples of this nested structure of the data
include longitudinal data where several observations are nested within
individuals, cross-national data where observations are nested in geo-
graphical, political or administrative units, data from surveys where
respondents are nested under an interviewer, and test data of students
within schools (see, for example, Longford, 1993). The nested structure
gives rise to multilevel data. The problem is properly analyzing the data
taking the hierarchical structure into account.

There are two often criticized approaches for analyzing variables from
different levels at one single level. The first is to disaggregate all higher
order variables to the individual level. That is, data from higher levels
are assigned to a much larger number of units at Level 1. In this ap-
proach, all disaggregated values are assumed to be independent of each
other, which is a misspecification that threatens the validity of the in-
ferences. In the second approach, the data at the individual level are
aggregated to the higher level. As a result, all within group information
is lost. This is especially serious because relations between the aggre-
gated variables can be much stronger and different from the relations
between non-aggregated variables (see, for instance, Snijders & Bosker,
1999, pp. 14). When the nested structure within multilevel data is
ignored, standard errors are estimated with bias.

A class of models that takes the multilevel structure into account and
makes it possible to incorporate variables from different aggregation lev-
els is the class of so-called multilevel models. Multilevel models support

1
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analyzing variables from different levels simultaneously, taking account
of the various dependencies. These models entail a statistically more re-
alistic specification of dependencies and do not waste information. The
importance of a multilevel approach is fully described by Burstein (1980).
Different methods and algorithms have been developed for fitting a mul-
tilevel model, and these have been implemented in standard software.
The EM algorithm (Dempster, Laird, & Rubin, 1978), the iteratively
reweighted least squares method of Goldstein (1986), and Fisher scoring
algorithm (Longford, 1993) have become available in specialized soft-
ware for fitting multilevel models (HLM, Raudenbush, Bryk, Cheong,
& Congdon, 2000, MLwiN, Goldstein, Rasbash, Plewis, Draper, Brown,
Yang, Woodhouse, & Healy, 1998, Mplus, Muthén & Muthén, 1998, and
VARCL, Longford, 1990, respectively).

The field of multilevel research is broad and covers a wide range of
problems in different areas. In social research, the basic problem is to
relate specific attributes of individuals and characteristics of groups and
structures in which the individuals function. In sociology, multilevel
analysis is a particularly useful strategy for contextual analysis, which
focuses on the effects of the social context on individual behavior (see,
for example, Mason, Wong, & Entwisle, 1983). In the same way, relat-
ing micro and macro levels is an important problem in economics; for an
overview, see Baltagi (1995). Moreover, within repeated measurements
of a variable on a subject, interest is focused on the relationship of the
variable to time (Bryk & Raudenbush, 1987; Goldstein, 1989; Longford,
1993). Further, Bryk and Raudenbush (1987) have introduced multilevel
models in meta-analysis. The multilevel model has been used extensively
in educational research, see, for example, Bock, (1989), Bryk and Rau-
denbush (1987), Goldstein (1995) and Hox (1995). Extensive overviews
of multilevel models can be found in Hiittner and van den Eeden (1995),

Kreft and de Leeuw (1998) and Longford (1993).

2. Measurement Error

In many research areas, such as physical or social sciences, studies
may involve variables that cannot be observed directly or are observed
subject to error. For example, a person’s mathematical ability cannot be
measured directly, only the performance on a number of mathematical
test items. Also data collected from respondents contain response er-
ror. That is, there is response variation in answers to the same question
when repeatedly administered to the same person. Measurement error
can occur in both independent explanatory and dependent variables.
The reliability of explanatory variables is an important methodologi-
cal question. When the reliability is known, corrections can be made



Introduction 3

(Fuller, 1987), or, if repeated measurements are available, the reliability
can be incorporated in the model and estimated directly. The use of
unreliable explanatory variables leads to biased estimation of regression
coeflicients and the resulting statistical inference can be very mislead-
ing unless careful adjustments are made (Carroll, Rupert, & Stefanski,
1995; Fuller, 1987). To correct for measurement error, data that allow
for estimation of the parameters in the measurement error model are
collected. Measurement error models have been applied in different re-
search areas to model errors-in-variables problems, incorporating error
in the response as well as in the covariates. In epidemiology, covariates,
such as blood pressure or level of cholesterol, are frequently measured
with error (see, for example, Buonaccorsi, 1991; Miiller & Roeder, 1997;
Wakefield & Morris, 1999). In educational research, students’ pre-test
scores, socio-economic status or intelligence are often used as explana-
tory variables in predicting students’ examination results. Further, stu-
dents’ examination results or abilities are measured subject to error or
cannot be observed directly. The measurement errors associated with
the explanatory variables or variables that cannot be observed directly
are often ignored or analyses are carried out using assumptions that
may not always be realistic (see, for example, Aitkin & Longford, 1986;
Goldstein, 1995).

Although the topic of modeling measurement error has received a con-
siderable amount of attention in the frequentist literature, for the greater
part, this attention is focused on linear measurement error models, more
specifically, the classical additive measurement error model, e.g. Carroll
et al. (1995), Fuller (1987), Goldstein (1995), and Longford (1993). The
classical additive measurement error model is based on the assumption
of homoscedasticity, which entails equal variance of measurement errors
conditional on different levels of the dependent variable. Further, it is of-
ten assumed that the measurement error variance can be estimated from
replicate measurements or validation data, or that it is a priori known
for identification of the model. Often the measurement error models are
very complex. For example, certain epidemiology studies involve nonlin-
ear measurement error models to relate observed measurements to their
true values (see, for example, Buonaccorsi & Tosteson, 1993; Carroll et
al., 1995). In educational testing, item response models relate achieve-
ments of the students to their response patterns (see, for instance, Lord,
1980 or van der Linden & Hambleton, 1997).

Measurement error models are often calibrated using external data.
To correct for measurement error in structural modeling, the estimates
from the measurement error model are imputed in the estimation pro-
cedure for the parameters of the structural model. This method has
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several drawbacks. In case of a single measurement with a linear regres-
sion calibration curve for the association of observed and true scores and
a homoscedastic normally distributed error term, the results are exact
(Buonaccorsi, 1991). But if a dependent or explanatory variable subject
to measurement error in the structural model has a nonconstant con-
ditional variance, the regression calibration approximation suggests a
homoscedastic linear model given that the variances are heteroscedastic
(Carroll et al., 1995, pp. 63). Also in case of a nonlinear measurement
error model and a nonlinear structural model the estimates are biased
in certain cases (Buonaccorsi & Tosteson, 1993; Carroll et al., 1995, pp.
62-69).

Until recently, measurement error received relatively little attention in
the Bayesian literature (Zellner, 1971, pp. 114-161). Solutions for mea-
surement error problems in a Bayesian analysis were mainly developed
after the introduction of Markov chain Monte Carlo sampling (Gelfand
& Smith, 1990; Geman & Geman, 1984); see, for example, Bernardinelli,
Pascutto, Best, & Gilks (1997), Mallick and Gelfand (1996), Miiller and
Roeder (1997), Richardson (1996) or Wakefield and Morris (1999). The
Bayesian framework provides a natural way of taking into account all
sources of uncertainty in the estimation of the parameters. Also, the
Bayesian approach is flexible; different sources of information are easily
integrated and the computation of the posterior distributions, which usu-
ally involves high-dimensional integration, can be carried out straight-
forwardly by Markov chain Monte Carlo (MCMC) methods.

3. Objectives and Outline

In this thesis a new model is introduced for dealing with measurement
error in both the dependent and independent variables of a structural
multilevel model. It is shown that the measurement error can be modeled
with an item response theory (IRT) model and it is shown that the
parameters of the IRT model and the multilevel model can be estimated
concurrently. The appropriateness of an IRT model for measurement
error will be evaluated by a comparison with the classical true score
model.

In Chapter 2, attention will be focused on effects of measurement
error on estimating the parameters, where the response error is modeled
with an item response model or a classical true score model. Expressions
for the posterior estimates of the random regression coeflicients will be
derived to illustrate the influence of the measurement error on estimating
these parameters. An artificial data set is used to show the effects of
measurement error on both the dependent and independent variables on
estimating all parameters of interest.
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In Chapter 3, a description will be given of multilevel IRT modeling,
where the dependent variable is measured with error. Further, advan-
tages of modeling response error with an item response model are given
in comparison to the use of observed scores. A fully Bayesian estima-
tion procedure is used which resulted in a straightforward and easily to
be implemented estimation procedure. Details of the MCMC algorithm
are given in the same chapter. A note is given on other approaches for
estimating the parameters. A simulated data set is used to illustrate the
parameter recovery of the described Gibbs sampler. Further, a Dutch
primary school mathematics test is analyzed to illustrate the practical
impact of the proposed multilevel IRT model.

Chapter 4 is a logical continuation of Chapter 3. In this chapter
independent variables of the structural multilevel model are measured
with an error and modeled by an item response model or a classical true
score model. Advantages of modeling response error with an item re-
sponse model, in comparison to the use of the classical true score model,
are given. A detailed description of the MCMC estimation procedure is
given, both for the case in which the independent variables are correlated
and uncorrelated. The quality of the parameter recovery by the Gibbs
sampler is shown using a simulated data set. Further, the fit of the struc-
tural multilevel model in combination with an item response model or a
classical true score model are compared relative to each other. The influ-
ences of the group specific error variance is emphasized and illustrated
using a real data set from a large scale study concerning a mathematics
test (Bosker, Blatchford, & Meijnen, 1999; Hofman & Bosker, 1999).

In Chapter 5, an estimator of the Bayesian latent residuals and their
variance is proposed. The Bayesian latent residuals are analyzed to
check whether the assumptions in the multilevel IRT model are justified,
for example, assumptions as homoscedasticity of variance or normality.
Also, statistics to test the assumption of heteroscedasticity at Level 1
of the multilevel IRT model are developed. Outliers among the regres-
sion residuals are detected. The posterior distribution of the outliers
can be used to compute the probability that an observation is an out-
lier. Further, the sensitivity of inferences to reasonable changes in the
prior distributions is examined. Finally, the fit of several multilevel IRT
models is discussed using the data utilized in Chapter 3.

In Chapter 6, another estimation procedure to estimate the param-
eters of a multilevel IRT model is discussed. It will be shown that a
stochastic EM algorithm is an appealing alternative to the Gibbs sam-
pler. The stochastic EM algorithm handles complex missing-data struc-
tures in which high-dimensional integration over nuisance parameters
may be involved. This feature makes it attractive for estimating a mul-
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tilevel IRT model with latent variables defined by a complex structural
model. Further, parameter estimates by the stochastic EM algorithm
appeared to be close to the maximum likelihood estimates. Both esti-
mation methods, the Gibbs sampler and the stochastic EM algorithm,
were compared using a Dutch primary school language test.

Finally, a summary of the main results is given, and some sugges-
tions for further research are made. The chapters in this thesis are self-
contained; hence, they can be read separately. Therefore, some overlap
could not be avoided.



Chapter 2

The Effects of Measurement Error in a
Multilevel Model

1. School Effectiveness Research

Monitoring student outcomes for evaluating teacher and school per-
formance has a long history. A general overview with respect to the
methodological aspects and findings in the field of school effectiveness
research can be found in Scheerens and Bosker (1997). Methods and
statistical modeling issues in school effectiveness studies are given in,
for example, Aitkin and Longford (1986) and Goldstein (1997). The
applications in this chapter focus on school effectiveness research with
fundamental interest in the development of knowledge and skill of indi-
vidual students in relation to school characteristics. Data are analyzed
at the individual level and it is assumed that classrooms, schools, and ex-
perimental interventions have an effect on all students exposed to them.
In school or teacher effectiveness research, both levels of the multilevel
model are of importance because the objects of interest are schools and
teachers as well as students. Interest may exist in the effect on student
learning of the organizational structure of the school, characteristics of
a teacher, and the characteristics of the student.

Multilevel models are used to make inferences about the relation-
ships between explanatory variables and response or outcome variables
within and between schools. This type of model simultaneously handles
student level relationships and takes account of the way students are
grouped in schools. Multilevel models incorporate a unique random ef-
fect for each organizational unit. Standard errors are estimated taking
into account the variability of the random effects. This variation among
the groups in their sets of coefficients can be modeled as multivariate
outcomes which may, in turn, be predicted from Level 2 explanatory

7
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variables. The most common multilevel model for analyzing continuous
outcomes is a two-level model in which Level 1 regression parameters are
assumed to be multivariate normally distributed across Level 2 units.
Here, students (Level 1), indexed ij (i=1,... ,n;,j=1,...,J), are
nested within schools (Level 2), indexed j (j =1,...,J). In its general
form, Level 1 of the two level model consists of a regression model, for
each of the J Level 2 groups (j = 1,...,J), in which the outcomes are
modeled as a function of ) predictor variables. The outcomes or depen-
dent variables in the regression on Level 1, such as, students’ achieve-
ment or attendance, are denoted by w;; (i=1,...,n;,j=1,...,J).
The @) explanatory variables at Level 1 contain information on students’
characteristics, such as, gender and age, which are measured without
error. Level 1 explanatory variables can also be latent variables, such
as, socio-economic status, intelligence, community loyalty, or social con-
sciousness. The unobserved Level 1 covariates are denoted by 0, the
directly observed covariates by A. Level 1 of the model is formulated as

wij = Boj + -+ Beibais + Bgrn)jAgrni + - - + BoiAgij +eij, (2.1)

where the first ¢ predictors correspond to unobservable variables and
the remaining () —q predictors correspond to directly observed variables.
Random error e; is assumed to be normally distributed with mean 0 and
variance O'?Inj. The regression parameters are treated as outcomes in a
Level 2 model, although, the variation in the coefficients of one or more
parameters could be constrained to zero. The Level 2 model, containing
predictors with measurement error, ¢, and directly observed covariates,
I, is formulated as

Bai = Vg0 -+ T VasCsqj T Vals+ 1)L (s+1)qs - -+ T VgsU'sqs + gy
(2.2)

for ¢ = 0,...,Q, where the first s predictors correspond to unobserv-
able variables and the remaining S — s correspond to directly observed
variables.

The set of variables @ is never observed directly but supplemented
information about @, denoted as X, is available. In this case, X is said
to be a surrogate, that is, X is conditionally independent of w given the
true covariates 6. In the same way, Y and W are defined as surrogates
for w and ¢, respectively. For item responses, the distribution of the
surrogate response depends only on the latent variable. All the informa-
tion in the relationship between X and the predictors, 8, is explained
by the latent variable. This is characteristic of nondifferential measure-
ment error (Carroll et al., 1995, pp. 16-17 ). Accordingly, parameters
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in response models can be estimated given the true dependent and ex-
planatory variables, even when these variables (w, 8, () are latent. The
observed variables are also called manifest variables or proxies.

2. Models for Measurement Error

A psychological or educational test is a device for measuring the ex-
tent to which a person possesses a certain trait. These traits are, for
example, intelligence, arithmetic and linguistic ability. Suppose that a
test is administered repeatedly to a subject, that the person’s properties
do not change over the test period, and that successive measurements
are unaffected by previous measurements. The average value of these
observations will converge, with probability one, to a constant, called
the true score of the subject. In practice, due to the limited number
of items in the test and the response variation, the observed test scores
deviate from the true score. Let Y;; denote the test score of a subject ij
on item k, with an error of measurement &;;5. Then Yj;; —¢;i is the true
measurement or the true score. Further, let y;;; denote the realization
of Y;;1. The hypothetical distribution defined over the independent mea-
surements on the same person is called the propensity distribution of the
random variable Yj;,. Accordingly, the true score of a person, denoted
again as 65, is defined as the expected value of the observed score Yj;i
with respect to the propensity distribution. The error of measurement
€;jk is the discrepancy between the observed and the true score, formally,

Yijk = 6ij + i (2.3)

A person has a fixed true score and on each occasion a particular ob-
served and error score with probability governed by the propensity dis-
tribution. The classical test theory model is based on the concept of
the true score and the assumption that error scores on different mea-
surements are uncorrelated. An extensive treatment of the classical test
theory model can be found in Lord and Novick (1968). The model is
applied in a broad range of research areas where some characteristic is
assessed by questionnaires or tests, for example, in the field of epidemio-
logic studies (see, e.g., Freedman, Carroll, & Wax, 1991; Rosner, Willett,
& Spiegelman, 1989).

Another class of models to describe the relationship between an exam-
inee’s ability and responses is based on the characteristics of the items
of the test. This class is labelled item response models. The dependence
of the observed responses to binary scored items on the latent ability
is fully specified by the item characteristic function, which is the re-
gression of item score on the latent ability. The item response function
is used to make inferences about the latent ability from the observed
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item responses. The item characteristic functions cannot be observed
directly because the ability parameter, @, is not observed. But under
certain assumptions it is possible to infer the information of interest from
the examinee’s responses to the test items, see, Lord and Novick (1968)
or Lord (1980). One of the forms of the item response function for a
dichotomous item is the normal ogive,

P (Yijr =11 0s5,arbr) = ® (arbs; — by) , (2.4)

where @ (.) denotes the standard normal cumulative distribution func-
tion, by is the ability level at the point of inflexion, where the probability
of a correct response equals .5 and ay, is proportional to the slope of the
curve at the inflexion point. The parameters ax and by are called the
discrimination and difficulty parameters, respectively. For extensions
of this model to handle the effect of guessing or polytomously scored
items, see, e.g., Hambleton and Swaminathan (1985) or van der Linden
and Hambleton (1997).
The true score,

K

> P =1]6y), (2.5)

k=1

is a monotonic transformation of the latent ability underlying the normal
ogive model, formula (2.4). Every person with the same ability has the
same expected number-right true score. Furthermore, the probability of
a correct score is an increasing function of the ability; thus, the number-
right true score is an increasing function of the ability. The true score,
formula (2.5), and the latent ability are the same thing expressed on
different scales of measurement (Lord & Novick, 1968, pp. 45-46). Since
the true score and the latent ability are equivalent, the terms will be used
interchangeably. Further, the context of the model under consideration
will reveal whether 8 represents a true score or a latent ability.

3. Multilevel IRT

The combination of a multilevel model with one or more latent vari-
ables modeled by an item response model is called a multilevel IRT
model. The structure of the model is depicted with a path diagram in
Figure 2.1. The path diagram gives a representation of a system of si-
multaneous equations and presents the relationships within the model.
It illustrates the combination of the structural model with the measure-
ment error models. The symbols in the path diagram are defined as
follows. Variables enclosed in a square box are observed without error
and the unobserved or latent variables are enclosed in a circle. The error
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Figure 2.1. A path diagram of a Multilevel IRT model, where item response theory
models measure the latent variables within the structural multilevel model.

terms are not enclosed and presented only as arrows on the square boxes.
Straight single headed arrows between variables signify the assumption
that a variable at the base of the arrow ‘causes’ variable at the head
of the arrow. The square box with a dotted line, around the multilevel
parameters, signifies the structural multilevel model. The upper part is
denoted as the within-group regression, that is, regression at Level 1,
and the lower part is denoted as the regression at Level 2 across groups.
Accordingly, the regression at Level 1 contains two types of explanatory
variables, observed or manifest and unobserved or latent variables and
both are directly related to the unobserved dependent variable. Also
Level 2 consists of observed and latent variables.

The model assumes that the latent variables within the structural
multilevel model determine the responses to the items. That is, the
latent variables w, 8 and ¢ determine the observed responses Y, X and
W, respectively. The pair of a latent variable and an observed variable
enclosed in an ellipse with a dotted line defines a measurement error
model. In an item response theory model item parameters, denoted as
£, also determine the responses to the items.
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The model in Figure 2.1 is not identified. Identification of the model
is possible by fixing the origin and scale of the latent variables. Another
way is to impose identifying restrictions on the item parameters of each
test. In case of the classical true score model as measurement error
model, the measurement error variances ought to be known, or estimated
properly, to identify the model. One could, for example, from repeated
measurements estimate the error variance.

Handling response error in both the dependent and independent vari-
ables in a multilevel model using item response models has several ad-
vantages in comparison to the use of the classical true score model;
see, Chapter 3 and 4. In item response theory, measurement error can
be defined locally, for instance, as the posterior variance of the ability
parameter given a response pattern. This results in a more realistic,
heteroscedastic treatment of the measurement error. Besides, the fact
that in IRT reliability can be defined conditionally on the value of the
latent variable offers the possibility of separating the influence of item
difficulty and ability level, which supports the use of incomplete test
administration designs, optimal test assembly, computer adaptive test-
ing and test equating. Finally, the model is identified in a natural way,
without needing any prior knowledge.

3.1 Markov chain Monte Carlo

Analyzing the joint posterior distribution of the parameters of inter-
est in the model in (2.1) and (2.2) is infeasible. Computing expectations
of marginal distributions using, for example, Gauss-Hermite quadrature
is also quite difficult. We will return to this point in Chapter 3 and
6. Therefore, a sampling-based approach using an MCMC algorithm to
obtain random draws from the joint posterior distribution of the parame-
ters of interest given the data is considered. MCMC is a simulation based
technique for sampling from high dimensional joint distributions. From a
practical perspective, the Markov chains are relatively easy to construct
and MCMC techniques are straightforward to implement. Besides, they
are typically the only currently available techniques for exploring these
high dimensional problems. In particular, the Gibbs sampler (Gelfand &
Smith, 1990; Geman & Geman, 1984) is a procedure for sampling from
the complete conditional distributions of all estimands. The algorithm
is described as follows. Consider a joint distribution 7 defined on a set
0 C R (in this section 8 is the generic parameter of 7, not necessarily an
ability parameter in an IRT model). The MCMC algorithm consists of
specifying a Markov chain with stationary distribution 7. The elements
of @ are partitioned into k components (01, ... ,0;). Each component of
0 may be a scalar or a vector. One iteration of the Gibbs sampler is
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defined as an updating of one component of 8. To obtain a sample from
the target distribution 7, the Gibbs sampler creates a transition from
0® to 0D Updating the first component, 61, consists of sampling
from the full conditional distribution

T (91 100 00 ,9,9)

which is the distribution of the first component of @ conditional on all

eétJrl)

other components. Subsequently, is obtained as a draw from

- (92 |00HD o0 ,9,@) ,

9,&”1) is drawn from

- (ek | ol glHD ,e,f_*f)> ,

and so on, until

which completes updating the components to U+,

The order of updating the different components is usually fixed, al-
though this is not necessary. Random permutations of the updating
order are acceptable. The choice of updating scheme can effect the
convergence of the sampler (Roberts & Sahu, 1997), that is, a differ-
ent updating strategy can make the algorithm convergence faster. In
some applications a multivariate component sampler, instead of a single
component sampler, is a more natural choice. This so-called blocking
of the Gibbs sampler by blocking highly correlated components into
a higher-dimensional component can improve the convergence of the
Markov chain (Gelman, Carlin, Stern, & Rubin, 1995; Roberts & Sahu,
1997). On the other hand, updating in a block or group is often com-
putationally more demanding than the corresponding componentwise
updating scheme.

Running multiple chains reduces the variance of the parameter esti-
mates attributable to the Gibbs sampler. This is useful in obtaining
independent samples, but these are not required for estimating the pa-
rameters of interest. A very long run gives the best chance of finding
new modes. However, inference from a Markov chain simulation is al-
ways problematic because there are areas of the target distribution that
have not been covered by the finite chain. In practice, both methods are
desirable, to check the behavior and convergence of the Markov chain.
There are several methods for monitoring convergence, but despite much
recent work, convergence diagnostics for the Gibbs sampler remains a
topic for further research. The source of the problem is that the simula-
tion converges to a target distribution rather than a target point. Dif-
ferent methods can be found in, for example, Brooks & Gelman (1998),
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Cowles & Carlin (1996) and Gelman (1995). In the present chapter, con-
vergence diagnostics and multiple chains from different starting points
were used to verify that the Markov chain had converged. In addition,
a visual inspection of the plot of random deviates against iteration was
made to decide whether the Markov chain had converged.

A detailed description of the implementation of the Gibbs sampler to
estimate the model in Figure 2.1 will not be given here. The full condi-
tional distributions of the parameters of interest can be found in Chapter
3 and 4. Here, the Gibbs sampler is used to estimate parameters of the
model to illustrate the effects of response error in both the dependent
and independent variables of the structural multilevel model.

4. Ignorable and Non-Ignorable Measurement
Error

This section focuses on problems associated with measurement error
in the dependent and independent variables of a structural multilevel
model. In certain cases, measurement error does not play a role. That
is, the model for the latent variable also holds for the manifest variable
with parameters unchanged, except that a measurement error variance
component is added to the variance of the residuals (Carroll et al., 1995,
pp- 229). An example is a structural linear regression model with mea-
surement error in the dependent variable, where the measurement error
is confounded with the residuals, resulting in greater variability of the
parameter estimates. The measurement error is called ignorable in these
cases. If the estimates of the regression coeflicients are biased because
measurement error in the manifest variable is ignored, then the measure-
ment error is called non-ignorable. For example, in a linear regression
model with measurement error in a covariate, the least squares regres-
sion coefficient is biased toward zero, that is, the regression coefficient
is attenuated by the measurement error (Fuller, 1987, pp. 3).

Here it will be shown that response error in the dependent, indepen-
dent, or both variables in a multilevel model is not ignorable. That is,
the parameter estimates of the multilevel model are affected by the pres-
ence of the response error in the manifest variables. It will be shown that
disattenuated parameter estimates of the structural multilevel model are
obtained by modeling the response error in the manifest variables with
a classical true score model. The generalization of the results from a
multilevel true score model to a multilevel IRT model will be discussed
at the end of this section.

Consider the linear regression model with the independent variable
measured with error,

wij = By + 5105 + ey, (2.6)
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where the equation errors are independent and normally distributed with
mean zero and variance 2. It is assumed that the distribution of true
scores, 0;;, in the population is standard normal, that is, the 6;; are unob-
servable independent realizations of a standard normal random variable.
For a given person, the true score is a constant, but the observed score
and error term are random variables, see formula (2.3).

In the classical true score model, inferences about 6;; are made from
the responses x;;; for k =1,... , K, which are related to 6;; via

X =0+, (2.7)

where z;; is a realization of X;;, the observed total score of person ij,
and 52(-;-”) an error term that is independent of 6;; and e;;. The superscript
x denotes the connection with the observed variable X;;. Further, it is
assumed that 82(;-) are independent normally distributed with mean zero
and variance ,, where, again, the subscript « denotes the connection
with the observed variable X;;. One of the consequences of the mea-
surement error in the independent variable can be seen in the posterior
expectation of the regression coefficient 3; given the variables w;;, x;;
and the parameters 3y, 0% and ,. This posterior expectation is derived
from the conditional distribution of 8;; given x;; and ¢,

T (Oij | @5, 05) < f (@5 | Oig,02) f1(0i550,1), (2.8)

where the right-hand-side consists of a product of normal densities. Due
to standard properties of normal distributions (e.g., see, Box & Tiao,
1973; Lindley & Smith, 1972) the full conditional posterior density of
0;; given x;; and ¢, is also normally distributed and is given by

oz 1
J’ j> Pz <1+99z1 J 1_“/%1) ( )
Below, ¢, !/ <1 + 99;1) will be denoted by A;. The regression on Level 1
imposes a density f (wij | B,Hz-j,(fQ) that can be considered as a likeli-
hood, and formula (2.9) can be regarded as the prior for the unobserved
6;;. Accordingly, it follows that the conditional posterior distribution of
w;j; is given by

f(wlj ‘ /Bveijvojrrijvgprp) & f(wlj ’ /370ij70_2) f(elj ’1‘23780$)

Due to properties of normal distributions (Lindley & Smith, 1972), the
conditional distribution of w;; is also normally distributed, that is,

Wij | ﬂ7027Xij799w ~N (ﬁO + )‘wﬁlwij702 +ﬁ% (1 - )\w)) . (210)
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In the same way it follows that, given a uniform prior for 3;, the condi-
tional posterior of 3] given w, 3y, 02, x and ¢, is normal with expectation

E [/61 ‘w7X7/6070—2790a:] = AEIBM (211)

where Bl is the least squares estimator in the regression of w — 3, on
x. Because of the measurement error in the explanatory variable, the
least squares regression coefficient is biased toward zero, that is, the
regression coeflicient is attenuated by the measurement error. The ratio
Az defines the degree of attenuation, which is a measure of the degree
of true score variation relative to observed score variation. In the social
science literature, this ratio is called the reliability of X;;. From (2.11)
it can be seen that if the ratio Ay is known, it is possible to construct an
unbiased estimator of 3,. Several techniques for estimating this model,
given Az, can be found in Fuller (1987). The effect of errors in variables
on ordinary least squares estimators is well known, and is described in,
for example, Cochran (1968) and Fuller (1987).

Next, suppose the intercept and slope of model (2.6) are random coef-
ficients, that is, the coefficients vary over Level 2 groups. The coefficients
are treated as outcomes in a Level 2 model given by

Boj = Yoo + Y0165 + vo; (2.12)
513' = Y10 + U1y,

where the Level 2 error terms u; have a multivariate normal distribution
with mean zero and covariance matrix T. In the sequel, it will be assumed
that the errors on Level 2 are uncorrelated. That is, the covariance
matrix T consists of diagonal elements var (ug;) = 73 and var (uy;) = 72.
Suppose that the dependent variable w;; is not observed exactly, but its
error-prone version Y;; is available. So

Y;j =wij + E(y) (213)

27 ?
where the measurement errors 52(-3-/) are independent of w;; and e;;, and
independent normally distributed with mean zero and variance ¢,. The
superscript and subscript y emphasize the connection with the observed
total score Yj;. Again, the conditional posterior distribution of Y}, the
observed scores of students in group j, given 6, ,Bj,(72 and ¢, follows

from the standard properties of normal distributions, that is,

2 2
f(YJ ‘ 0j7/6j70— 790y) & f(YJ ‘ Ldj,gﬁy) f(w] ’ ejv/ijo— ) »
where the second factor on the right-hand side defines the distribution
of the true scores w; in the population. As a result,

Y; 16,8 o2, @, ~ N (Bo; + 51,05, (v, + 02) L), (2.14)
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where I,; is the identity matrix of dimension n;. Obviously, the mea-
surement error in the dependent variable results in an extra variance
component ¢,. Combining this conditional distribution of Y; with the
prior knowledge about 3;, in formula (2.12), results in the conditional
posterior distribution of 3; given y;, 8;, 2,7, T,(¢; and ¢,. Define ¥; =

(0% +,) (BSH,) " where H, = [10,,6,] - Then

-173 -1
>+ Tt s 4T )
(2.15)

where A defines the structure of the explanatory variables on Level 2.
The posterior expectation of 3, is the well-known composite or shrinkage
estimator, where the amount of weight placed on the estimates depends
on their precision. Notice that the usual least squares estimator, 3;,
based on the linear regression on Level 1 given 6; and Y, is weighted
by Ej_l, which contains the measurement error in the dependent vari-
able. Thus, the estimator of 3, is not equivalent to the standard least
squares estimator of 3, and as consequence, the measurement error in
the dependent variable of a structural multilevel model is not ignorable.
The estimates of the random regression coeflicients are attenuated when
the measurement error in the dependent variable is ignored because the
least squares estimator 3, is attenuated by the measurement error.

Next, it will be shown that the posterior expectation of 3; given the
manifest variables is affected by measurement error in the explanatory
variable on Level 1. From formula (2.10) and (2.14) the conditional
distribution of Y; can be derived as

Yj ‘ va j7(727(1‘9y790x ~ N </603 + Axﬁljxjv <(1‘9y + o’ + B%] (1 - Aw)) Inj>

(2.16)
The conditional posterior distribution of 3; can be derived by consid-
ering this conditional distribution of Y; as the likelihood and formula
(2.12) as the prior for its parameter vector B;. To obtain an analytical
expression for this conditional posterior distribution, it must be assumed
that the variance in (2.16) is known. Denote this variance, for group j,
as C;. In practice, an empirical Bayes estimator could be used. Define

-1
X =C; (HEHJ> , where H; = [1, A;x;]. Then it follows that
578+ T Ay 1
D e L
(2:17)

/Bj | Yj70j70-2777T7Cj790y ~ N (

/3]' ‘ Yj7Xj70—2777 T7Cj7(1‘9y790w ~ N (
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where the other variables are defined as in formula (2.15) . The posterior
~ -1
expectation is a shrinkage estimator where 3; = (HEHJ> Hz»yj and

the variance of Bj increases due to the measurement error in the depen-
dent and independent variables. Besides the measurement error in the
dependent variable, the reliability ratio A; further influences the least
squares regression coefficients 3.

Finally, assume that the explanatory variable on Level 2, ¢, is un-
observed and instead a variable W is observed with measurement error
variance ¢,,, that is,

_ (w)
where the measurement errors ng) are independent of ¢; and ug;, and
independently normally distributed with mean zero and variance ¢,,.
Further, it is assumed that the true scores, ¢;, in the population are

standard normally distributed. Analogous to the derivation of (2.10), it
follows that

503' | %7777—%7 Oy~ N (700 + )‘w701wj77(2) + 7(%1 (1- )‘w)) ) (2.18)

where A\, = ¢!/ (1 + <,9;UI> . Again, the posterior expectation of 3, can
be derived by combining the prior information for §; and the standard
prior information for 3;;, from (2.12), with the likelihood in formula
(2.16). Hence the conditional posterior distribution of B, is equivalent
to formula (2.17) , except that the first diagonal-element of T is increased
by 73, (1 — A\w) , and the first row of A = (1, A, W, 0). Accordingly, the
shrinkage estimator is a combination of two weighted estimators, where
both parts are influenced by measurement error in the dependent and
independent variables. As a consequence, the measurement error is not
ignorable and ignoring it leads to attenuated estimates of the random
regression coeflicients.

Besides the effect of measurement error on the estimates of random re-
gression coefficients, a perhaps less well-recognized effect is the increased
variance of the observed dependent variable given the observed explana-
tory variables. Without measurement error in the explanatory variables
the residual variance of Yj; is

var (Y | 0ij7Cj) :T(%‘*‘T%egj‘*‘UQ‘*“Py-

By taking into account the measurement error in the independent vari-
ables, the residual variance of the manifest variable, Y;;, increases to

var (Yy; | @i, w;) = Cy+Hy T HY,
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where Cj; = (¢, + 0* —1—6% (1-X)), Hij = [1,Mp25] and T is the
diagonal matrix with elements (7§ 4+ 73, (1 — Aw), 77) . Notice that the
response variance in the variance component of the dependent variable
is just an extra variance component, but the measurement error variance
in the explanatory variables causes a complex variance structure. The
structure gets even more complex if the variables or error terms are
correlated (Schaalje & Butts, 1993).

This overview of non-ignorable measurement error is based on the
classical true score model. The conditional distributions of the random
regression coeflicients are derived by using the standard properties of
the normal distribution. If the response error is modeled by an item
response model, the conditional distributions of these parameters can
be found in the same way by introducing an augmented variable Z.
Interpret the observation Z;;; as an indicator that a continuous variable
with normal density is negative or positive. Denote this continuous

variable as folg , where the superscript & denotes the connection with the

observed response variable X;;¢. It is assumed that X, = 1 if ZZ.(;IQ >0

and X = 0 otherwise. It follows that the conditional distribution Zz(]mk)
given 6;; and f,(:) is normal. This distribution can be used to obtain
the conditional distributions of the random regression parameters in the
same way as above. Expanding the two parameter normal ogive model
to a three parameter normal ogive model to correct for guessing can be
done by introducing an extra augmented variable (Johnson & Albert,
1999, pp. 204-205). Further, observed ordinal data can be modeled by
assuming that a latent variable underlies the ordinal response (Johnson
& Albert, 1999, pp. 127-133).

5. An Illustrative Example

In this section, the effects of measurement error in dependent and
explanatory variables at different levels in a structural multilevel model
are demonstrated using a simulation study. Further, a numerical exam-
ple is analyzed to compare the effects of modeling measurement error in
dependent and independent variables with an item response model and
a classical true score model. The model is given by

wij = Boj + B85 + € (2.19)
Boj = Yoo + Y0165 T Uoj
B1; = Y10 t U1,
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where €;; ~ N <O,(72) and u; ~ N (0, T). Furthermore, it is assumed
that the surrogates Y, X and W are related to the latent predictors w, 8
and ¢, respectively, through a two-parameter normal ogive model.

For the simulation studies, both of the latent predictors, @ and ¢,
were drawn from the standard normal distribution. The latent depen-
dent variable w was generated according to the above model. Response
patterns were generated according to a normal ogive model for tests of
40 items. For tests related to the dependent and independent variables
at Level 1, 6,000 response patterns were simulated. The total number
of groups was J = 200, each group or class consisting of 20 to 40 indi-
viduals. For the test related to the latent covariate ¢ at Level 2, 200
response patterns were generated. The generated values of the fixed and

random effects, v, 02 and T, are shown under the label Generated in
Table 2.1.

5.1 Ezplanatory Variables Without Measurement Error

In the first simulation study, no response error in the explanatory
variables on Level 1 and Level 2 was present, that is, the latent predictors
0 and ¢ were observed directly without an error. The dependent variable
was unobserved but information about w, denoted as Y, is available.
The data were simulated by the multilevel IRT model. The structural
multilevel model with measurement error in the dependent variable was
estimated with the Gibbs sampler, using the normal ogive model and the
classical true score model as measurement error models. Noninformative
priors were used for the fixed effects and variance components in the
multilevel model; see, Chapter 3 and 4. Also, the methods for computing
starting values can be found there. After a burn-in period of 1,000
iterations, 20,000 iterations were made to estimate the parameters of
the structural model with the two-parameter normal ogive model. For
the classical true score model, 500 iterations were necessary as a burn-
in period and 5,000 iterations were used to estimate the parameters.
Convergence of the Gibbs sampler was investigated by running multiple
chains from different starting points to verify that they yielded similar
answers and by plotting the MCMC iterations to verify convergence.
For a comprehensive discussion of convergence of the Gibbs sampler, see
Cowles and Carlin (1996).

In Table 2.1, the expected a posteriori estimates of the parameters
of the multilevel IRT model obtained from the Gibbs sampler are given
under the label IRT Model, denoted as Model M;. Parameter estimates
of the structural multilevel model using the classical true score model
are given under the label Classical True Score Model, denoted as Model
M. The multilevel IRT model M7 was identified by fixing a discrim-
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Table 2.1. Parameter estimates of the multilevel model with measurement error in
the dependent variable.

Generated IRT Model Classical True Score Model
]\/[1 ]\/[cl
Fixed Coeff. Coeff. s.d. HPD Coeff.  s.d. HPD
Effects
Yoo .000 —.032  .042 [-.101,.039] —.056 .032 [—.107,—.007]
Yo1 .100 .082 .026 [.040,.124] .078 .026 [.038,.121]
Y10 .100 .055 .034 [-.002,.109] .054 .028 [.012,.103]
Random Var. Var. s.d. HPD Var. s.d. HPD
Effects Comp. Comp. Comp.
T2 .200 .234 .028 [.186,.287] .200 .022 [.165,.236]
3 200 201 023 [159,.247] .138 .016 [115,.167]
3 100 169 025 [131,.211] .118 .015 [.094, .143]
a2 .500 513 .028  [.460,.573] 435 .010 [.418, .450]

ination and a difficulty parameter to ensure that the latent dependent
variable was scaled the same way as in the data generation phase. The
structural model with the classical true score model as measurement
error model was identified by specifying the parameters of the measure-
ment error distribution. Therefore, the group specific error variance was
a priori estimated. The unbiased estimates of the error variances of
individual examinees were averaged to obtain the group specific error
variance (Lord & Novick, 1968). The group specific error variance re-
lating to the unweighted sums of item responses or test scores Yj;, ¢,
was .118, for every individual ¢5. The observed sum scores were scaled
in the same way as the true latent dependent variable w;;. The reported
standard deviations are the posterior standard deviations. The 90%
highest posterior probability (HPD) intervals for parameters of interest
were computed from a sample from their marginal posterior distribution
using the Gibbs sampler (see, Chen & Shao, 1999).

The true parameter values were well within the HPD intervals ob-
tained from the multilevel IRT model, My, except for the covariance of
the Level 2 residuals, T%l, which was too high. Further, the fixed effect,
Y10, Was not significantly different from zero. The parameter estimates
of the random and fixed effects are given under the label Classical True
Score Model, Model M,1. Here, more parameter estimates differed from
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the true parameter values. Specifically, the variance at Level 1 and the
variance of the residuals of the random slope parameter were too low.
As a result, the estimates of the slope parameters corresponding to the
different groups were more alike in comparison to the corresponding es-
timates resulting from the multilevel IRT model and the true simulated
values. In the fit of Model M., the slope parameter estimates vary less
across groups. The estimates of the variance components affected the es-
timate of the intraclass correlation coefficient. This is the proportion of
the total residual variation that is due to variation in the random inter-
cepts, after controlling for the Level 1 predictor variable. The simulating
values implied an intraclass correlation coefficient of p = .286, the multi-
level IRT estimate was p = .313, and the Model M. estimate p = .314.
These estimates were based on iterates of the variance components and
were not based on the posterior means of the variance components.

5.2 Ezxplanatory Variables With Measurement Error

In the second simulation study, both the dependent and independent
observed variables had measurement error. Table 2.2 presents the re-
sults of estimating the parameters of the multilevel model using observed
scores, denoted as Model M,, using a normal ogive model as measure-
ment error model, denoted as Model M5, and using the classical true
score model as measurement error model, denoted as Model Mo, both
for the dependent and independent variables. In the estimation proce-
dure, all uncertainties were taken into account, where the group specific
error variances for the sum scores relating to the Level 1 and Level 2
predictors, ¢, and ,,, were .103 and .109, respectively. The multilevel
IRT model, where measurement error in the covariates was modeled by
a normal ogive model, Model Ms, was identified by fixing a discrimina-
tion and a difficulty parameter of each test. Model M.y was identified
by specifying the response variance of the observed scores. The true
parameters were the same as in Table 2.1. The true parameter values
were well within the HPD regions of the multilevel IRT estimates, Model
M. That is, the parameter estimates were almost the same as the pa-
rameter estimates resulting from Model M7, where the true parameter
values were used for the predictor variables instead of modeling the vari-
ables with an IRT model. The same applied to the parameter estimates
of Model M. which were comparable to the estimates of Model M.
Subsequently, the deficiencies of the fit of model M, also applied to
the fit of Model M. The posterior variances of the estimates of Model
My and Mo were slightly higher in comparison to Model M7 and Mg
because the measurement errors in the predictor variables were taken
into account, but the differences were rather small. The estimates given
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Table 2.2. Parameter estimates of the multilevel model with measurement error in
both the dependent and independent variables.

Observed IRT Model Classical True Score Model
]\/[o ]\/[2 ]\/132
Fixed Coeff. s.d. Coeff.  s.d. HPD Coeff.  s.d. HPD
Effects
Yoo —.057 .032 —.048 .045 [-.120,.027] —.058 .034 [—.112,.000]
Yo1 .058 .026 .081 .030 [.032,.130] .058 .026 [.018,.103]
Y10 .050 .026 .055 .034 [.000,.110] .049 .026 [.005, .091]
Random Var. s.d. Var. s.d. HPD Var. s.d. HPD
Effects Comp. Comp. Comp.
T2 201 .023 233 .030 [.184,.278] .200 .023 [.165,.238]
2 126 015 200 027 [157,.241] 138 014  [.098,.144]
T2, .110 .015 167 024 [[128,.204] .118 .015 [.083,.131]
o? .560 .010 515 .035 [454,.562] .435 .010 [.416, .450]

under the label Observed resulted from estimating the multilevel model
using observed scores for both the dependent and independent variables,
ignoring measurement error in all variables. It was verified that taking
account of measurement error in the observed variables resulted in dif-
ferent parameter estimates, especially for the variance components.
Table 2.1 and 2.2 show that the estimates of the variance compo-
nents were attenuated because the measurement error was ignored. As
seen in the preceding section, the estimates of the random intercept
and random slope parameters were strongly influenced by the variance
components. The effects of measurement error in the dependent and
independent variables were also reflected in the estimates of the random
regression parameters. Figure 2.2 shows the expected a posteriori esti-
mates of the dependent values in an arbitrary group using Model M7 and
M_1. There was no horizontal shift in the estimates because both models
used the true independent variables. The estimates of both models were
quite close to the true values, but the more extreme values were better
estimated by Model Mj, where the normal ogive model was the measure-
ment model. The regression predicted by Model AM; resulted in a higher
intercept, the slope parameter nearly equaled the true slope parameter.
The regression lines were based on posterior means of the random regres-
sion coefficients. The predicted regression slope, using Model M., was
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of opposite sign and resulted in different conclusions. In the same group
as in Figure 2.2, the expected a posteriori estimates of the dependent
values based on dependent and independent variables measured with an
error, using the classical true score model and the normal ogive model,
are given in Figure 2.3. The horizontal shifts in the expected a posteri-
ori estimates, in relation to the estimates in Figure 2.2, were caused by
the measurement error in the independent variables. The estimates were
shrunk towards the mean of both variables. The estimates following from
Model Msy were closer to the more extreme true values. As a result, the
predicted regression according to Model A5 had a wider range, and was
closer to the true regression. As in Figure 2.2, the slope estimate of the
predicted regression of Model M.o was positive, even though the true
parameter slope was negative. In this group, the predicted regression
based on observed scores, Model M,, followed the regression of Model
Mo, and seemed to follow the true regression better. Notice that the
predictions are slightly better in Figure 2.3, where the explanatory vari-
ables were modeled with the classical true score model or the normal
ogive model. It seemed that the more complex model, which takes mea-
surement error in all variables into account, was more flexible, resulting
in a better fit of the model. Both figures indicate that the normal ogive
model for the measurement error model yielded better estimates of the
outcomes, especially, in case of the more extreme values. Further, the
estimates of the random regression coeflicients depended on the values
of the variance components and were sensitive to measurement error in
the variables. As shown in Figure 2.2 and 2.3, measurement error in the
dependent and independent variables may lead to incorrect conclusions.

6. Discussion

Errors in the dependent or independent variables of a multilevel model
are modeled by an item response model or a classical true score model.
The Gibbs sampler can be used to estimate all parameters. Other es-
timation procedures, such as error calibration methods (Carroll et. al.,
1995), do not take all parameter variability into account.

A fully Bayesian approach accommodates both covariate and response
measurement error, and provides more reliable estimates of the variabil-
ity of the model parameters. On the other hand, the Bayesian approach
is computer intensive and still unrecognized in many working environ-
ments. Besides, the lack of programs for handling measurement errors
in major statistical computer packages further impedes the use of struc-
tural multilevel models.

In this study, the consequences of ignoring measurement error are
examined to evaluate estimation methods that are able to handle mea-
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Figure 2.2. Expected posterior estimates and predictions of the dependent values

given the true independent variables.

surement error in both the explanatory and independent variables of

a structural multilevel model.

It was shown that the estimates of the

variance components and random regression coefficients are sensitive to
measurement error in both the dependent and explanatory variables.
Simulation studies were used to exemplify the impact of the measure-
ment error. Other forms of measurement error can be handled similarly,
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Figure 2.3. Expected posterior estimates and predictions of the dependent values
given that the explanatory variables at Level 1 and Level 2 are measured with an
€error.

but information concerning the probability structure is necessary. Notice
that the classical true score model as measurement error model requires
a priori estimates of the group specific error variances. These estimates
strongly affect the parameter estimates (see, Chapter 4). That is, a small
change in the a priori estimates could lead to different conclusions. A
detailed description of the Bayesian estimation procedure can be found
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in the following chapters. The procedure is flexible in the sense that
other measurement error models, and other priors can be used. This
supports a more realistic way of modeling measurement error. Also, the
estimation procedure can handle multilevel models with three or more
levels. It takes the full error structure into account and allows for errors
in both the dependent and independent variables.






Chapter 3

Bayesian Estimation of a Multilevel IRT
Model using Gibbs Sampling

Abstract In this chapter, a two-level regression model is imposed on the ability
parameters in an item response theory (IRT) model. The advantage of
using latent rather than observed scores as dependent variables of a mul-
tilevel model is that it offers the possibility of separating the influence
of item difficulty and ability level and modeling response variation and
measurement error. Another advantage is that, contrary to observed
scores, latent scores are test-independent, which offers the possibility of
using results from different tests in one analysis where the parameters of
the IRT model and the multilevel model can be concurrently estimated.
The two-parameter normal ogive model is used for the IRT measure-
ment model. It will be shown that the parameters of the two-parameter
normal ogive model and the multilevel model can be estimated in a
Bayesian framework using Gibbs sampling. Examples using simulated
and real data are given.

Keywords: Bayes estimates, Gibbs sampler, item response theory (IRT), Markov
chain Monte Carlo, multilevel model, normal ogive model.

1. Introduction

In educational and social research, there is a growing interest in the
problems associated with describing the relations between variables of
different aggregation level. In school effectiveness research, one may, for
instance, be interested in the effects of the school budget on the ed-
ucational achievement of the students. However, the former variable
is defined on the school level while the latter variable is defined on
the level of students. This gives rise to problems of properly model-

29
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ing dependencies between these variables. These problems can be coped
with using multilevel models (Bryk & Raudenbush, 1992; de Leeuw &
Kreft, 1986; Goldstein, 1995; Longford, 1993; Raudenbush, 1988). In
the above example, students are nested in schools, and in a multilevel
model the students would make up a first level and the schools a sec-
ondary level. Although most applications of the multilevel paradigm are
found in regression and analysis of variance models (see, for instance,
Bryk & Raudenbush), multilevel modeling does, in principle, apply to
all statistical modeling of data where elementary units are nested within
aggregates. Longford, for instance, gives examples of multilevel factor
analytical models and generalized linear models.

Also in the field of TRT models some applications of the multilevel
paradigm can be found. Adams, Wilson and Wu (1997) discuss the treat-
ment of latent proficiency variables as outcomes in a regression analysis.
They show that a regression model on latent proficiency variables can be
viewed as a two-level model where the first level consists of the item re-
sponse measurement model which serves as a within-student model and
the second level consists of a model on the student population distribu-
tion, which serves as a between-students model. Further, Adams et al.
show that this approach results in an appropriate treatment of measure-
ment error in the dependent variable of the regression model. Another
application of multilevel modeling in the framework of IRT models was
given by Mislevy and Bock (1989) where group-level and student-level
effects are combined in an hierarchical IRT model. Both applications
can be viewed as special cases of the general approach presented here.
This general approach entails a multilevel regression model on the la-
tent proficiency variables allowing for predictors on the student-level and
group-level. The motivation for this approach is twofold. Firstly, linear
multilevel models are based on the assumption of homoscedasticity, that
is, it is assumed that the error component is independent of the outcome
variable (i.e., the score of the test taker). In IRT, measurement error can
be defined locally, for instance, as the posterior variance of the ability pa-
rameter given a response pattern. This local definition of measurement
error results in heteroscedasticity: In the Rasch model, for instance,
the posterior variance of the ability parameter given an extreme score
is greater than the posterior variance of the ability parameter given an
intermediate score (see, for instance, Hoijtink & Boomsma, 1995, pp.
59, Table 4.1). So summing up, the first motive for an IRT approach to
multilevel models presented here is the more realistic treatment of mea-
surement error. The second motive is that, contrary to observed scores,
latent scores are test-independent, which offers the possibility of analyz-
ing data from incomplete designs, such as, for instance, matrix-sampled
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educational assessments, where different (groups of) persons respond to
different (sets of) items.

An important difference between the approach by Adams et al. (1997)
and Mislevy and Bock (1989) and the present one is the estimation pro-
cedure: In the earlier approaches marginal maximum likelihood (MML)
and Bayes modal procedures (see, for instance, Bock & Aitkin, 1981;
Mislevy, 1986) were used, while the present approach entails a fully
Bayesian procedure. Below, it will be shown that adopting a fully
Bayesian framework results in a straightforward and easily implemented
estimation procedure. The procedure has several advantages. First, a
fully Bayesian procedure supports definition of a full probability model
for quantifying uncertainty in statistical inferences (see, for instance,
Gelman, Carlin, Stern, & Rubin, 1995, pp. 3). Both knowledge about
previous research and the data collection process can be incorporated
in the model. Second, estimates of model parameters that might oth-
erwise be poorly determined by the data can be enhanced by imposing
restrictions on these parameters via their prior distributions. For exam-
ple, priors can be placed on the variance components in case of a small
number of Level 2 units (see, for example, Seltzer, Wong, & Bryk, 1996).
The third, and probably most important advantage, has to do with the
following. The framework used here is closely related to the frame-
work introduced by Albert (1992). Recently, this framework has been
further elaborated for estimation of IRT models with multiple raters
(Patz & Junker, 1999b), testlet structures (Bradlow, Wainer & Wang,
1999; Wainer, Bradlow, & Du, 2000), latent classes (Hoijtink & Mole-
naar, 1997) and multidimensional latent abilities (Béguin & Glas, 2001).
The unifying theme of these applications is the use of a Markov chain
Monte Carlo (MCMC) method for Bayesian inferences. The motivation
for the recent interest in Bayesian inference and MCMC might be that
the complex dependency structures in the mentioned models require the
evaluation of multiple integrals to solve the estimation equations in an
MML or Bayes modal framework (Patz & Junker, 1999a). In the sequel,
it will become clear that these problems are easily avoided in an MCMC
framework. This point will be returned to in the discussion section.

This chapter consists of five sections. After this introduction section,
a general multilevel IRT model will be presented. In the next section, an
MCMC estimation procedure will be described. Then, in the following
section, examples of the procedure will be given. And finally, the last
section contains a discussion and suggestions for further research.
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2. Multilevel IRT Models
2.1 One-Way Random Effects IRT ANOVA

Before describing the complete model considered here, a special case
will be presented first to illustrate the dependency structure of a mul-
tilevel IRT model. Consider a population of units, say schools, from
which a sample of units indexed 7 = 1,...,J is drawn. Individuals,
say students indexed ¢ = 1,...,n;, are nested within units. In this
framework, Bryk and Raudenbush (1992) consider a two-Level one-way
random effects ANOVA model. For the first level, the model is given by

Y = B; + ey, with e ~ N(0,02), (3.1)
the second level is given by
B; =7 +uj, with uj ~ N(0,72). (3-2)

So the model entails that the Level 1 unit means are sampled from a
normal distribution with mean v and variance 72. Persons within a unit
are independent and the disturbances of the regression coefficients in
different schools are uncorrelated. This model can be generalized to an
IRT framework by imposing the linear structure on unobserved latent
variables 6;; rather than on observed variables Y;;. The assumption is
introduced that unidimensional ability parameters 6;; are independent
and normally distributed given 3;. So let 8;; | 3; ~ N( j,(72). Further,
B; ~ N (v,72). Combining these two assumptions, it follows that the
joint distribution of the ability parameters and the random regression
coefficient in group j is multivariate normal, that is,

_91]-_ ([~ 1 [ o?+72 72 72 2 7]
02, ¥ T2 R 72 72
~N , . (3.3)
On,;j vy 72 72 R
) 2 2 2 2
B, | Lyl LT T T T |

So, though local independence holds within groups, over groups the abil-
ity parameters of the respondents are dependent. As noted above, these
kinds of complex correlated structures suggest using a fully Bayesian
rather than an MML or Bayes modal approach. However, this does not
mean that the latter two approaches are completely infeasible for the
present model, this point will be returned to in the discussion.
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2.2 A Multilevel IRT Model

Bryk and Raudenbush (1992) present the above one-way random ef-
fects ANOVA model as a special case of a general model. In an IRT
context, this model translates to a model given by

with €5 ~ N(O,O'Q), and
Baj =Yg0+ - +7gsWsgj + - - + Vg5 Wisgs + gy, (3.5)

for ¢ = 0,...,Q. The Level 2 error terms, ug;, ¢ = 0,...,Q, have
a multivariate normal distribution with a mean equal to zero and a
covariance matrix T. In (3.4), X4;; and B4, are Level 1 predictor variables
and regression coefficients, respectively. The latter are assumed to be
random variables modeled by (3.5), where Wsg; and ~,, are Level 2
predictor variables and regression coefficients, respectively.

In the above formulation, the coeflicients of all the predictors in the
Level 1 model are treated as random, that is, as varying across Level 2
units. In certain applications, it can be desirable to constrain the effects
of one or more of the Level 1 predictors to be identical across Level 2
units. This is accomplished by reformulating the hierarchical model as a
mixed model (Raudenbush, 1988). The issues and procedures discussed
below also apply to these mixed model settings.

Up to this point, the ability parameter 8 is unspecified and unknown.
In the next section, an IRT model and an estimation procedure will be
introduced.

3. An MCMC Estimation Procedure for a
Multilevel IRT Model

Recently, Albert (1992) derived a procedure for simulating sampling
from the posterior distribution of the item and person parameters of the
two-parameter normal ogive model using the Gibbs sampler (Gelfand,
Hills, Racine-Poon, & Smith, 1990; Gelman et al., 1995; Geman & Ge-
man, 1984). In this paper, this approach will be generalized to the
multilevel TRT model considered above. In the normal ogive model,
the probability of a correct response of a person indexed ij on an item
indexed k (k =1, ..., K), Yi;p = 1, is given by

P (Yijr = 1| 045, ar, b)) = @ (arbi; — b), (3.6)

where ® denotes the cumulative standard normal distribution function,
and ap and by are the discrimination and difficulty parameter of item
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k, respectively. Below, the parameters of item &k will also be denoted
by &, with &, = (ag,bx)! (note that item difficulty is denoted by the
usual choice b while regression coeflicients are denoted by 3, which is
the usual choice in linear regression models. These parameters should
not be confused).

In a Bayesian framework, the parameters in the model defined by
(3.4), (3.5), and (3.6) are viewed as random variables. Inferences about
the parameters are made in terms of their posterior distribution. How-
ever, as will be shown below, the simultaneous posterior distribution of
all model parameters is quite complicated. Therefore, the complete set
of parameters is split up into a number of subsets in such a way that
the conditional posterior distribution of every subset given all other pa-
rameters has a tractable form and can be easily sampled. An MCMC
procedure will be used for drawing samples from the conditional pos-
terior distributions. The MCMC chains will be constructed using the
Gibbs sampler.

To implement the Gibbs sampler for the normal ogive model, Albert
(1992) augments the data by introducing independent random variables
Z;jk, which are assumed to be normally distributed with mean a0;; — by,

and variance equal to one. It is assumed that Y, = 1 if Z;; > 0
and Y, = 0 otherwise. Let Z = (Zi11,...,Zn, k) with realization
z = (2111,--- ,2n,7k) and let @ and & be the vectors of all person and

item parameters, respectively. Though the joint distribution of (Z, 6, &)
has an intractable form, the fully conditional distribution of each of the
three parameters are easy to simulate. Fach iteration m consists of
three steps: (1) draw Z™T! from its distribution given £ and 6™, (2)
draw ™! from its distribution given Z™"! and £, and (3) draw £™"!
from its distribution given Z™*! and ™%, In the next section, it will
be shown that this idea can be extended to estimation of the posterior
distribution of all parameters in the multilevel IRT model.

3.1 Estimation of the Multilevel IRT Model using Gibbs
Sampling

In the present case, the data consist of the item responses Y, and the
values of the Level 1 and 2 explanatory variables, denoted by X and
W, respectively. Besides the parameters Z,8 and &, the model has as
parameters the Level 1 regression coefficients 3, the Level 2 coefficients
~, and the variance components 02 and T. As a result, the full posterior
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distribution of the parameters given the data is given by

J ny K
p(2,0,€80%7 Ty, X, W) <[]]] [[HP(Zijk \ eijvskvyijk)]

j=1i=1 k=1

p(y I T)p&)p(c®)p(T),

with 8;, X; and W the Level 1 regression coefficients and the Level 1
and 2 explanatory variables of group j, respectively. The exact definition
of X; and W as matrices will be returned to below. From the definition
of Z;;1, it follows that

D (Zijk | 05, &k Yijk) X @ (Zijis apbis — b, 1) [T (zi5 > 0) I (Y50 = 1)
+ I (2zije < 0) I (yijr = 0)],

where ¢(.; agb;; — by, 1) stands for the normal density with a mean equal
to axb;; — by, and a variance equal to one, and I (.) is an indicator variable
taking the value one if its argument is true, and taking the value zero
otherwise.

As with the basic two-parameter IRT model (see, for instance, Bock
& Aitkin, 1981) the model must be identified by fixing the origin and
scale of the latent dimension. Usually, this can be done by fixing the
mean and the variance of the ability distribution to zero and one, re-
spectively. An alternative is imposing the identifying restrictions on the
item parameters. Since imposing [[,ar = 1 and >, by = 0 would re-
quire rescaling all drawn values in every iteration, a convenient way is
to fix one discrimination parameter to one, and one difficulty to zero.

Assuming independence between the item difficulty and discrimina-
tion parameter simplifies the choice of the prior, because independent
sets of parameters may be considered separately. A noninformative prior
for the difficulty and discrimination parameter, which insures that each
item will have a positive discrimination index, leads to the simultane-
ous noninformative prior p(¢) = p(a)p(b) o [[4, I (ay >0). The
other priors will be discussed below. The full posterior distribution
has an intractable form and will be very difficult to simulate. There-
fore, a Gibbs sampling algorithm will be used where the three steps
of the original algorithm by Albert (1992) are extended to seven steps.
Fach step consist of sampling from the posterior of one of the seven pa-
rameter vectors Z, 0, &, 3,02, ~, T conditionally on all other parameters.
These fully conditional distributions are each tractable and easy to sim-
ulate. So the remaining problem is finding the conditional distributions
of Z,0,€&,3,~,0% and T, respectively.
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Step 1: Sampling Z. Given the parameters 8 and &, the variables Z;;,
are independent, and

Ziji 1 0,6, Y ~ N (agbi; — by, 1) (3.7)

truncated at the left by 0 if Y;;z = 1, truncated at the right by 0 if
Yie =0.

Step 2: Sampling 6. The ability parameters are independent given
Z.¢,3 and o2, Using equation (3.5) and (3.7) it follows that

p (0ij | 2i;,€,8;,07) o< p(zij | 055,€) p (055 | By, 07)

K
-1
X exp (7 Z (Zijk + bk — akeij)2>

k=1

-1
exp (W (05 — Xijﬁj)2> , (3.8)

where X;; is a matrix of the explanatory variables of person ¢ of group
j, that iS, Xij = (XOija e ,XQij)t .

Inspection shows that (3.8) is a normal model for the regression of
Zijk + by on ay with 0;; as a regression coefficient, where 0;;, has a
normal prior parameterized by 3; and o? (e.g., see, Box & Tiao, 1973,
pp. 74-75; Lindley & Smith, 1972). So the fully conditional posterior
density of #;; is given by

b5 /v + Xi;B; /o 1
eij\zz-j,s,ﬁj,n%zv( ilv X, /o ) (3.9)

1/v+1/02 "1/v+1/0?
with

S S ag (2 + be)

92']' = K 5
> k=1

)

—1
and v = (Zé{:l az) .
Step 3: Sampling €. Conditional on @, Zy, = (Z11k, .- . , Zn, i)’ satis-
fies the linear model

Z, = [ 0 -1 ]£k+€1€7 (310)
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where g = (e11k, - - - ,gnJJk)t is a random sample from N (0,1y). Com-
bining (3.10) with the prior for €, it follows that

J

p (& 12,0,8) o< [ [ [ p(zijmi axbis — br, 1) p (&)

j=14=1

ocoxp (G (o HE (0~ T ) (60
with H = [ 0 -1 ] . Therefore,
£.]0,Zy ~N (Ek, (HtH)*l) I(ay>0), (3.11)

where Ek is the usual least squares estimator based on (3.10).

Step 4: Sampling B. Define X; = <X1j, oo X, ...,anj>t, with X;;
as defined in Step 2. Further, W; is the direct product of Wy; =
(Wogi, - -+ » Wsgs)' and a (Q+1) identity matrix, that is, W; = {W,;1@
Io.1 (the direct product is also known as tensor product or Kronecker
product). Then the fully conditional posterior density of 3; is given by

p</8j|0j70-2777T> & p<0]|/8]70-2>p<6]|77T>
-1 ~ N\t ~
o exp (@ (ﬂj - Bj) XjX; (53' - Bj))

exp (%1 (B, - W) T (8- Wﬂ))

~ 1
with 8; = (Xsz> X?Oj. Notice that the fully conditional posterior

of B, entails a model for the regression of 8; on X;, with 3, as regression

coefficients, where the regression coefficients have a normal prior induced
by the Level 2 model (3.4), that is, the regression of 3; on W;. Define

-1 R -1
5, =02 (ngj) ,d=37"8,+ T 'W;y and D = (zj—l + T*l) .
Then it follows that

B;10,,0%7, T~ N(Dd,D). (3.12)

Step 5: Sampling . The matrix -« is the matrix of regression coeffi-
cients for the regression of 8, on W;. The unbiased estimator for v will
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be the generalized least squares estimator. Because

J
p (718, T) < [T (8; 1% T)p(v| T)
j=1

J
o exp | — Z (B, — Wj’Y)t T (8; -Ws) |,

2 4
7=1

using an improper noninformative prior density for « results in

Y184 T~N>H,Q) (3.13)
where
J -1y
- (Ywirw, | S wirig,
j=1 j=1

as the generalized least squares estimator for v and
—1

J
Q=1{) WiT'w,
j=1

is the conditional posterior variance.

Step 6: Sampling o®. The conjugate prior density for the variance
02 is the Inv — x? <UO,(7(2J). Upon setting vy = 0, it follows that the
noninformative prior density for the variance is p <02> o< 072, Then the

conditional posterior distribution for o2 is given by
p(c*16,8) xp(8]B,0%)p(o?)
2y —(§+1) A
oc(a) 2 exp(WS),

with §2% = % Z‘jjzl (Oj — Xj,Bj)t (Hj — Xjﬁj). Thus, the posterior dis-
tribution of o2 given @ and B3 is an inverse-chi-square distribution, that
is,

o? 10,8~ Inv — x* (N, S?). (3.14)

The prior density for the variance o

conditional posterior density for o.
Step 7: Sampling T. Above, W; and B; are defined as the matrix of

explanatory variables and the vector of regression coefficients for Level

is improper, but yields a proper
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2 unit j, respectively. The Level 2 model for this unit can be written as

B, = Wy +u;,with £ (u;) =0, (uj j> T. Therefore,

p(Tlﬁjﬁ) x<p(B; |~ T)p

x |T|” B exp (—

)

(T
1 [—

5 (B; = W;v)' T LB - Wﬂ)) p(T).
Subsequently, define S = Z‘jjzl ([3]- — Wj'y) (ﬂj — ny)t and assume a
non-informative prior for T. Aggregating over Level 2 units results in

J
p(T|B,7) < |T| Fexp | - Z ~W;7) T (8, - W) | p(T)

= |T| % exp (—%tr (ST‘I)) p(T)
=T () exp <—%tr (ST1)> ,

and the posterior distribution of T given 8 and -~y is an inverse-Wishart
distribution, that is,

T | B, ~ inv — Wishart (J,S1). (3.15)

With initial values 9(0),5(0),[3(0), 02(0),7(0),and T the Gibbs sam-
pler iteratively samples Z, 0, &, 3, v, 02 and T from the distributions
(3.7), (3.9), (3.11), (3.12), (3.13), (3.14) and (3.15). The components
are updated in the order given by steps 1-7 above. Roberts and Sahu
(1997) showed that a different updating strategy can affect the speed
of convergence. Furthermore, they show that in case of a hierarchically
structured problem the strategy of iteratively updating the components
in the fixed ordering is the best.

The values of the initial estimates are also important for the rate of
convergence. When poor initial values are chosen, convergence will be
very slow. Consider, for example, (3.9). When the parameters of the
multilevel model are estimated conditional on poor estimates of 8, the
poor estimates of the multilevel model parameters will subsequently pro-
duce poor estimates of the ability parameters. This is because, in Step 2
the prediction of 8 from the multilevel model will dominate the sampled
values of 6 when the Level 1 residual variance o? is smaller than the
variance of @, that is, v. So after some iterations, all the sampled values
of the parameters are far away from the optimal parameter values, while

o2 remains smaller than v. It will take a lot of iterations to alter this
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pattern. Therefore, the following procedure can be used to obtain bet-
ter initial estimates. First, MML estimates of the item parameters are
made under the usual assumption that @ is normally distributed with
1= 0and o =1 (see, Bock & Aitkin, 1981; Mislevy, 1986). Another
suggestion might be to compute initial values using a distinct ability
distribution for every subgroup j. These estimates can be computed us-
ing the program Bilog-MG (Zimowski, Muraki, Mislevy, & Bock, 1996).
Then, using draws from the normal approximation of the standard errors
of the parameter estimates of Bilog-MG as starting values, the MCMC
procedure by Albert (1992) for estimating the normal ogive model can be
run. That is, with the assumption that 0 is standard normal distributed
formula (3.9) becomes

Qij/’U 1
'92]|Z’£]k7£NN<1/v+171/v+1>7 (316)
and Z, € and & can be sampled from the distributions (3.7), (3.16) and
(3.11). As the Gibbs sampler has reached convergence, the means of
the sampled values of (Z, 0, &) are computed to start sampling from the
distributions (3.12), (3.13), (3.14) and (3.15). After convergence, means
of the sampled values of (,3,7, o2, T) are used as initial estimates. It is

also possible to use an EM algorithm for estimating (,3,’7,(72,T) with

the 0 (see, for instance, Bryk & Raudenbush, 1992). Once all initial
values are estimated, equation (3.16) can be replaced by (3.9), and the
complete seven-step MCMC procedure can be started for an estimation

of (27975767770’271‘)'

4. Simulated and Real-Data Examples

In this section, a simulated data set and a data set from a Dutch
primary school mathematics test are analyzed. The simulated data set
will be used to illustrate the parameter recovery with the Gibbs sampler.
The Dutch primary school mathematics test will be used to illustrate the
practical impact of the proposed multilevel IRT model.

4.1 A Numerical Example

To illustrate parameter recovery, data were simulated using a multi-
level model with one explanatory variable on both levels. The model is
given by

Oij = Boj + B81;X1i5 + € (3.17)
Boj = Yoo + Y01 Wioj + oy
B15 = Y10 + y121Wh1j + wy,
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with e;; ~ N <O,(72) and ug; ~ N <O,T§> . Response patterns were gen-
erated according to a normal ogive IRT model for a test of K = 20
dichotomous items. The generating values of the item parameters are
shown under the label Generated in Table 3.1. The ability parameters
of 2,000 students were divided over J = 10 groups of n; = 200 stu-
dents each, and generated with the multilevel model given by (3.17).
The true values for the fixed effects v and the variance components 7,
71 and ¢ are shown under the label Generated in Table 3.2. The ex-
planatory variables X and W were drawn from N (0,1) and N (1/2,1),
respectively.

With Bilog-MG estimates as starting values, the normal ogive model
was estimated with the MCMC procedure of Albert (1992). Subse-
quently, the parameters of the multilevel model were sampled, given
the parameters of the normal ogive model. In the simulation study, 500
iterations were needed to estimate the normal ogive model and another
500 iterations were needed to compute the parameters of the multilevel
model. After that, 20,000 iterations were made to estimate the pa-
rameters of the multilevel IRT model'. The convergence of the Gibbs
sampler was checked by monitoring the expected a posteriori estimate
of each parameter and its posterior standard deviation for several con-
secutive sequences of 1,000 iterations. The Gibbs sampler has reached
convergence if differences are small. The sample variance of the individ-
ual draws was used as an estimator for the posterior variance (see, for
instance, Patz & Junker, 1999b).

In Table 3.1, the estimates of the item parameters issued from the
Gibbs sampler are given under the label Gibbs Sampler. The item pa-
rameter estimates are the means of the generated posterior distributions.
The reported standard deviations are the estimated posterior standard
deviations. In the Bayesian framework, credibility intervals are calcu-
lated as confidence regions for the parameters and they are given in the
column labeled CI. These credibility intervals are the 95%-equal-tailed-
intervals whose endpoints are the 2.5 and 97.5 percentiles of the marginal
posterior distribution of the parameters.

Figure 3.1 presents the posterior densities of ay, for four specific items.
In each plot of Figure 3.1, two lines are plotted representing the density
estimates based on 500 and 20,000 simulated values, respectively. It
can be seen that the first 500 values, which were produced with the
Gibbs sampler to get initial estimates, were quite removed from the
final estimates.

1On a Pentium II 400mHz computer, 20,000 iterations took about 10 hours. The S-Plus
(Mathsoft, 1999) code can be downloaded from http://users.edte.utwente.nl/fox.
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Table 3.1. Item parameter estimates of the normal ogive IRT model using the Gibbs
sampler.

Generated Gibbs Sampler
Item ag bk ag s.d. CI bk s.d. CI
1 .640 .004 .689 .056 [.587,.809] 0 0 [0,0]
2 1.013 —.019 982 .072 [.852,1.137] —.012 .054 [—.124,.085]
3 939 —.508 954 .072 [.826,1.107] —.511 .055 [—.626,—.411]
4 .780 —.066 .746 .058 [.638,.869] —.117 .045 [—.208,—.031]
5 .824 —.180 .896 .067 [.776,1.038] —.212 .050 [—.316,—.123]
6 772 —.017 832 .063 [.717,.964] —.016 .048 [—.113,.075]
7 903 —.942 .848 .068 [.726,.991] —.891 .053 [—1.002,—.793]
8 789  .168 823 .063 [.710,.955] .108 .047 [.011,.194]
9 915 .000 .877 .066 [.758,1.021] —.002 .049 [—.104,.088]
10 .967 .603 .998 .075 [.860,1.156] .563 .054 [.450, .663]
11 1.087 —.010 1.093 .078 [.951,1.261] —.032 .057 [—.152,.074]
12 .980 —.506 1.047 .077 [.909,1.212] —.549 .057 [—.667,—.441]
13 1.124  .458 1.111 .080 [.963,1.281] .413 .059 [.290, .520]
14 945 —.691 938 .071 [.814,1.093] —.679 .054 [—.791,—.580]
15 1.039 —.235 1.012 .072 [.880,1.167] —.263 .055 [—.378,—.164]
16 1.002 —.402 1 0 [1,1] —.371 .053 [—.479,—.271]
17 676 451 602 .052 [.506, 713} 467 .040 [.386, .544]
18  .845 —.578 .824 .064 [.709,.961] —.588 .050 [—.691,—.496]
19 796 .052 .943 .069 [.818,1.092] .046 .051 [—.060,.142]
20  .722 115 799 .061 [.689,.931] .106 .046 [.012,.191]

Table 3.2 presents the results of the estimation of the fixed effects and
the variance components of the model. Notice that the conventional mul-
tilevel terminology is still used although all parameters were treated as
random in the estimation procedure. The posterior means and standard
deviations estimates computed with the Gibbs sampler are given under
the label Gibbs Sampler. It can be seen that the true parameter val-
ues are well within the computed credibility intervals except for vy, and
v11- As an additional check on the procedure, the fixed effects and vari-
ance components were also estimated from the true ability parameters
0 using HLM for Windows (Bryk, Raudenbush, & Congdon, 1996). In
practice, these ability parameters are, of course, unknown. Inspection
shows that the estimates issued by the two methods were quite close.
That is, the parameter values from HLM are well within the computed
credibility intervals. The estimates resulting from HLM are based on
the true ability parameter, which results in more accurate estimates. It
seems that a fully Bayesian method which includes all the uncertainty in
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Figure 3.1. Posterior densities of aj, for items 2, 5, 7 and 8. Dotted line is an estimate
of density after 500 values, and solid line is an estimate of density after 20, 000 values.

the problem needs larger sample sizes to make adequate inferences. On
the other hand, comparing MML and fully Bayesian estimates of an IRT
model for responses to testlets, Glas, Wainer, and Bradlow (2000) argue
that the smaller size of the frequentist confidence intervals is related to
the fact that they are based on an asymptotic approximation that does
not take the skewness into account. Obviously, more research comparing
the two approaches needs to be done.

Finally, it is of interest to evaluate whether the multilevel IRT model
was an improvement over the usual multilevel model on the observed
scores. The linear model on the observed scores is less complex than the
multilevel IRT model, but it was expected that using observed scores
instead of latent scores as dependent variables will result in less precision
in parameter recovery. For comparative purposes, the unweighted sums
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Table 3.2. Parameter estimates of the multilevel model, with the Gibbs sampler and
HLM for Windows.

Generated HLM Gibbs Sampler
Fixed Coefficient  Coefficient s.e. Coefficient s.d. CI
Effects
Yoo —.30 —.366 116 —.319 .182 [—.681,.041]
Yo1 .15 291 .150 .209 .238 [—.270,.690]
Y10 .35 411 .042 478 .061  [.361,.601]
Y11 1 .929 .081 728 123 [.486,.971]
Random  Variance Variance Variance s.d. CI
Effects Components Components Components
To .1 131 .150 .018  [.085,.262]
T1 .1 .091 .097 .007  [.051,.168]
o 2 .199 178 .006  [.136,.205]

of the item responses were rescaled to a standard normal distribution.
These rescaled scores will be called Z-scores. Table 3.3 gives the results
of the estimation with HLM for Windows using the true standardized
ability parameters and Z-scores. From Table 3.2 and 3.3, it can be
verified that the estimates computed using Z-scores differ substantially
from the analogous estimates computed under a linear model on the true
ability parameters and under a multilevel IRT model. The difference
in the estimates of the variance components also had consequences for
the estimates of the intraclass correlation coefficient. This coefficient
expresses the proportion of variance in ability accounted for by group-
membership, after controlling for the Level 1 predictor variable, that
is,

. To
Po= =< =3-
To +5°

From the results of Table 3.2, it can be verified that using the HLM
estimates based on the true ability parameters resulted in p, = .397,
while using the estimates from Gibbs sampler resulted in p, = .457.
Notice that the same intraclass correlation coefficient is obtained using
the variance components of the true standardized ability parameters as
shown in Table 3.3. This shows that this measure is scale-independent.



Bayesian Estimation of a Multilevel IRT Model 45

Table 3.3. Parameter recovery of the multilevel model with standardized true latent
scores and Z-scores as dependent variables.

HLM HLM (sum scores)
Fixed Effects Coefficient s.e. Coefficient s.e.
Yoo —.241 .133 —.191 .140
Yo1 .336 173 .261 184
Y10 474 .049 .555 .049
Y11 1.071 .093 704 .098
Random Effects  Variance Variance
Components Components
To 151 144
T1 .105 .097
o .229 .462

From the results of Table 3.3, it can be verified that using the Z-scores
resulted in py = .238. So the conclusions drawn from a multilevel IRT
model can be quite different from the conclusions drawn from a more
traditional multilevel analysis.

4.2 A Dutch Primary School Mathematics Test

This section concerns a study of a primary school leaving test. A
multilevel IRT model and an hierarchical linear model using observed
scores were estimated and compared. One of the research questions in
the study was whether schools that participate on a regular basis in the
central primary school leaving test in the Netherlands perform better
than schools that do not participate on a regular basis. To investigate
this research question, the students of 97 schools were given a mathemat-
ics test for grade 8 students. The test consisted of 18 mathematics items
taken from the school leaving examination developed by the National In-
stitute for Educational Measurement (Cito). Of the 97 schools sampled,
72 schools regularly participated in the school leaving examination; in
the sequel, these schools will be called the Cito schools. The remain-
ing 25 schools will be called the non-Cito schools. The total number of
students for which data were available was 2156.

Three students’ characteristics were used as a predictor for the stu-
dents’ achievement: socio-economic status (SES), non-verbal intelligence
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test (ISI) and Gender. SES was based on four indicators: the education
and occupation level of both parents (if present). The non-verbal intelli-
gence test was measured in grade 7 by three parts of an intelligence test.
Predictors SES and ISI were normally standardized. The dichotomous
predictor Gender is an indicator variable equal to 0 for males and equal
to 1 for females. Finally, a predictor variable labeled End equaled 1 if
the school participates in the school leaving test, and equals 0 if this
is not the case. A complete description of the data can be found in
(Doolaard, 1999, pp. 57).

The structural model used in the analysis is given by

0ij = Bo; + B11S1i; + B9,SES;; + B3Gender;; + e (3.18)
Boj = 00 T vor End; + uo;

B1="10

Baj = Yoo + u2;

B3 =730

where e;; ~ N (0,(72) , Upj ~ N (0,7'(2)) and ug; ~ N (0,7’%) . Further,
up; and ug; are assumed independent. Notice that SES is modeled as a
random effect, that is, its regression coefficient varies over schools. The
two-parameter normal ogive model is used as the measurements model.

The fully conditional decomposition of Gibbs sampling was run for
25,000 iterations, with a burn-in period of 5,000 iterations®. 25,000
iterations were “enough” in the sense that a substantial increase in the
number of iterations did not perturb values of ergodic averages, that is,
the average of the parameter draws over the iterations after the burn-in
period.

The multilevel IRT analysis was compared to an analyses with an
hierarchical model on observed scores. The score distribution of the
mathematics test had a “ceiling”, that is, a third of the students scored
15 or more, with a maximum of 18. A standard procedure for dealing
with such skewed distributions is to transform the data to normality.
This was done by assigning normal order statistics to the ranked scores
(Goldstein, 1995, pp. 49). So these so-called N-scores had a standard
normal distribution. For comparative purposes, a second transformation
was applied to transform these N-scores to the same scale as the latent
abilities. This was accomplished by transforming the N-scores such that
their mean and variance were equal to the mean and variance of the
posterior estimates of the ability parameters, respectively.

2Also  the S-Plus code for this example can be downloaded from
http://users.edte.utwente.nl/fox.
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Table 3.4. Parameter estimates of the multilevel model with the Gibbs sampler and
HLM using N-scores and rescaled N-scores as dependent variables.

Gibbs Sampler HLM HLM
(N-scores) (Rescaled
N-scores)
Fixed Coeff. s.d. CI Coeff. s.e. Coeff. s.e.
Effects
Yoo —172 214 [-.589,.242] —287 078 —125 068
Yo1 467 242 [—.006, .943] 441 .087 .389 077
Y10 .445 .034 [.384,.516] 415 .017 .367 .016
Yoo 236 111 [.020,.456] 213 .023 188 .020
Y30 —.181 .040 [—.262,—.102] —.167 .034 —.148 .030
Random Var. s.d. CI Var. Var.
Effects Comp. Comp. Comp.
To 410 .041 [.322, .514] .326 .288
T2 .228 .021 [.153,.324] 112 .099
o .644 .056 [.563,.729] 757 .669

The results of the analyses are displayed in Table 3.4. The remark
with respect to the difference in the standard errors made above also
applies in the present case.

The main result of the analysis was that conditionally on SES, IST and
Gender, the Cito schools performed better than the non-Cito schools.
This can be deduced from the estimate of the fixed effect 7y, which
models the contribution of participating in the school leaving exam to
the ability level of the students via its influence on the intercept f3,.
This intercept (y; is defined as the expected achievement of a male-
student in school j when controlling for SES and ISI. There is a highly
significant association between the Level 1 predictors ISI and SES and
the ability of the students. Obviously, students with high IST and SES
scores performed better than students with lower scores. The effect of
Gender on mathematics achievement was also significant and negatively
related to achievement. This means that controlling for End, ISI and
SES, boys outperformed girls on the mathematics test.

The residual variance for the school-level, 7¢, is the variance of the
achievement of male-students in school j, 8y;, around the grand mean,
Yoo, When controlling for SES and ISI. Apparently, a substantial propor-
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tion of the variation in the outcome at the student level was between
the schools, which justifies the use of a multilevel model.

There were some important differences between the estimates from
the multilevel IRT model and the estimates from the HLM model via
transformed N-scores. Firstly, the magnitude of the estimate of v,; was
greatest in the multilevel IRT analysis, so this approach discriminated
more between Cito schools and non-Cito schools. Also the magnitude
of the estimate of the variance 7'(2) was greatest in the multilevel IRT
analysis, which indicated more variability in the means in schools of the
students’ math achievement. Thus, the effect of grouping was greater in
the multilevel IRT analysis. Notice that, again, the Bayesian multilevel
IRT estimates had larger posterior standard deviations. So the remarks
with respect to differences between frequentist and Bayesian credibility
intervals made above also applies here.

In the HLM analyses, the variance 73 did not differ significantly from
zero, so the SES-math regression slope did not vary from school to school.
This is contrary to the multilevel IRT analysis, where the relationship
between SES and math achievement within schools varied significantly
across schools. Figure 3.2 displays the predicted abilities of the students
in a Cito and a non-Cito school as a function of SES. The points are the
expected posterior estimates of the students’ abilities.

For the same students as in Figure 3.2, Figure 3.3 shows the pre-
dicted transformed N-scores as a function of SES. The points are the
transformed N-scores. The abilities and the transformed N-scores in the
two plots are corrected for the effects of ISI and Gender. The upper
line represents the outcomes of students in a Cito school, which illus-
trates that students in Cito schools performed better than students in
non-Cito schools. Furthermore, the differences between the two lines is
greater in Figure 3.2 which illustrates that the subdivision in Cito and
non-Cito schools was greater in the estimates resulting from the mul-
tilevel IRT analysis. Moreover, Figure 3.2 shows a sharper distinction
between schools which indicates a greater school-level effect.

The differences between the estimates can be explained by the fact
that the sum scores discriminate less between students’ outcomes than
the complete response patterns, which is further amplified by the “ceil-
ing” effect which suppresses the variance in the dependent variable.
Therefore, the multilevel IRT analysis gauges a greater variance be-
tween students’ achievements which results in a greater school-level effect
whereas the variance at Level 1 is almost the same. In conclusion, the
multilevel IRT model reveals a sharper distinction in students’ outcomes
across schools.
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Figure 3.2. Expected posterior estimate and prediction of students’ abilities in a
Cito and non-Cito school as a function of SES, controlling for ISI and Gender.
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Figure 3.3. Students’ N-scores and predicted N-scores in a Cito and non-Cito school
as a function of SES, controlling for ISI and Gender.
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5. Discussion

In this chapter, a two-level regression model is imposed on the ability
parameters of the two-parameter normal ogive model. The advantage
of using latent rather than observed scores is that it offers a more re-
alistic way of modeling uncertainty in the dependent variable. Further,
latent scores are test-independent, which offers the possibility of entering
results from different tests in one analysis.

It was shown that the Gibbs sampler can be used to concurrently
estimate all the parameters of the multilevel IRT model. The method
presented is very powerful because there are no limitations to the num-
ber of parameters or the number of explanatory variables. Although
good initial values will speed up convergence, there are still many iter-
ations necessary for producing acceptable estimates. Further research
will concentrate on the use of a Monte Carlo EM (MCEM) algorithm to
limit the amount of iterations (Wei & Tanner, 1990).

It is easy to incorporate different types of prior beliefs about the
item parameters €. The numerical example illustrates that the posterior
distribution of the item discrimination parameters were skewed to the
right. Therefore, it could be interesting to use a log-normal prior for
the discrimination parameters (Mislevy, 1986). It is also possible to
incorporate different priors for v, o or T. In this paper, Jeffreys’ prior
is used for the variance components, that is, p (02) x o2 p(1) oc L,
However, Jeffreys’ prior for 7 is potentially a problem in cases where J
is small (Morris, 1983; Rubin, 1981). Other possible choices of priors
for o2 and 7 are an uniform prior and an inverse-chi-square prior with
small degrees of freedom (see, for instance, Seltzer et al., 1996). The
inverse-chi-square distribution has the property that, in contrast to the
uniform prior, the prior probabilities gradually decrease when values of
the variance become arbitrarily large. Analogously, an alternative prior
for T is an inverse-Wishart distribution with small degrees of freedom.
Another possibility would be a more informative inverse-chi-square prior
or inverse-Wishart prior with mode and spread specified in accordance
with previous research. Using nonconjugate prior distributions has the
disadvantage that sampling from the fully conditional distributions can
be very complicated. In that case, approximations can be used from
which sampling is possible. The Metropolis-Hastings algorithm can be
used to compensate for the approximation (Gelman et al., 1995, pp.
329).

In this chapter, the focus was on inferences assuming that the model is
correct. The problem of model checking using Bayes factors is rather dif-
ficult, especially when prior information is weak (O’Hagan, 1995). Pos-
terior predictive data can be used to judge the fit of the Bayesian model
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to the observed data. Tail-area probabilities, or posterior p-values, can
be calculated under the posited model to quantify the extremeness of
the observed value of a selected discrepancy (e.g., differences between
observations and predictions). The predictive data are easily sampled
via Monte Carlo simulation (see, for example, Gelman, Meng, & Stern,
1996). The Gibbs sampling formulation presented in this chapter can be
extended to settings in which the fixed effects are distributed with heavy
tails (Seltzer, 1993) to study the extent to which posterior means and
intervals change as the degree of heavy-tailedness assumed increases.
Another remark concerns alternative modes of estimation. The first
approach might be to use a logit-link in combination with a procedure to
estimate a linear multilevel model, such as, for instance, HLM. Applying
the logit transformation to the two-parameter logistic model, results in

Iog {pz—]k] = akeij — b + Eijks (3.19)

were p; 1, stands for the probability of a correct response and e is a
normally distributed error variable. A linear multilevel model can then
be imposed in 6;;. The problem here is that the item discrimination pa-
rameters ay are multiplicative with the ability parameter 0;;, and there
is no way to concurrently estimate the item parameters using a package
for linear multilevel models. A solution might be to estimate the item
parameters using Bilog-MG and impute them into the multilevel logit
analysis. However, there are two problems with this approach. First,
the uncertainty with respect to the imputed parameters is very difficult
to model in the logit analysis. Second, in Bilog-MG the item parameters
are estimated under the assumption that the ability parameters are nor-
mally distributed. However, the model imposed by (3.4) and (3.5) does
not imply a normal distribution of 6;;, and this miss-specification will
cause bias in the parameters when the multilevel IRT model holds. The
severity of this bias, however, is unknown, and to opt for this approach
certainly more research needs to be done.

Another approach to estimating the parameters in the multilevel IRT
model might be an MML or Bayes modal procedure. To study this ap-
proach in some detail, consider the one-way ANOVA model given in the
first section of this chapter. The impact of the dependency structure
(3.3) on an MML or Bayes modal estimation procedure can be assessed
by inspection of a likelihood function marginalized over all random ef-
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fects. This likelihood function can be written as

L(v,0%,7,&y) = H/ H/p(Yij | 0:5,€)9(0i5 | B;,07%)d0y;
i L

where p(yi; | 055, &) is the IRT model specifying the probability of observ-
ing response pattern y;; as a function of the ability parameter 6;; and the
item parameters &, g(6;; | ﬁj,JQ) is the density of 8;; and h(3; | v,7) is
the density of 3;. It can be seen that the dependency structure results in
nesting of integrations that might complicate an MML estimation proce-
dure. Notice that the marginal likelihood entails a multiple integral over
0i; and 3;. Hence there is no need to compute high-dimensional inte-
grals: Computation of two-dimensional integrals suffices. In this respect,
this approach to estimation is related to the bi-factor full-information
factor analysis model by Gibbons and Hedeker (1992) who show that
numerical integration by Gauss-Hermite quadrature is feasible in these
problems. Therefore, MML and Bayes modal estimation are still options
that deserve further investigation.






Chapter 4

Bayesian Modeling of Measurement Error
in Predictor Variables using Item Response
Theory

Abstract

Keywords:

It is shown that measurement error in predictor variables can be mod-
eled using item response theory (IRT). Measurement error is modeled
by treating the predictors as unobserved latent variables and using the
normal ogive model to describe the relation between the latent variables
and their observed indicator variables. The predictor variables can be
defined at any level of an hierarchical regression model. The predic-
tor variables are latent but can be measured indirectly by using tests
or questionnaires. The observed responses on itemized instruments are
related to the latent predictors by an item response theory model. It
is shown that the multilevel model with measurement error in the pre-
dictor variables can be estimated in a Bayesian framework using Gibbs
sampling. In this chapter, handling measurement error via the normal
ogive model is compared with alternative approaches using the classical
true score model. Examples using real data are given.

classical test theory, Gibbs sampler, item response theory, Hierarchical
Linear Models (HLM), Markov Chain Monte Carlo, measurement error,
multilevel model, two-parameter normal ogive model.

1. Introduction

In much research areas, and especially in social sciences, studies may
involve variables that cannot be observed directly or are observed sub-
ject to error. For example, a person’s mathematical ability cannot be
measured directly, only the performance on a number of mathematic

test items.

In general, data collected from respondents contain mea-

surement error. This includes response variation due to the unreliability

95
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of measurement instruments. Further, many forms of human response
behavior are inherently stochastic in nature, and also variation stem-
ming from stochastic response behavior will be categorized under the
heading measurement error. In this context, Lord and Novick (1968,
chapter 2) adhere to the so-called stochastic subject view in which it is
assumed that responses of the subjects depend on small variations in the
circumstances in which the response is generated. Accordingly, response
variance is the variation in responses to the same question repeatedly
administered to the same person. The use of unreliable explanatory
variables leads to biased estimation of the regression coefficients and the
resulting statistical inference can be very misleading unless careful ad-
justments are made (see, for example, Carroll, Ruppert, & Stefanski,
1995; Cook & Campbell, 1979; Fuller, 1987).

There has been a continuing interest in the study of regression models
wherein the independent variables are measured with error. These mod-
els are commonly known as measurement error models. The enormous
amount of literature on this topic in linear regression is summarized
by Fuller (1987) and in this framework, measurement error is handled
by the classical additive measurement error model. An example is the
classical test theory model used in educational measurement. Goldstein
(1995) extended some of the techniques to handle measurement errors
in the independent variables in linear models to the multilevel model.

In the present paper, attention is focused on another way of handling
response error in the independent variables in a multilevel model. The
measurement error in the observed predictor variables is modeled by an
item response theory (IRT) model. Modeling measurement error by an
IRT model has several advantages. First, measurement error is defined
conditionally on the value of the latent ability. That is, measurement
error can be defined locally, for instance, as the posterior variance of
the ability parameter given a response pattern. This local definition of
measurement error results in heteroscedasticity: In the Rasch model, for
instance, the posterior variance of the ability parameter given an extreme
score is greater than the posterior variance of the ability parameter given
an intermediate score (see, for instance, Hoijtink & Boomsma, 1995,
pp. 59, Table 4.1). Second, the fact that reliability can be defined
conditionally on the value of the latent variable, IRT can separates the
influence of item difficulty and ability level, which supports the use of
incomplete test administration designs, optimal test assembly, computer
adaptive testing and test equating.

Besides IRT, another theme of this chapter will be Bayesian data anal-
ysis. The formulation of measurement-error problems in the framework
of Bayesian analysis has recently been developed (Carroll et al., 1995;
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Richardson, 1996; Zellner, 1971). It provides a natural way of taking
into account all sources of uncertainty in the estimation of the param-
eters. Computing the posterior distributions involves high-dimensional
numerical integration but these can be carried out straightforwardly by
Gibbs sampling (Gelfand, Hills, Racine-Poon, & Smith, 1990; Gelman,
Carlin, Stern, & Rubin, 1995). Furthermore, the Bayesian formulation
supports a straightforward model identification. That is, the model is
identified in a natural way by fixing the latent ability scale, without
needing prior knowledge about the variances of the measurement errors.
This chapter consists of eight sections. The next section presents a
general multilevel model with covariates observed subject to error. In
the following section, a classical test theory model and an item response
theory model as measurement error models will be discussed. Then,
a Markov Chain Monte Carlo (MCMC) estimation procedure will be
described for estimating the parameters of a multilevel model with mea-
surement error in covariates on both levels. In the following section,
measurement error in correlated predictors will be discussed. Then, a
small simulation study and some real-data examples will be given. The
last section contains a discussion and suggestions for further research.

2. The Structural Multilevel Model

In social research, data structures often consist of observations mea-
sured at different levels. Examples of this nested structure include data
from surveys where respondents are nested under an interviewer, test
data of students within schools and data of multiple observations gath-
ered over time. As an example, consider school effectiveness research,
where interest is focused on the effects of school-variables on the edu-
cational achievement of the students. To evaluate school effectiveness,
information is needed at both the level of students and the school-level.
The heterogeneity in student and school characteristics requires a sta-
tistical model that takes the variation and relationships at each of the
levels into account. Multilevel models support these requirements. A
number of investigators have examined the issue of multilevel modeling
of educational data (Bryk & Raudenbush, 1992; de Leeuw & Kreft, 1986;
Goldstein, 1995; Raudenbush, 1988, Snijders & Bosker, 1999).

The hierarchical model is commonly used for continuous outcomes is
a two-level formulation with Level 1 regression parameters multivariate
normally distributed across Level 2 units. Suppose that students (Level
1), indexed ij (i=1,...,n4,j=1,...,J), are nested within schools
(Level 2), indexed j (7 = 1,...,J). In its general form, Level 1 consists
of a regression model, for each of J nesting Level 2 groups (j = 1,... ,J),
in which the observations are modeled as a function of () predictor vari-
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ables Ayj,...,Agj, that is,

Yij = ﬁOj + 51]'1\12']' 4+ ...+ ﬁquqij + ...+ ﬁQjAQij + €4, (4.1)

where e; is an (nj x 1) vector of normally distributed residuals with
mean 0 and variance (TQInj. The regression parameters are treated as
outcomes in a Level 2 model given by

Bai = Y0 T V1l'1gs + - -+ vgslsqj + - - + vgslsq5 + ugjs (4.2)

for ¢ = 0,...,Q, where the Level 2 error terms w45, ¢ = 0,...,Q,
have a multivariate normal distribution with mean zero and covariance
matrix T,y,, and I'sg; are Level 2 regression coefficients (fixed effects)
and predictor variables, respectively. Although the coefficients of all
the predictors in the Level 1 model could be treated as random, it may
be desirable to constrain the variation in one or more of the regression
parameters to zero. This will be returned to below.

The explanatory variables at Level 1 comprise students’ character-
istics, such as, gender or age. Level 1 explanatory variables can also
be latent, such as, socio-economic status, intelligence, community loy-
alty, social consciousness, managerial ability or willingness to adopt new
practices. Explanatory variables as region, school-funding or gender are
observed without an error. Latent variables can not be observed directly
and have to be estimated, often with an error. Below, an example will
be given of an analysis where students’ abilities, regarding mathematics,
are estimated as scores, on Level 1, obtained using an IQ test and, on
Level 2, obtained using an adaptive instruction test taken by teachers.
Both explanatory variables are measured with an error due to the limited
number of items in the tests and the response variance. In predicting
students’ abilities, an increase in precision (i.e. reduction in ¢2) could
be obtained by using student pretest scores as a covariate in the Level
1 model but errors in the predictor variables cause bias in estimated
regression coefficients (Carroll et al., 1995, pp. 22).

The latent Level 1 covariates are denoted by @ whereas the observed
covariates without an error are denoted by A. Therefore, Level 1 of the
structural model, formula (4.1), is reformulated as

Yij = Boj + - - + Beilais + Bigrn)ihgrnyis + - - - + Boihai; +eij, (4.3)

where the first ¢ predictors correspond to latent variables and the re-
maining () —q predictors correspond to observable variables. The regres-
sion coefficients are allowed to vary across Level 2 groups. This variation
can be accounted for by treating the Level 1 regression coefficients as
outcomes of Level 2 predictors. The explanatory variables at Level 2
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consists of latent predictors denoted by ¢ and covariates observed with-
out an error denoted by I'. The Level 2 model in (4.2) is reformulated
as

Baj = Y0 + - +Y4sCsq5 T Vasr) L (s11)g5 + - - - T Vg5 55 + tgjs
(4.4)

for g = 0,...,Q), where the first s predictors correspond to latent vari-
ables and the remaining S — s predictors to known fixed constants. The
set of latent variables 8 is not observable but information about 8, de-
noted as X, is available. X is called a surrogate for @, that is, X has
no information about Y other than what is available in 8. This is char-
acteristic of nondifferential measurement error (Carroll et al., 1995, pp.
16-17). On Level 2, W is defined as a surrogate for {. The surrogates X
and W are also called manifest variables or proxies. The effects from dis-
regarding measurement error can range from biased parameter estimates
to situations where real effects are hidden and signs of the estimated co-
efficients are reversed relative to the case with no measurement error
(Carroll et al., 1995, pp 21-23).

3. Measurement Error Models

This section focuses on two parametric models for the response: the
well-known classical true score model and the normal ogive model.

3.1 The Classical True Score Model

In the classical true score model (Lord & Novick, 1968), the individ-
ual’s score on a particular test form, the observed score, is considered
to be a chance variable with some, usually unknown, distribution. This
distribution is generally known as the propensity distribution. The mean
(expected value) of this distribution is interpreted as the true score. The
error of measurement is the discrepancy between the observed scores and
the true score. Since, by definition, the expected value of the observed
scores is the true score, the expectation of the errors of measurement or
error scores is zero. It is assumed that the corresponding true scores and
error scores are uncorrelated and that error scores on different measure-
ments are also uncorrelated. Denote X1 as the measurement associated
with individual 7j, let 0;; be the mean of the response distribution and
let €51 the sampling deviation for the k-th response obtained from the
k-th individual’s response distribution, that is,

eijk = Xijk — 0i5. (4.5)

The true score 0;; of a person indexed 75 is defined as the expected value
of the observed score where the expectation is taken with respect to the
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response distribution. This response distribution is hypothetical because
in psychology and other subject areas it is usually not possible to obtain
more than one independent observation. This model coincides mathe-
matically with the classical additive measurement error model (Fuller,
1987, equation 1.1.2), where a normal distribution of the error variable
is assumed. Let X;; be the observed score of person ij, as the sum over
item scores, given the responses to a set of items. Further on, the ob-
served scores are modeled to handle measurement error and to estimate
the true scores.

It is not strictly necessary to assume that the response distribution
variances are equal for different persons. Some persons’ responses may be
measured more accurately than others. But error variances for individual
examinees are usually subject to large sampling fluctuations. In the
sequel, the group specific error variance is used as an approximation
to the individual error variances of which it is the average. The group
specific error variance is denoted as ¢, where the group contains all
examinees. This group specific error variance is the variance over the
examinees of the errors of measurement, which is equal to the specific
error variance averaged over the total number of examinees (Lord &
Novick, 1968, pp. 155).

The classical true score model is based on assumptions that may not
always be realistic. Measurement error is supposed to be independent
of the predictor variables. Further, the variance of measurement errors
is assumed to be equal conditional on different values of the dependent
variable, say, the score level of the test taker in educational measure-
ment. Another problem is that the reliability of measures is not easily
assessed. The error variance could be estimated from repeated measure-
ments to obtain an estimate of the error variance. However, besides the
practical difficulties, it is not realistic to assume that the repeated mea-
sures are independent. To overcome these problems it is assumed that
the variances and covariances of the measurement errors are known in
advance, or suitable estimates exist (Goldstein, 1995, pp. 142). How-
ever, the estimates of the response variance are generally imprecise. In
case of the usual maximum likelihood approach, the ratio of the error
terms’ variances or alternatively one or both of the variances ought to
be known to identify the model (Fuller, 1987, pp. 9-11).

3.2 The Normal Ogive Model

For dichotomous items, the item response function (traceline, item
characteristic curve) is the probability of a correct response as a func-
tion of ability. In this section, the normal ogive model is considered as
a measurement error model (see Lord, 1980, pp. 27-41). The probabil-
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ity of a correct response of a person indexed ¢j on an item indexed k
(k=1,... ,K), X;jk =1, is given by

P (X6 =165, ak,0,) = ® (arbi; — br) , (4.6)

where ® denotes the standard normal cumulative distribution function,
and a; and by are the discrimination and difficulty parameter of item k,
respectively. The parameters of item k are also denoted by &, = (ag, bx) -
An IRT model provides the frequency distribution of test scores for an
examinee ¢j having a specified level 8;; of ability or skill. The variance,
JiijWij’ of this conditional distribution of number right-score X;; is

K
032{ij|9ij = ZP(Xij =1 | Gij,ak,bk) [1 — P(Xz’jk =1 | Gij,ak,bk)]
k=1

K
= Zq) (akeij - bk) P (bk - akeij) . (47)
k=1

Notice that this implies response variance given 6. The posterior distri-
bution of 6;; given x;;, p(#;; | Xi;), is proportional to the distribution
of x;; given the ability level 0;;, p (x;; | 645) , multiplied by the standard
normal distribution. Therefore, the posterior variance of p (6,5 | x;;) or
local reliability, O-giﬂxij’ is closely related to response variance Tseis 1055
and this implies the possibility of heteroscedasticity. Furthermore, the
measurement scale is independent of the items in the test. This is in
contrast to classical test theory, where the true score depends on the

items in the test and homoscedasticity is assumed.

4. An MCMC Estimation Procedure for a
Multilevel Model with Measurement Error

The response error in the observed predictor variables of a structural
multilevel model is modeled by an item response theory model and a
classical true score model. The structural multilevel model combined
with an IRT model is called a multilevel IRT model, and the structural
multilevel model combined with a classical true score model is called a
multilevel true score model. The estimation procedure for both models
will be outlined concurrently.

Bayesian analysis of parametric models requires the specification of a
likelihood and prior. Often a non-informative prior is used. The poste-
rior distribution, derived from the joint density of the data and parame-
ters according to Bayes formula, summarizes all of the information about
the values of the parameters. Interest is focused on the expected a poste-
riori values of the parameters and posterior standard errors. In general,
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complex models, such as the proposed multilevel model with measure-
ment error in the covariates, require sophisticated numerical analytical
methods to obtain estimates of the parameters of interest. However,
Markov chain Monte Carlo algorithms (MCMC), in specific the Gibbs
sampler, have proven potential for estimating complex models (Bernardo
& Smith, 1994; Gelfand & Smith, 1990; Geman & Geman, 1984; Robert
& Casella, 1999). Gibbs sampling succeeds because it reduces the prob-
lem of dealing simultaneously with missing data and a large number
of related unknown parameters into a much simpler problem of dealing
with one unknown quantity at a time by sampling each from its full
conditional distribution. This sampling-based method is conceptually
simple and easily implemented. The Gibbs sampler generates a Markov
chain which converges in distribution to the joint posterior distribution
of the parameters of interest (Tierney, 1994). That is, a Markov chain is
constructed in such a way that its stationary distribution, also denoted
limiting distribution, is the joint posterior distribution of the model pa-
rameters.

First, the implementation of the Gibbs sampler is considered for a
multilevel model with a normal ogive model for the predictor variables.
In this implementation the predictor variables are assumed to be uncor-
related. Second, the implementation of the Gibbs sampler is described
with the classical true score model as measurement model. Correlated
predictors with measurement error will be discussed in the next section.

4.1 Estimation using Gibbs Sampling

FEvaluation of the model for the observed data is complicated by the
fact that some elements are missing. The 8’s and (’s are treated as un-
observed random parameters. Let 6;; be the first ¢ explanatory variables
on Level 1, which are latent, as in formula (4.3). The set of explana-
tory variables on Level 1 for predicting Y;; is defined as €2;; = (6,5, Aij) ,
where A;; consists of the remaining () — q observable covariates on Level
1. Further, let {,; be the first s latent explanatory variables predict-
ing f,; on Level 2, as in formula (4.4) . To complete the description of
the covariates on Level 2, let U ; = (qu, qu) be the set of explanatory
variables for 3,;, where T'y; are the remaining S — s directly observable
variables, also according to formula (4.4).

The MCMC algorithm is straightforwardly implemented by introduc-
ing a continuous latent variable that underlies each binary response.
This approach follows the procedure of Albert (1992), which builds on
the Data Augmentation algorithm of Tanner and Wong (1987), and has
been extensively used in other missing data problems (see, for example,

Béguin, 2000; Fox & Glas, 2001; Johnson & Albert, 1999, pp. 194-202;
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Robert & Casella, 1999, pp. 414-438). Assume that the latent variables
04i; are related to the observed responses X1 of person ¢j on an item

k. This observation X, indicates whether a continuous variable Zé?j)k
with normal density is positive or negative. The superscript indicates
the observed response variable X. Further, Xy = 1 if Z @ < 0 and

qijk
Xygiji = 0 otherwise. It follows that

p(Zqijk ‘ 9qij7£k7$qijk) x f (Zqijk;akeqij — by, 1) [I (Zqijlc > O)
I(mqijk =1)+ I(Zqz‘jk <0) I(;qujk =0)],

where f(.;agbqi; — bi, 1) stands for the normal density with mean equal
to agbfqi; — b and unit variance, and I (.) is an indicator variable taking
the value one if its argument is true, and zero otherwise. Further, 04;

and Sl(f) are the person and item parameters for person ¢j and item k,
respectively. The matrix Z®) serves to simplify calculations and the
value of Z) does not affect the value of the estimator, that is, Z(*) is
only a useful device.

Let Wy be a dichotomous response variable of a Level 2 unit, in-
dexed j, on an item, indexed k, related to the s'* Level 2 latent variable,
Csq;» for predicting (3,;. For example, (,,; might be the pedagogical cli-
mate of school j measured using a questionnaire with dichotomously
scored questions administered to a teacher or principal of school j. In
the same way as for Level 1, complete data are formed; the augmented

data will be denoted with Zs(;l;.)k.

The Gibbs sampler arranges the sampling from one of the parameters
conditionally on all other parameters in a number of steps. The entire
procedure constitutes of stepwise draws from the conditional posterior
distributions of the components Z®),£¢®) 0. 3,02, ~,T,Z® £ and
¢. The procedure consists of 10 steps:

. Draw Z® conditional on 0, £® and X.

. Draw £ conditional on 6 and Z®).

. Draw @ conditional on Z(m),f(m),B,UQ,Q, and Y.
. Draw 3 conditional on Q, V¥, 02, ~, T and y.

. Draw ~ conditional on 3, ¥ and T.

. Draw o2 conditional on 3, and y.

. Draw T conditional on 8, ¥ and ~y.

I I T~ NS S SO R

. Draw Z®) conditional on ¢, &™) and W.
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9. Draw £™) conditional on ¢ and Z®).
10. Draw ¢ conditional on Z®), ¢®) 8. ¥ and 5.

Step 1-2. Sampling augmented data, Z(*) and sampling the item pa-
rameters, £, is described by Albert (1992) and Fox and Glas (2001).
Step 3. The variables, 01,5, ... ,04;, can be sampled individually be-

cause they are uncorrelated. Given ng])-,f(x), B; and o2 are they inde-
pendent and distributed as a mixture of normal distributions. That is,
the augmented data ng])- and the observed data Y;; are normally dis-
tributed with, among others, parameter 04;, which is a priori normally
distributed. The two-parameter normal ogive model is identified by fix-
ing the origin and scale of the latent dimension. Therefore, the mean
and variance of the ability distribution are fixed to zero and one, respec-
tively. According to formula (4.3) , the definition of the augmented data

and the prior for 4; it follows that

b (eq’m | ZfljJ)?g(m)?/Bj?OQvQ;j?yij) xXp (Zéf]) | eq’zg?g(m))

where 2. are the set of explanatory variables for person ¢j on Level 1
without 64;;. Split the regression coefficients on Level 1, 3;, into 3,; and

55-9)7 to distinguish the regression coefficient of explanatory variable 04;

from the regression coefficients of the other explanatory variables Q;
Formula (4.8) is the product of a normal model for the regression of

zZ
the regression of Y;; — BEQ)QZ_] on fB,; with 64;; as a regression coefficient
and a standard normal prior for 64;. Due to standard properties of
normal distributions (e.g., see, Box & Tiao, 1973; Lindley & Smith, 1972)

the fully conditional posterior density of 04;; is also normally distributed,

+ b on ay, with 04; as a regression coefficient, a normal model for

@) Bi; + 5:1;;‘ 1
quj ‘ Z m''7£($)7/Bj70—2752'7'75/2']' ~ N 1U 1 ] 1 5 (49)
" K ;—Fg—l—l ;—l—a—‘—l
here th i i i £0, = (YK a2)
where the posterior expectation constitutes of 4; = (Zk:l ak>

1

25:1 ay, (245 + br) , and ng‘j = ﬁ;j (yz’j — ﬂgQ)QZJ) , and the posterior

1 _
variances of v = (Zle a%) and ¢ = ,quQ()'Q. The posterior expecta-

tion, formula (4.9) , is the well-known composite or shrinkage estimator.
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The estimate of 64, is a combination of two estimates, /Q\qij and gqij,
with the weights proportional to the precisions.

Step 4-7. The modification of the multilevel model to handle mea-
surement error in the covariates causes minimal change in the com-
plete conditional distributions of the parameters of the multilevel model,
<,3,’y, o2, T). The full conditionals of the multilevel model parameters,
required in the estimation procedure, can be found in Fox and Glas
(2001) and Seltzer (1993) and Seltzer, Wong, & Bryk (1996).

Step 8-9. Measurement error in the predictor variables on Level 2 are
treated in the same way as on Level 1, with a normal ogive model as
measurement model. Therefore, augmented data denoted as Z(*), in
relation to the observed data W, item parameters £®) and ¢ have to

be sampled. An adapted complete conditional of Z(®) given ¢ ,E,(fw)can
be found in Albert (1992) and Fox and Glas (2001). Also an adapted
complete conditional distribution of the item parameters can be found
therein.
Step 10. Split the regression coefficients v, on Level 2 in v,, and
()

g ', relating to the predictor (,; and remaining Level 2 covariates
W ;, respectively, where ¥ . is the set of explanatory variables for f3,;
on Level 2 without (,,;. The latent predictor variables (g ;... g5
can be sampled individually, because they are independent. The Level
2 model, formula (4.4), is reformulated as,

/qu - ’Yc(;lj) q’q_J = qusquj + Ugj, (410)
2
aq 0
formula (4.10) the least squares estimator (,,; = yq_sl (ﬁqj — 7((1‘11)\1';])
(w)
5q]
parameters S(w),ﬁqj, \w and 7y, are independent and distributed as a

where ug; ~ N <0,7’ ) and qu is the ¢'" diagonal element of T. From

can be obtained. The parameters (,,; given augmented data Z ; and

mixture of normal distributions. That is, augmented data, ZS;} , and
regression coefficient, 5,;, are normally distributed with, among others,
parameter (,,; which is a priori normally distributed. Therefore, it
follows that

P (Coai 1780600 By Wy ) o< (2] | € 6)
P (Buy | Caago g ) P(Cagy)- - (111)

For identification of the model the prior for (,,; is the standard normal
distribution. Hence, the fully conditional posterior density of (,; is
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given by
e Cus
Cogg | 28,60 35 Wy ~ N |

1 1 v 1 1 ? (4'12)
E+E+1 E+E+1

where quj is the least squares estimator following from the regression

(w)
sqjk
parameters f,gw) = (aj,, b)) are sampled in Step 9. Finally, Esqj is the least
squares estimator for {,,;, formula (4.10) , with variance ¢ = 1/72,.

This implementation of the Gibbs sampler is easily changed into a
procedure for estimating the parameters of the structural (multilevel)
model with the classical true score model as measurement error model.
It is assumed that the variance structure, @, is known and given by
formula (4.5) . This is also necessary for identification of the model. The
surrogates X and W provide a sum score or observed score X;; of the
examinee indexed 75 on Level 1 and a sum score, W, observed in school
j- Thus, in this case the classical true score model, instead of the normal
ogive model, is used as measurement error model on Level 1 and Level
2. Augmented data and item parameters do not have to be sampled.
Therefore, Step 1, 2, 8 and Step 9 can be left out. Step 3 and Step 10
changes into the following two steps.

Step 3'. Let X;; denote the observed score of a person, indexed ij,
in relation to 64;, the ¢*" latent covariate on Level 1 in predicting Yi;.
Again, the latent predictors on Level 1 can be sampled separately be-
cause they are independent. Further, X,;; is a random variable taking
on values from independent repeated measurements, which is normally
distributed with mean 64; and variance ¢. The complete conditional of
64:; follows from the regression of Xy; on #4; and the regression of Y;;
on €;;, formula (4.3) . It follows that

of z,, ;. + b}, on a; and k the variance of Esqj, as in Step 3. The item

P (qu‘j | Q;jyﬁjaozv(/?amqijayij) < P (Tgij | Ogizs ) P (yij | Ogij. s ]»0'2)

The prior information for 84; is incorporated into the measurement error
model, where the distribution and variance structure of the true score
is determined. It follows that the fully conditional posterior density of
04i; is given by

Oaij | ;. B4,0%, 0, Xyij, Yij ~ N ) (4.13)

SE&

Sl K

= Ebz
SR

Sl=
+ [~
=
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with éij and ¢ as in formula (4.9) .

The classical true score model can also be used for modeling the mea-
surement error in the predictor variables on Level 2. Let (,; be the ex-
pected value of the observed score, W, where the expectation is taken
with respect to the normal distribution, the assumed response distri-
bution. Further, define x as the variance, a priori known, over parallel
observations of Wjg;. It follows that (,; can be sampled in the same way
as in Step 3'. That is, Step 10', draw (,,; conditional on Wyg;, &, B4;, ¥
and ~,.

In formula (4.3) it is assumed that every regression coeflicient varies
across Level 2 groups. In certain applications, it can be desirable to
constrain the effect of one or more of the Level 1 predictors to be iden-
tical across Level 2 units. An implementation of the Gibbs sampler,
where regression coefficients are treated as non-varying across Level 2
groups, needs a further division of regression components. This calls for
a division in regression coefficients related to observed predictors and
latent predictors, with a further subdivision of both parts into compo-
nents treated as random and components treated as non-random across
Level 2 groups. Finally, the complete conditional distribution of each
subset, given the other parameters and the data, must be specified (see,
for example, Seltzer et al., 1996).

The presented 10 steps define the Gibbs sampler for estimation of
the parameters of the multilevel model with measurement error in the
predictor variables, where the normal ogive model or the classical true
score model is used as measurement error model. With initial values
for the parameters, the Gibbs sampler repeatedly samples from the full
conditional distributions with systematic scan, that is, the sampler up-
dates the components in the natural ordering. A different strategy of
updating the components can affect the speed of convergence (Roberts
& Sahu, 1997). The values of the initial parameters are important for
the rate of convergence. Initial estimates can be obtained by estimating
the normal ogive model using Bilog-MG (Zimowski, Muraki, Mislevy,
& Bock, 1996), subsequently, the parameters of the multilevel model
can be estimated with HLM for Windows (Raudenbush, Bryk, Cheong,
& Congdon, 2000) given the parameter estimates of the normal ogive
model.

Convergence can be evaluated by comparing the between and within
variance of generated multiple Markov chains from different starting
points (see, for instance, Robert & Casella, 1999, pp. 366). Another
method is to generate a single Markov chain and to evaluate conver-
gence by dividing the chain into subchains and comparing the between-
and within-sub-chain variance. A single run is less wasteful in the num-
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ber of iterations needed. Additionally, a unique chain and a slow rate
of convergence is more likely to get closer to the stationary distribu-
tion than several shorter chains. In the example given below, the full
Gibbs sample was used in estimating all parameters instead of subsam-
pling from this sample. The latter procedure leads to losses in efficiency
(MacEachern & Berliner, 1994). Finally, after the Gibbs sampler has
reached convergence and “enough” samples are drawn, posterior means
of all parameters of interest are estimated with the mixture estimator to
reduce the sampling error attributable to the Gibbs sampler (Liu, Wong,
& Kong, 1994). The posterior standard deviations and highest poste-
rior density intervals can be estimated from the sampled values obtained
from the Gibbs sampler (Chen & Shao, 1999).

5. Measurement Error in Correlated Predictor
Variables

In this section, measurement error in explanatory variables on Level
1 will be modeled by an IRT model for the item responses related to
these explanatory variables. Because it is often not realistic to assume
that the predictor variables are independent, a multivariate IRT model
will be used as measurement error model. The same procedure can be
applied to measurement errors in correlated explanatory variables on
Level 2. Tt is assumed that there exists a manifest variable for every
unobserved predictor variable and every manifest variable consists of a
set of item responses.

Assume that the latent variables 04, are related to observable vari-
ables Xgi5, (¢ =1,...,Q) via a normal ogive IRT measurement model.
Let qu’j = (Xqij17~ . ,Xqinq)t, with realization (mqijla N ,.%'qinq)t,
denote a response vector on a test with K, items. Before the actual
parameters 6 will be identified, consider a parametrization 6*. Let
0;; be the vector of latent predictor variables for a person indexed ij,
that is, 0;; has elements 67,,. Further, suppose that for every predic-
tor a two-parameter compensatory normal ogive model holds, that is,

P (Xqijk =1| 92¢j»“2k7b2k> = (GZK qii b;k>, where a7, and b}, are
item parameters of an item of predictor q. Because the predictor vari-
ables ¢, are considered dependent, it will be assumed that 8;; has a
multivariate normal distribution with mean zero and covariance matrix
>*. However, the parametrization 6% can be transformed such that 0
has a multivariate normal distribution with mean zero and covariance
matrix I, that is, the variables 6,; become independent. Under this

transformation, the normal ogive model transforms to

P (Xqijk =1 | 0¢j,aqk,bqk) = (aZkBZ-j — bqk) 5
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where ag; is a vector of discrimination-parameters or factor loadings
(see, for instance, McDonald, 1967, 1982, 1997). Notice that every item
response now depends on all latent dimensions. This gives rise to the
following procedure.

Analogous with the above procedure, see Step 1 to 3 above, a ran-

dom vector Z;; = (Zh-jl,... ,ZQinQ)t is introduced, where Zg;;; ~
N (atquij — byk, 1>, and it is supposed that Xg;;x = 1 when Zg;; > 0
and Xy = 0 otherwise. After deriving the fully conditional distribu-
tions, the Gibbs sampler can again be used to estimate the posterior
distributions of all parameters.

Step 1: Sampling Z. Given the parameters 6;; and £, the variables
Zyijk are independent and

Zaish | 035, € - Xgighe ~ N (205 — bgr, 1), (4.14)
truncated at the left by 0 if Xy, = 1 and truncated at the right by 0 if
Xgijr = 0.

Step 2: Sampling 6;;. Let 8;; be the vector with @) predictor variables

for a person indexed ij. These are the regression coefficients in the
normal linear model

Z;j+b=A0;; + e,
where b = (bn,. .. ,blKl,bgl,. .. ,bQKQ)t, gij = (012»3»,.. . ,QQij)t and A

is a (Zq K, x Q) matrix with row vectors agk, foritems k=1,... , K,

and predictors ¢ = 1,... ,Q. Furthermore, the vector €;; has elements
€gijk, Which are independent and standard normally distributed. It is
assumed that all Level 1 predictors are unobserved and their regression
coeflicients are treated as varying across Level 2 groups. For identifica-
tion of the model, 8;; has a multivariate standard normal prior, and it
follows that

P (923 | Zijyyijvquv jvo-z) o« p (Z’L] | 92]7£qk)p (ylj | giijjvo-z)
f(0:5;0,1q) .

As in the unidimensional case, the mixture of multivariate normal dis-
tributions results in a multivariate normal distribution with a shrinkage
estimator as expectation,

T*l/e\,. _‘_(1)715.. 1
2 1] 1] -1 —1
0 | Zij,Yij, €, Bj,0° ~ N < T, (T o),

(4.15)
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where 0;; = (AtA)_1 A'(z;j+b) and 0;; = (ﬂt,]ﬂ_j)fl ﬂt,j (yij — 509') ,
with 8_; = (61]-, .. ,BQJ-) and the corresponding variances are T =
(A'A) " and @ =02 (81,8 ;) .

Step 3: Sampling &,,. Let &, = (aqk,bqk)t, E=1,...,K, and
qg=1,...,Q, which represent the item-parameters of item k of a test
relating to predictor g. Further, define 8 = (0y,...,0¢) with 6, =
(Og11,--- ,anJJ)t. Given 0, the Zg, = (Zgi1k, - - - ,anJJk)t satisfy the
linear model

qu = [ 6 -1 ]qu + €4k (4.16)

where eg;, = (€q114, - - - 7€anJk)t are standard normally distributed. Com-
bining the prior for p (£,,) = Hqul I (ag, > 0) with equation (4.16) gives

Q
€ 10.Zg ~ N (g (HH) ) [ T (age > 0),
g=0

where H = [ 0 -1 ] and qu is the least squares estimator based on
(4.16).

Again, this procedure could be extended to handle observed and non-
observed explanatory variables with regression coefficients varying or
fixed across Level 2 units. Notice that the steps for sampling the other
parameters of the structural model, described in the previous section,
remain the same. Modeling measurement error in correlated predictor
variables with the classical true score model needs a lot of prior infor-
mation. The group specific error variance regarding all tests has to be
known a priori, that is, the covariance matrix of ) explanatory variables
of person ¢j has to be known in advance. The covariance matrix of the
correlated latent predictor variables also identifies the model, in case of
the classical true score model as measurement error model. Then, the
conditional distribution of 8;; becomes

Tix, 4013, L
2 2] 2] -1 -1
OZJ‘X’L]vY;jv/ijO_ 7TNN< T_1+(D_1 7<T +o ) »

where x;; = (2145, ... ,2Qi;) and xg; is the sum score of person ij on a
test related to predictor ¢. Further, T is the a priori known covariance
matrix of the sum scores of person ¢j. In most cases, the covariance
matrix is population dependent and fixed over persons taking the tests
to get a reliable estimate.
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6. A Simulation Study

In this section, a numerical example was analyzed to illustrate pa-
rameter recovery with the Gibbs sampler. Data were simulated using a
multilevel model with two latent predictors. The model is given by

Yij = Boj + 816145 + eij (4.17)
Boj = Yoo + V018105 + wo;
B15 = Y10 + w15,

where e;; ~ N <O,02) and u; ~ N (0, T). Furthermore, it was assumed
that the observed variables X and W were related to the latent predic-
tors @ and ¢ through a normal ogive model. Response patterns X and
W were generated according to a normal ogive model for a test of 20
items and a test of 40 items, respectively. For the test relating to the
latent covariate @ at Level 1, 4,000 response patterns were generated
which were divided over J = 200 groups of 20 students each. The gener-
ating values of the item parameters are shown under the label Generated
in Table 4.1. Accordingly, for the test relating to the latent covariate ¢
at Level 2, 200 response patterns were generated. The true values of
the fixed and random effects, v,0? and T, are shown under the label
Generated in Table 4.2.

The normal ogive models were estimated with Bilog-MG. Next, the
initial parameters of the multilevel model were computed with HLM
given the parameters of the normal ogive models. In the simulation
study, 500 iterations were needed to estimate the measurement error
models and another 500 iterations were needed to compute the parame-
ters of the multilevel model. Subsequently, 20, 000 iterations were made
to estimate the parameters of the multilevel IRT model. The conver-
gence of the Gibbs sampler was checked by examining the plots of sam-
pled parameter values. It was concluded that a burn-in period of 1,000
iterations was sufficient. The location of the unobserved predictors can
be fixed by transforming each sample during the Gibbs sampling pro-
cess. Grand mean or group-mean centering of an unobserved explanatory
variable is obtained by subtracting the grand mean or group-means from
each sample drawn in each step of the Gibbs sampler. The model was
identified by fixing the scale of the latent variables to the true scale of
the generated latent variables. This way, the estimated parameters were
directly comparable to the true parameter values. The model could also
be identified by restricting the sum of the difficulty parameters to zero
and the product of the discrimination parameters to one. Accordingly,
the estimated parameters should be rescaled to compare them to the
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Table 4.1. Ttem parameter estimates of the normal ogive IRT model at Level 1.

Generated Gibbs Sampler
Item ak br ak s.d. HPD b s.d. HPD
1 .821 —.180 792 .029 [.736,.852] —.165 .022 [—.208,—.122]
2  1.058 —.418 981 .035 [913,1.051] —.399 .024 [—.449,—.353]
3 1.810 .366 1.810 .062 [1.685,1.929] .482 .030 [422, .539]
4 1.690 —.254 1.645 .053 [1.541,1.751] —.128 .028 [—.182,—.074]
5 .804 —.096 777 .029  [720,.835] —.108 .022 [—.152,—.066]
6 1.409 .550 1.441 .048 [1.346,1.537] .653 .029 [.595, .710]
7 1.461 077 1.470 .049 [1.376,1.569] .119 .026 [.067,.170]
8 932 1.026 954 .036 [.886,1.025] 1.093 .031 [1.030,1.152]
9 .599 675 623 .027  [.569,.676] .748 .024 [.702,.795]
10 1.788 .091 1.764 .061 [1.646,1.885] .216 .028 [.160, .270]
11 177 —.455 .710 .030  [.651,.768] —.474 .023 [—.520,—.430]
12 .299 .980 319 .025  [.270,.367] .991 .025 [.942,1.039]
13 .829 .594 .833 .031 [.773,.891] .630 .024 [.582,.678]
14 2.806 —1.024 2.836 .130 [2.594,3.107] —.964 .055 [—1.079,—.862]
15 876 —.287 .818 .030  [.758,.876] —.266 .023 [—.311,—.222]
16 1.814 .093 1.743 .059 [1.627,1.856] .177 .028 [.121,.230]
17 773 184 734 .028  [.679,.788] .194 .022 [.152,.236]
18 1.539 .648 1.500 .051 [1.400,1.597] .692 .030 [.634,.751]
19 1.166 141 1.064 .035 [.994,1.132] .201 .024 [.153,.246]
20  .994 .425 1.012 .034 [.946,1.097] .469 .024 [.421,.516]

true parameter values. To illustrate the parameter recovery, the model
was identified such that the parameters were directly comparable.

In case of the multilevel true score model 500 iterations were used as a
burn-in period and another 20, 000 iterations were used to compute the
parameters. Initial values of the multilevel parameters were obtained
by HLM using the observed scores as explanatory variables. The model
was identified by specifying the group specific error variances in advance.
The group specific error variances, relating to test X and W, denoted as
@y and @4, were .156 and .089, respectively. The estimates of the group
specific error variances were obtained by averaging the unbiased esti-
mates for the error variances of individual examinees (Lord & Novick,
1968, pp. 155). The scale of the latent variables was fixed to the true
scale of the generated latent variables. The latent variables in the differ-
ent models were equally scaled, therefore, the generated parameters, the
estimated parameters of the multilevel IRT model, and the estimated
parameters of the multilevel true score model were directly comparable.



Bayesian Modeling of Measurement Error in Predictor Variables 73

Table 4.2. Parameter estimates of the multilevel model with measurement error in
the covariates.

Generated IRT Model Classical True Score Model
¢, = .156, py = .089
Fixed Coeff. Coeff. s.d. HPD Coeff. s.d. HPD
Effects
Yoo 2 2.010 .041 [1.932,2.085] 2.011 .042 [1.927,2.091]
Yo1 1 970 .031  [.907,1.029] .967 .031  [.902,1.028]
Y10 1 928 .036 [.857,.997] .936 .037 [.864,1.007]
Random Var. Var. s.d. HPD Var. s.d. HPD
Effects Comp. Comp. Comp.
o? .5 487 .014 [.461,.515] 472 .014 [.445,.499]
T2 2 311 .040 [.237,.391] .332 .045 [.249, .422]
T2 .2 221 .027 [.170,.273] .238 .028 [.185,.293]
72, .1 .202 .027 [.151,.256] 221 .030 [.165,.281]
E [L‘J s.d. E LL‘J s.d.
.625 .014 747 .018

In Table 4.1, the estimates of the item parameters resulting from the
Gibbs sampler, associated with the measurement error model for 8, are
given under the label Gibbs Sampler. The reported standard deviations
are the posterior standard deviations. Highest posterior density inter-
vals were calculated as confidence regions for the parameters and they
are given in the column labeled HPD. These highest posterior density
intervals are the 95%-intervals. Most of the true parameter values were
well within the computed intervals. The estimates of the item parame-
ters, from the test relating to ¢, and the true parameter values were also
quite close but contained larger standard deviations due to the small
number of groups.

Table 4.2 presents the results of estimating the parameters of the
multilevel model. The estimates of the fixed and random effects using the
classical true score model are given under the label Classical True Score
Model. The estimates of the fixed and random effects using the normal
ogive model are given under the label IRT Model. It was remarkable
that in both models the parameter estimates of the variances on Level
2 and covariance between the Level 2 residuals were too high. The
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parameter estimates of the random coefficients using the classical true
score model differed more from the true parameter values. By estimating
the random coefficients given the true generated latent variables, (8,¢),
the estimates of the random coefficients 73,72 and 72, were .280, .205
and .205, respectively. It was verified that the estimated parameters
obtained using the classical true score model, instead of the normal
ogive model, differed more from these parameter estimates.

The models were compared using posterior predictive data, Y™, X"P,
and W” under the different models (Carlin & Louis, 1996; Gelman et
al., 1995; Gelman, Meng, & Stern, 1996). Let Y"™P denote replicate
observations, given the underlying model parameters. Analogously, let
X" and W"P denote replicated observations, given X and W, respec-
tively, and given the underlying model parameters.

Define Li; as the distance from Y;ep to Y, given model M and data
(X5, Wj), so

E (L% | M,y;] ///H y” yffp) (ymplé’u,ﬁ],ff)

p(6ij,0% | Xij,Y) dy;;"d8;; do®. (4.18)

Aggregating over schools results in
E[L}|My] = E |(y -y | My|
=11 / /E [L3; 1 M, y;]p (B 1 €5 35)
PR
p (Cj ’ Wj;Yj) d/Bijj7 (4-19)

where p (y:jep | 05,8, (72) is the probability of replicated data given the

parameters, p (0”-,(72 | Xij,y) and p <Cj | Wj,yj) are the joint posterior
density of the unobserved explanatory variables and variance at Level
1 and the posterior density of the unobserved explanatory variables at
Level 2, respectively. In the same way, define Lo as the distance from
X"P to X given model M and data (Y, W;). This results in

E[L}| M,x] = E [(x. —x.TP)2 | M, x} : (4.20)

where x. and x."* denote the observed sum scores and the replicated
sum scores, respectively. Accordingly, let Ls be the distance from W7
to W given model M and data (Y;,X;), leading to the statistic

E[L}| M,w] =F [(w. —wrePy? | M, w} : (4.21)
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where w. denotes the observed sum scores and w."P denotes the repli-
cated sum scores. Each statistic summarizes the information concerning
the predictive data given the observed data. Besides, each statistic is
the sum of the variance of the replicated data plus the square of the
bias of the replicated data with respect to the observed data. Together
these three predictive criterions given some model M reflect the quality
of prediction of a replicate of the observed data. It is a natural way
to evaluate model performance by comparing what it predict with what
has been observed (Bernardo & Smith, 1994, pp. 397). If the model fits,
E[L?| M,y], E[L3 | M,x], and E [L3 | M,w]| should be small. The
sum of the three statistics, formula (4.19),(4.20), and (4.21), summa-
rizes the information concerning the general fit of the model. It will be
denoted as

E|L*| M.y, x,w]|. (4.22)

In Table 4.2 the values of F [LQ | M,y,x, w] per Level 1 unit and
corresponding posterior standard deviations of both models are given.
The smaller value for the multilevel IRT model indicated that this model
predicted the observed data better than the multilevel true score model.
Figure 4.1 presents 20,000 values of the statistic computed at every
iteration of the Gibbs sampler. It can be seen that the statistic indicated
a preference for the IRT model. Besides, the plot also illustrates the good
convergence of the Gibbs sampler.

Figure 4.2 presents the distributions of the generated data and the
posterior predictive distributions of the data using the multilevel true
score model and the multilevel IRT model. The top figure shows that
both models predict the dependent data y very well. The multilevel
true score model is less restrictive than the multilevel IRT model and
this resulted in a slightly better prediction. But multilevel IRT entails
a more realistic way of modeling the independent observed data (x,w) .
This can be seen in the middle and bottom figure. Another important
point is that the normal ogive model predicted the skewed distribution
of the test scores x at Level 1 better. The classical true score model
discriminated less between students’ outcomes because it is based on
sum scores instead of complete response patterns. Further, the variance
in the explanatory variable 8 was suppressed by a “ceiling” effect in the
observed sum scores in the classical true score model. The more flexible
multilevel true score model resulted in a better prediction of y, but the
price to pay was a far less precise prediction of x and w. In general,
the multilevel IRT model predicted all observed data very well, and this
resulted in a much better fit to the data.
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Figure 4.1. The E {LZ] for the multilevel IRT model and the multilevel true score
model.

7. An Illustrative Example of Measurement
Error in Hierarchical Models

The multilevel IRT and the true score models were used in an analy-
sis of a mathematics test, administered to 3713 pupils of grade 4 in 198
regular primary schools (Bosker, Blatchford, & Meijnen, 1999; Hofman
& Bosker, 1999). Among other things, interest was focused on the re-
lation between achievement in mathematics and educational provisions
at the school level and adaptive instruction by teachers. A test mea-
suring the willingness, and capability to introduce educational program
changes was taken by teachers. This test, denoted as X, consisted of 23
dichotomously scored items to measure adaptive instruction, denoted as
Al.

By posing the following Level 1 model, the nested structure of the
data was taken into account. For each school j (j =1,...,J),

Yij = Boj + 811 Qij + ey, (4.23)
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Figure 4.2. Density plots of the observed and replicated data using the normal ogive
model and the classical true score model.

where y;; was the score of the mathematics test and 1(Q);; was an unob-
served predictor representing the intelligence of a person indexed j. 1Q)
was measured by an intelligence test of 37 items, denoted as W. The
response patterns of 3713 pupils were available. The e;; were assumed
normally distributed with mean zero and variance 2.

First, it was assumed that the intercept was group-dependent and
varies randomly from school to school. Furthermore, the sum scores
measuring adaptive instruction were group level variables that express

relevant attributes of the schools. They were supposed to have an influ-
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ence in the diversity in mathematics scores. Therefore, the variability in
Bo; was modeled as

Bo; = Yoo T Yor AL + ug; (4.24)

B1; = Y10

where ug; were assumed normally distributed with variance 3.

For each analysis, from examining the plots of sampled parameter
values, it was concluded that a burn-in period of 500 iterations was suf-
ficient. Then an additional 20,000 Gibbs cycles, from which parameters
of the posterior distribution were estimated, were run.

Table 4.3 presents the parameter estimates of Model 1, formula (4.23) ,
where a measurement error model was applied to the unobserved ex-
planatory variable representing the IQ) values of the examinees. The
estimated group specific error variance, ¢, was .39. For the moment, the
mean observed score from the Al test was used, neglecting its error com-
ponent. The main result of the analysis was that, conditionally on 1@,
adaptive instruction for teachers seemed to have a small positive effect
on mathematics achievements of students, but this effect did not differ
significantly from zero. Furthermore, individuals with high IQ values
scored high on the mathematics test. The use of multilevel model was
justified, because a substantial proportion of the variation in the out-
come at the student level was between schools. This is the variance of
the achievements of students in school j controlling for /@), around the
grand mean, 7y, which did not differ significantly from zero.

There were only small differences between the parameter estimates
from the multilevel IRT model and the multilevel true score model, with
p = .39, denoted by My and M.y, respectively. The parameter estimates
in Table 4.3 are comparable because the 1@ predictors in both models
were scaled to the standard normal distribution. The variance at Level 1
was slightly smaller for the multilevel true score model. The differences
in handling the response error in the explanatory variable at Level 1 were
evaluated using the posterior predictive data. Table 4.3 presents the
E [LQ] and corresponding standard deviations for both models. Model
My performed slightly better than model M.. Both models resulted
in a better model fit in terms of minimization of E [L%] in comparison
to the standard hierarchical model treating the AT and I() variables as
observed.

Next, a measurement error model was introduced for Level 2. The
response variance of the AT test was modeled using (4.24). Table 4.4
presents the parameter estimates of the multilevel IRT model and the
multilevel true score model with response error in 1@} and AI. The model
labeled Ms, modeled both unobserved predictors with a normal ogive
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Table 4.3. Parameter estimates of the multilevel model with the normal ogive and
the classical true score model as measurement error models.

IRT Model Classical True Score Model
]\[1 ]\/Icl, Y = 39
Fixed Coefficient s.d. HPD Coefficient s.d. HPD
Effects
Yoo —.018 075 [—.164,.126] —.017 .074 [—.162,.126]
Yo1 .059 075 [—.089, .207] .052 .075 [—.095,.198]
Y10 397 017 [.364,.430] 487 017 [.453,.521]
Random Variance s.d. HPD Variance s.d. HPD
Effects Components Components
o .845 .028  [.825,.865] .801 .028  [.780,.824]
To .349 .011  [.296,.403] .338 .011  [.287,.394]
Bl sd B sd
1.873 .035 1.978 .037

model, Model M. used the classical true score model as measurement
model for both predictors with ¢; = .39 and ¢y = .43 as the estimated
response variance for the 1} and Al test, respectively. The results from
both models showed that adaptive instruction for teachers still had no
significant effect on the mathematics achievements of students. Fur-
ther, students with high IQ scores still performed better than students
with lower scores. The proportion of variance in mathematics scores
accounted for by group-membership, controlling for IQ scores, was .148
using model Ms and .146 using model M. This emphasized the small
differences between the parameter estimates of both models.

Model Ms and Mo considered response error in all predictors. The
E [L%] was reduced for both models in comparison to model M; and
M. but the E [LQ] increased due to the extra error term F [L%] . The
variability in the predictors induced larger variances of the parameter
estimates and decreased the distance between the replicated data and
the observed data. Correcting for bias resulted in more variable esti-
mates but also in a better prediction of the data. The lowest value of
E [LQ] was obtained with model M>. This means that the predicted data
corresponded to the observed data at best with model Ms. In case of
model Mo, the estimated variance at Level 1 was lower and the esti-
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Table 4.4. Parameter estimates of the multilevel model with the normal ogive and
the classical true score model as measurement error models on both levels.

IRT Model Classical True Score Model
Mo P, =39,y = 43, Mo
Fixed Coefficient s.d. HPD Coefficient s.d. HPD
Effects
Yoo —.017 .087 [—.188,.153] —.018 .086 [—.191,.147]
Yo1 .055 .089 [—.120,.231] .094 .097 [-.100,.279]
Y10 410 .019  [.373,.448] 447 021 [.404,.485]
Random Variance s.d. HPD Variance s.d. HPD
Effects =~ Components Components
o .854 .013  [.830,.879] .837 .013 [.811,.862]
To .357 034 [.292, .422] .345 .035 [.283,.418]
B sdl B sd
2.453 .087 2.735 .098

mates of the fixed effects were somewhat larger resulting in a slightly
better prediction of the dependent variable. But the inferior predictions
of the observed sum scores related to the I() and AI test resulted in
a higher value of the statistic £ [LQ] . In general, model M, fitted the
observed data (y,x,w) best.

Overall, it can be concluded that correcting for measurement error
with the normal ogive model on both levels resulted in more variance
of the parameter estimates but less bias and the model fit is better. In
general, the use of a measurement error model led to a reduction in bias
and variance of the replicated data in relation to the observed data in
all cases.

A weak point of the classical true score model is that the measurement
error variance has to be imputed. The Gibbs sampler was used to esti-
mate the multilevel true score model and the corresponding £ [LQ] for
various values of ¢; and 4. Varying ¢ will lead to different predictions
with respect to the observed data. Figure 4.3 displays the F [LQ] and
E [Lﬂ for various values of the a priori established error variance on
Level 1 and Level 2. It can be seen that F [L?]| decreased when the vari-
ance in the predictor variable IQ increased. This follows directly from
formula (4.13) . The posterior mean of 0 is based on the values of the ob-
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Figure 4.3. The E [LQ] and F [Lﬂ for different values of the error variance to model

the latent predictor variables on Level 1 and Level 2 with the classical true score
model.

served data y if the variance in the observed data x is high. As a result,
the predictions y™®P resemble the observed data y more. It follows that
the discrepancy between the observed data y and the predicted data
vy enlarges when the response variance decreases. Then the posterior
mean of @ is based largely on the observed sum scores relating to the in-
telligence test, instead of on y. The E [LQ] increased when one or both
of the response variances increased because the distance between pre-
dicted IQ-scores and Al-scores deviated more from the observed sum
scores, partly due to the enlarged response variances. High response
variance in the I} test led to better results of the statistics £ [LQ] and
E [L%] . Generally, the prior information about the group specific error
variance highly influenced the results.

8. Discussion

In this chapter, a normal ogive model is imposed on the unobserved
explanatory variables in a multilevel model. In the social sciences, it is
rarely possible to measure all relevant covariates directly and accurately.
Correcting for measurement error is dependent on knowledge of the mea-
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surement error process. Here, the normal ogive model describes the link
between the observed data and the unobserved variables. This is com-
pared with the classical true score model as measurement error model.
Appropriate methods for correcting for the effects of measurement error
depend on the measurement error distribution (Carroll et al., 1995). It
is shown that both measurement error models reduce the bias in the
estimates with an increase of the variance. This bias versus variance
trade-off works well in both cases. Better results are obtained with the
multilevel IRT model in terms of the expected square distance between
all observed and predicted data. The multilevel true score model requires
information about the group specific error variance and depends highly
on this prior information. This leads to a certain degree of arbitrariness.
Moreover, the variance structure of the errors in the predictor variables
is difficult to estimate. The multilevel IRT model amounts to a more
realistic way of modeling measurement error in the predictor variables,
because it does not depend on any arbitrary assumption on the error
variance structure.

It is possible to use other IRT models as a measurement error model.
Examples are the three-parameter item response model and models for
polytomously scored items. These models can be estimated within the
Bayesian framework using the Gibbs sampler (Béguin, 2000; Johnson
& Albert, 1999). If the conditional distribution of some parameters is
difficult to sample from, then a Metropolis-Hastings step within Gibbs
sampler can be used to obtain samples from the posterior distribution
of the specific parameters (Chib & Greenberg, 1995).

The test statistic discussed above only focuses on the extent to which
the observed data are reproduced by the model. Other posterior pre-
dictive checks can be developed to judge the fit and assumptions of the
model, such as local independence and homoscedasticity, but this is be-
yond the scope of the present chapter.

In the present chapter, the response variable, Y, is treated as observed
without measurement error. It is possible to extend the procedure and
to model this variable with an IRT model also. This more complex prob-
lem, where both the response and some of the predictors are measured
with error, deserves further research. The basic structure of this more
complex model is related to the multilevel IRT model, Chapter 2 and
3, or the generic hierarchical IRT model (Patz & Junker, 1999b) with
background variables measured with an error.This whole framework is
also strongly related to the framework of structural equation modeling,
where there is a measurement part and a structural part. The measure-
ment part of the model consists of the response variable and observed
predictor surrogates and latent variables, and the structural part is de-
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fined in terms of the latent variables regressed on each other and some
observed background variables. In MIMIC modeling (see, for example,
Bollen, 1989; Muthén, 1989), one or more latent variables intervene be-
tween the observed background variables predicting a set of observed
response variables and surrogates. The main difference between these
approaches and the one presented here is the use of an IRT model as a
measurement error model, and integration of these various approaches
remains a point of further study.






Chapter 5

Bayesian Model Checking and Residual
Analysis

1. Introduction

School effectiveness research is a major topic in education, especially
in light of the concern for evaluation of differences in achievement and
accountability. Main interest is put in identifying the characteristics of
effective schools and criteria for measuring effectiveness. This research is
characterized by a variety of methods and designs. Therefore, issues as
sample sizes, what variables should be measured, and at what level the
data should be analyzed need to be tackled. In this chapter, attention
is focused on model choice and goodness of fit.

The methods of measuring school effectiveness have been changed
radically with the development of multilevel analysis. The hierarchical
structure of educational systems emphasizes the necessity of multilevel
modeling. Multilevel analysis enables that the data are treated in an
appropriate manner, instead of being reduced to a single level. The dif-
ferences between classes and schools can be taken into account properly,
rather than aggregated arbitrarily. In this framework, most of the vari-
ance is explained by student background variables, such as intelligence
and socio-economic status, other parts of the variance can be explained
by class or school factors. Applications of multilevel models to educa-
tional data can, for example, be found in Bock (1989) and Goldstein
(1995).

A major component of any school effectiveness assessment is the use of
achievement scores as a measure of effectiveness. Most often, schools are
compared in terms of the achievements of the pupils, and sum scores are
used to represent these achievements. In Chapter 3, a measurement error
model, that is, an item response theory model, is proposed to specify the
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relationship between latent abilities and observed responses of students.
Together with the structural multilevel model, this resulted in a multi-
level IRT model. This model is evaluated in a fully Bayesian framework,
which has the advantage that all parameters can be estimated concur-
rently with the Gibbs sampler (Gelfand & Smith, 1990). Furthermore, a
fully Bayesian framework supports definition of a full probability model
for quantifying uncertainty. One step further in statistical inference is
the assessment of the plausibility of the posited model or of some of its
specific assumptions.

In this chapter, several Bayesian checks are proposed that can be used
to judge the fit and assumptions of a multilevel IRT model. The binary
outcomes on item-level are supposed to have an underlying normal re-
gression structure on latent continuous data. This assumption results
in a analysis of Bayesian latent residuals. It will be shown that the
Bayesian latent residuals have continuous-valued posterior distributions
and are easily estimated with the Gibbs sampler. This in contrast to
the classical residuals that are difficult to define and interpret due to the
discrete nature of the response variable (Albert & Chib, 1995). Further,
Bayesian residuals have different posterior variances but the Bayesian
latent residuals are identically distributed. An unbiased estimator of
the Bayesian latent residuals and its variance will be proposed using its
conditional expectation given a sufficient statistic.

The posterior distributions of the random errors are used to detect
outliers in the multilevel IRT model. An outlier is defined as an obser-
vation with a large random error, generated by the model under con-
sideration (Chaloner & Brant, 1988). The posterior distributions can
be used to calculate the posterior probability that an observation is an
outlier. These posterior probabilities of an observation being an outlier
are calculated with the Gibbs sampler. Other Bayesian approaches to
outlier detection can be found in, for example, Box and Tiao (1973) and
Zellner (1975).

Hypotheses can be tested using highest posterior density intervals.
According to the usual form of a hypothesis that a parameter value or
a function of parameter values is zero, HPD intervals will show, in most
cases, the difference (Box & Tiao, 1973). This concept is used to check
heteroscedasticity at Level 1, that is, to check whether grouped Level
1 residuals have the same posterior distribution. The parametric forms
of the marginal posterior distributions are unknown, but samples of the
distributions are available through the Gibbs sampler. These samples
are utilized to check the homoscedasticity assumption at Level 1.

Further, the sensitivity of inferences to reasonable changes in the prior
distribution will be examined. The need to study alternative prior dis-
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tributional assumptions for the variance components arises when Bayes
factors are used for model comparison. The Gibbs sampler will fail when
prior distributions are specified that become infinite at zero (Pauler,
Wakefield, & Kass, 1999). The discussion of improper priors in relation
with Bayes factors can be found in, e.g., Lavine and Schervish (1999)
and O’Hagan (1995).

In the first section, Bayesian residual analysis and estimation meth-
ods are described. Next, a method to detect outliers by examining the
posterior distribution of the residuals using Gibbs sampler is discussed.
Then, tests based on highest posterior density intervals, are described to
test the homoscedasticity at Level 1. Further, the prior sensitivity of the
parameter estimates will be discussed. Then, examples of the procedure
will be given by analyzing the data used in Chapter 3. Finally, the last
section contains a discussion and suggestions for further research.

2. Bayesian Residual Analysis

The multilevel IRT model assessment includes a check whether the
assumptions made to specify the model are justified. This can be done
by examining the regression residuals to check such assumptions as nor-
mality, conditional independence of observations and homoscedasticity
of variance. Furthermore, there is interest in the magnitudes of the er-
rors that actually occurred. The realized errors are not observed. They
need to be estimated from the data together with the uncertainties as-
sociated with these estimates. In the present chapter, realized residuals
are viewed as random parameters with unknown values. Posterior dis-
tributions for realized errors need to be calculated and can be used to
make posterior probability statements about the values of the realized
errors (see, for example, Box & Tiao, 1973; Zellner, 1975).

The residuals are defined as

Tijk = Yijk — P (agbi; — by) .

In the classical residual analysis, the most common way toward analyzing
residuals is to transfer the residuals to a scale where they are approxi-
mately normally distributed. The most common normalizing transfor-
mations lead to Pearson, deviance, and adjusted deviance residuals. But
in case of Bernoulli observations such transformations result in poor ap-
proximations of the distributions of the Pearson, deviance and adjusted
deviance residuals by the Gaussian distribution. A fully Bayesian resid-
ual analysis does not suffer from this problem. In the Bayesian residual
analysis attention is focused on the posterior distribution of each resid-
ual. Bayesian residuals have continuous-valued posterior distributions
which can also be used to detect outliers.
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In Chapter 3 and 4, an MCMC estimation method has been proposed
to estimate all parameters of the multilevel IRT model. The proposed
Gibbs sampler can be used to estimate the posterior distribution of the
residuals. Denote an MCMC sample from the posterior distribution

of the parameters (6;;,ax,bx) by (Qggn),a,im),blgm)) ,m=1,... M. It
follows that sampled values from the residual posterior distribution cor-
responding to observation ¢jk are defined by

7}%) = Yijk — @ (al(cm)ez(';n) - b;(fm)) ,m=1,... M. (5.1)

To check that these residuals are normally distributed, the ordered sam-
pled values can be compared to the expected order statistics of the nor-
mal distribution in a quantile-quantile plot. Further, interest is focused
on identifying residuals whose distribution is concentrated on an inter-
val not containing zero. Checking if a residual 7;; is unusually large
can be done by plotting the quantiles of the posterior distribution of
i, against the posterior mean of the probability p;jr = © (arbi; — br) ,
(Albert & Chib, 1995). A drawback is that the marginal distributions of
the ordered residuals differ. For example, the distribution of the smallest
residual is different from that of the median residual. The posterior vari-
ances of the residuals differ and are not directly comparable. Therefore,
it is difficult to assess how extreme each distribution is. These problems
can be averted by using Bayesian latent residuals as an alternative to
the Bayesian residuals.

2.1 Computation of Bayesian Latent Residuals

The observation Y;;; can be interpreted as an indicator variable that
a continuous variable with normal density is above or below zero. This
latent continuous score is defined as Z;j,, where Zj;, > 0if Y = 1
and Z;;r < 0 if Y, = 0. Complete data, consisting of augmented data
Z and observed data Y, are formed to simplify calculations. From the
definition of Z;;;, it follows that

p (Zijk | eijagkvyijk) X @ (Zijk%akeij — by, 1) [1 (Zijk > 0) I(yijk =1)
+ I (zi5k <0) I (yisr = 0)],  (5.2)

where ¢(.; agb;; — by, 1) stands for the normal density with a mean equal
to apb;; — by, and a variance equal to one, and I (.) is an indicator variable
taking the value one if its argument is true, and the value zero other-
wise. Implementations of the Gibbs sampler with the use of augmented
data can be found in Albert (1992), Johnson and Albert (1999) and, in
particular, for the multilevel IRT model in Chapter 3 and 4.
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The Bayesian latent residuals corresponding to observations Yj; are

defined as
Eijk = Zijk - akei]’ + bg. (53)

From the definition of the augmented data it follows that given ag, by and
0;;, the latent residuals ;5 are standard normally distributed. These
latent residuals are easily estimated as a by-product of the Gibbs sam-
pler. That is, MCMC samples from Z;;, & and 6;; produce samples
ek from its posterior distribution. Accordingly, posterior means and
standard deviations of the latent residuals can be computed from the
sampled values. A more efficient estimator is the conditional expec-
tation given a sufficient statistic, called a Rao-Blackwellised estimator
(Gelfand & Smith, 1990). That is, the sampling error attributable to
the Gibbs sampler is reduced to obtain a more efficient estimate of the
posterior means. The unbiased character of the Monte Carlo estimator
remains while reducing its variance.

The conditional expectation of the latent residuals needs to be cal-
culated given a sufficient statistic. Suppose that Y;; = 1, it follows
that

X0
E (eiji | Yije = 1,045,&;) = / E (eiji | zijis Yigr = 1,045, &)
Jo
f(zijk, Yije = 1| 0i5,&1)

dzijk
fYije =11 045,&) !
b (%K — agbi; + by)
— g Az
/0 Eijk o (akeij — bk) Zijk
by, — adi;

N 0} (akeij — bk)7

where ¢ represents the density of the standard normal distribution. Like-
wise, it follows for Y;;, = O that

—¢ (b, — apby;)

B (eij | Yije = 0,0i,&x) = — (b — arbtij)
ij

(5.5)

The expected value of ;5 depends on the value of Yj;, and the sign
of agtl;; — bx. Some elementary calculations need to be done to find
an expression for the variance. Define p;;, = E (4% | Yijk, 0ij, &) and
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assume that Y;;, = 1. Skipping the elementary steps it follows that
b 2 [ (Zijh, Yigk | 0ij, &x)
Var (c.: I - :/ Siik — hi: jk> Yij D2 Sk) g,
( ijk ’ yzyk 17 k) Jo ( ijk Mgk) f(yzgk ‘ eijygk) ijk
[ 2 & (zijk — arbiy + bi)
— / (5zgk /j“ijk) o (akeij — bk)
1 0 <_77ijk> Mige + ¢ <_772'jk) : (5.6)
@ (m1.) © (m51,)
where Nijk = aglij — by. In the same way in case Y;;jp = 0, the variance
of estimate (5.5) is

® (—1;5) D (~1ijn)
The estimates of the Bayesian latent residuals are easily implemented
in a Gibbs sampler. Then it can be checked if the latent residuals are
normally distributed given the observations by a quantile-quantile plot.
The realized residuals at Level 1 are viewed as parameters with un-

known values. The estimates of these latent residuals follow directly
from their definition. That is,

E<€Z] ’ Z’ij70j7€7/6j70—2777T> = E<0’l] ‘ Zij"S?/Bj’O—Q)
_X'LjE </Bj ’ 0j7(72777T>7

dzijk

where MCMC samples are needed of the parameters on which they are
conditioned. Both expectations on the right-hand side are easily derived
due to the fact that the conditional distributions of the parameters con-
sists of a product of two normal densities, see Chapter 3. The variance
of the residuals at Level 1 can be estimated in the same way. Poste-
rior probability statements about the values of the realized errors are
made via the derivation of the posterior distributions from the Gibbs
sampler. Collecting the raw residuals ez(-;n) = 02(-;”) — Xijﬁg-m) for the
m = 1,..., M iterations of the Gibbs sampler results in samples from
the posterior distribution of the latent residuals at Level 1. Also poste-
rior moments, measures of skewness and kurtosis can be derived from the
Gibbs sampler. Characterizing the properties of the realized residuals
can help to discover the nature of possible departures from the assump-
tions of the multilevel IRT model. Finally, latent residuals at Level 2
are estimated as

E (u] ’ 0j7/6j70—2777T) =F (/3] ’ 0j70—2777T) _WJE (’Y ‘ /337T) -
(5.8)
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The conditional distributions of the parameters 3, and « are both nor-
mally distributed, and, for that reason, the expectations are easily de-
rived. The rough residuals ug»m) = Bgm) —ijy(m) form=1,...,M are
samples from the marginal posterior distribution. Among other things,
the samples can be used to estimate the posterior variance. A quantile-
quantile plot can be made to check if the latent residuals are normally
distributed given the observations.

It must be remarked that the residuals in the measurement model
and at Level 1 and Level 2 of the multilevel model are not considered
separately in this manner. This means that analyzing residuals of the
measurement model is based on specifications of the multilevel model
and, analogously, analyzing residuals of the multilevel model is based
on specifications of the measurement model. Obviously, it is possible to
check the residuals of the measurement model separately by estimating
the model independent of the multilevel model but then residuals are
analyzed from a completely different model. The Level 1 residuals can
be computed by ordinary least squares regressions within each group
separately (see, Snijders & Bosker, 1999, pp. 128-132), given estimates
of the latent variables at Level 1. But the estimates of the latent variables
will also contain the influence of the residuals in the measurement model.
The residuals at Level 1 will be analyzed unconfounded by the Level 2
residuals but the other residuals are analyzed according to the complete
model.

3. Detection of Outliers

The outlier detection problem is addressed from a Bayesian perspec-
tive. As stated above, realized regression error terms are treated as
unknown parameters, see Zellner (1975). The posterior distribution of
these residuals can be used to calculate the posterior probability that
an observation is an outlier. Outliers can be detected by examining the
posterior distribution of the error terms. An observation can be con-
sidered to be outlying if the posterior distribution of the corresponding
residual is located far from its mean (Albert & Chib, 1995). Here, the
posterior distribution of the Bayesian latent residuals are examined to
detect outliers among the observations. The Bayesian latent residuals
are a function of unknown parameters and the posterior distributions
are therefore straightforward to calculate.

Following Chaloner and Brant (1988), Johnson and Albert (1999) and
Zellner (1975), the ijk'" observation is an outlier if the absolute value
of the residual is larger as some pre-specified value [ times the standard
deviation. That is, observations Y;;; with a high posterior probability,
P (leijx| > 1| yiji) , are marked as outliers, according to formula (5.3).
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In fact the augmented continuous scores Z;;, are marked as outliers
but Z;;x has a one-to-one correspondence with Yj;,. The probability
that an observation exceeds a pre-specified value is called the outlying
probability. The outlying probabilities can be estimated with the Gibbs
sampler.

First, consider the residuals at the IRT level. Suppose Y, = 1, it
follows that

" f (#ijk, Yije = 1| 045, &)
Pleg| > 1| Y =1,0;:,& :/ J J dz;;
(el = L1 ¥isn P T V= 11008
e (=)
R S S— 5.9
<I>(a;€9ij —bk) ( )
and if Y5, = 0, then
D (-1

P (leije] > 1| yiji, 0ij. &) = ) (5.10)

1-& (akei]’ - bk) ’

To obtain an estimate of the probability P (|e;x| > 1 | yij5) MCMC sam-
ples of the ability and item parameters are needed to calculate the mean

of P (’ffijk‘ > 1 yijk,egn),ﬁl(gmo for m = 1,... ,M. As in Chapter 3

and 4, an improper simultaneous prior, p(a,b) o Héil I(ag >0), is
used in the Gibbs sampler for the item parameters to insure that each
item will have a positive discrimination index. Other priors are possible;
examples will be discussed below.

It is possible to find ! such that the probability P (le;r| > 1| yijk)
assumes a given percentage, say v%. Therefore, in every Gibbs iteration
I must be solved in the equation P (|gix| > 1| yijr) = 155- The mean
of these values is an estimate of the unique root, that is, the [-percent
value, or the probability that Z;;; will deviate from its mean by more
than [.

The choice of [ is quite arbitrarily, but if the model under consider-
ation is required to describe the data then { = 2 might be used to find
observations that are not well described by the data. There is reason for
concern if more than 5% of the residuals have high posterior probability
of being greater than two standard deviations.

Notice that other complex posterior probabilities can be computed
with the Gibbs sampler by keeping track of all the possible outcomes of
the relevant probability statement. However, this method has the draw-
back that a lot of iterations are necessary to get a reliable estimate. It
could be possible, for example, that in case of multiple outliers a test
for a single outlier does not detect one outlier in the presence of another
outlier. This so-called masking occurs when two posterior probabilities,
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say P (lesjr| > 1| yije) and P (|egji| > 1] ysjk) , do not indicate any out-
liers but the posterior probability P (|e;;x| > and || > 1] y) shows
that €;;% and e, are both outliers. This simultaneous probability can
be estimated by counting the events that both absolute values of the
residuals are greater than [ times the standard deviation divided by the
total number of iterations.

4. Heteroscedasticity

In a standard linear multilevel model, the residuals at Level 1 and 2
are assumed to be homoscedastic. It is possible that the variances of
the residuals are heteroscedastic when they depend on some explana-
tory variables. By modeling the variation as a function of the explana-
tory variables will return homoscedastic variances. Neglecting the het-
eroscedasticity may lead to incorrect inferences concerning the hypothe-
ses tests for variables which are responsible for the heteroscedasticity
(Snijders & Bosker, 1999).

In a Bayesian framework, complex variance structures can be defined
as prior information. Here, Level 1 variation will be considered but
the same principles apply to higher levels. General functions of more
than one explanatory variable can be considered to model the variance
at Level 1. Examples of complex variation modeling are given in, for
example, Goldstein (1995, pp. 50) and Snijders & Bosker (1999, pp.
110-119). One common example is the case where variances are specific
for subgroups. For example, the error variance could differ for male and
female respondents. Besides modeling the variance conditional on the
value of the explanatory variable, it is also possible to give the explana-
tory variable a random slope at Level 1. Further, the random slope
variances can be made to depend on some variable. In case the variance
parameter cannot be sampled directly from the full conditional distri-
bution a Metropolis-Hastings-within-Gibbs step could be incorporated.

Without a specific connection to some explanatory variable heterosce-
dasticity is harder to detect. Therefore, it is sometimes useful to con-
sider the possibility that the residual variance differs between groups.
The Gibbs sampler can be used to generate samples of group specific
residual variances. Subsequently, these draws can be used to check the
assumption of between-group differences in the Level 1 residual variance.

4.1 Highest Posterior Density Intervals

Here, two tests for heteroscedasticity at Level 1 in case of two or more
groups are considered that are easy to compute in combination with the
use of a Gibbs sampler. Testing the equality of variances of two or more
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grouped residuals at Level 1 coincides with the hypothesis that samples
of residuals (eq,... ,er) have a common variance 0. That is, samples
drawn from the marginal distributions of the group specific variances
have the same location. The sampled values are used to estimate the
posterior means of (7?, [ =1,...,L but can also be used to test the
hypothesis, 02 = ... = 0'% against the alternative 012 #+ 012, for at least
one | # I'. Under the null-hypothesis the L samples are drawn from a
common population.

In case of two groups at Level 1, the variances of two Normal distri-
butions, denoted as 02 and 03, are compared. By looking at the highest
posterior density interval of 03/c% it can be judged if the residual vari-
ance of group 1 differ from group 2. Since

o3/s3
o/s?

F(ny—1,n5—1) (5.11)

where 7 =37, (6,5 — Xijﬁj)Q for i = 1,2, it follows that

0'2 82
U_g ~ S_g (ng —1,n9 — 1), (5.12)
1 1

see, Box and Tiao (1973, pp. 110-112). The mode of the distribution
of F is 1, thus the mode of the posterior distribution of ¢3/0? is s3/s?.
Using the Gibbs sampler, the limits of the HPD interval are specified by
the F' distribution in combination with an estimate of s3/s3.

To insure that comparisons of L scale parameters ((7%, ... ,O'%) are
unaffected by any linear recoding of the data, consider (L — 1) linearly
independent contrasts in log 0'l2. So, let A; = log (7% —log 0'%. The point
Ay = 0 is included in the highest posterior density region of content
(1 — ) if and only if

PpAly)>p(Aoy)|y) <1l-a

The density function p (A |y) is a monotonic decreasing function of a
function with parameters (712 and 5% which is asymptotically distributed
as X%—lv asn; —oo,l=1,...,L, where 512 is the mean sum of squares
in group [ (Box & Tiao, 1973, pp. 133-135). In case of the hypothesis
Ao = 0, which corresponds to the situation 04 = ... = 0'%, this function

becomes

L
My =— an (log s — 10g§2) (5.13)
=1
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where 32 = & SOL myst. Tt follows that

lim P(p(A|y) >p(Aoly) |y) = P (31 < Mo).

n;—00

Hence, for large samples, the point Ay = 0 is included in the (1 — «)
highest posterior density region if

Mo <X} 1.0 (5.14)

For moderate sample sizes Bartlett’s approximation can be used to ap-
proximate the distribution with greater accuracy (Box & Tiao, 1973, pp.
135-136). It follows that,

PRI >y ¥ 2P (Mo <y ). (619

where A = ﬁ (Zlel nl_l — N’l). The difficulty in practice with
this test for equal variances is the extreme sensitivity to the assumption
of normality.

The expression on the right of (5.13) is computed by taking the mean
over the computed values of (5.13) in every iteration of the Gibbs sam-
pler. Notice that it is not necessary to estimate the model with the
assumption of heteroscedasticity on level 1, because the value of 02 can
be passed on in the Gibbs sampler. That is, sample (fl2, Il=1,...,L,
from the conditional distribution given (8, 3), but pass on the sampled
o2, based on (0, 3), to update the conditional values of the other model
parameters in the Gibbs sampler. Group specific variances are sampled
separately but the variances are equal to the overall sampling variance
02, in case the null-hypothesis of equal variances is true.

It is possible to compute the highest posterior density of (0’%, ... ,0’%)
given the observed data by integrating over the random effects (6, 3)
and computing the probability density, in every iteration of the Gibbs
sampler. The highest posterior density region should be constructed in
such a way that the probability of every set of interior points is at least
as large that of any set of exterior points. Further, the region should be
such that for a given probability, it occupies the smallest possible volume
in the parameter space. The obtained vectors of parameter values can be
used to construct such a region. Accordingly, the equality of variances
can be tested by checking if the vector ((7%, cen ,(7%) = 0 lies within the
highest posterior density region.
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4.2 Normal Approximation to the Posterior Distribution

Another test of equality of variances is obtained by approximating
the posterior distribution of the individual group specific variances by
a normal distribution. If the posterior distributions are unimodal and
roughly symmetric they can be approximated by a normal distribution
centered at the mode (Bernardo & Smith, 1994, pp. 287-288; Gelman,
Carlin, Stern, & Rubin, 1995, pp. 94-96). The approximation of the
posterior distribution of log <(7,2) will turn out convenient since unknown
parameters will enter only into the mean and not in the variance of the
approximated distribution. Using a Taylor series expansion of log ((7,2)
it follows that

P (log o? | 0(1)7ﬂ(l),y> ~N (IogE%, [I <10g3%>]71> , (5.16)

forl = 1,...,L where 0" and B(l) denote the ability parameters and
regression coefficients at Level 1 corresponding to group {. Further, log 3%
is the mode of the posterior distribution and [ (Iog 3%) is the observed
information evaluated at the mode. With a noninformative prior locally
uniform in log (712 it follows that

P (logrfl2 | 0(1),B(l),y> ~N <log 52, nz) . (5.17)
1
So the problem of testing 0 = ... = 02 is reduced to that of testing
the equality of L means of independent normally distributed variables
s, = log (812) . This problem simplifies in the particular case that the
number of observations per group are equal, that is, n; = n. A test for
testing the equality of the means of the L normal distributions is

Yoy (57 =)
-1 >C, (5.18)

where 2/ (n — 1) is the common variance of the s; and where C is deter-
mined by

/Oo s (y) dy = o (5.19)
JC

If the observations per group differ then the transformation s;/A;, with
A =2/ (ng — 1), results in a test which rejects when

ZL:(S_;>2 M>C (5.20)

=1 N Zlel (1/>\%) 7
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where C' is determined by (5.19) see, Lehmann (1986, pp. 377). The
Gibbs sampler is used to estimate the s} for every group l. That is, after
a sufficient number of iterations, the test statistic is computed to test
the homogeneity of variances.

Both parametric tests for equality of variances are highly sensitive to
the assumption of normality and should be used with some carefulness.
The assumption of normality can be checked by using the Student’s t-
distribution in place of the normal distribution to assess the sensitivity
to the normal assumption by varying the degrees of freedom from large
to small (see, e.g., Gelman et al., 1995, pp. 349; Seltzer, 1993).

5. Choice of Priors

Prior information about the parameters of the model is usually repre-
sented by an appropriately chosen probability distribution. A distinction
can be made between two types of priors: data-based or informative pri-
ors, founded on information from past data and nondata-based, nonin-
formative or vague priors, arising from, for example, theoretical consid-
erations. Incorporating noninformative priors in the analysis is done in
such a way that the mathematical operations can be done conveniently.
The easiest way is to use natural conjugate priors which are useful in
representing prior information. In the former chapters, noninformative
conjugated priors were used to reflect vague ideas about the distribution
of the parameters. In the fully Bayesian approach one must be aware
that the obtained parameters may be sensitive to the choice of priors.
Using various priors and comparing results can provide information on
their impact. Below, prior choices and the importance of recalculating
the marginal posteriors with alternative priors are discussed further.

Many noninformative priors are improper, that is, they do not inte-
grate to a finite number. Kass and Wasserman (1996) discuss several
problems caused by improper priors. Here, attention is focused on im-
proper posteriors.The complexity of the multilevel IRT model makes it
difficult to analytically check if the posteriors are proper. A more easy
way is to use alternative priors and check the results for agreement.

Avoiding improper posterior distributions can be done by using proper
conjugate priors that are diffuse (Carlin & Louis, 1996; Gelfand, Hills,
Racine-Poon, & Smith, 1990). This means that its density is slowly
varying over the region in which the likelihood function is concentrated.
It is often possible to choose the spread in a proper prior suitable large to
remain vague. An alternative to Jeffreys’ prior for the Level 1 variance
02 is an inverse chi-square prior with degrees of freedom v small. With
1 < v1 < 4 the inverse chi-square distribution has an infinite variance,
so the prior information is weak relative to the information provided
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by the data. Furthermore, the prior density does not become infinitely
large as 0 approaches zero. It follows that the Gibbs sampler includes
the conditional distribution of 02 given @ and 3,

p(0?]6,8) cxp(0]B,0%) p(c?v1,5)

Nivy g

oc((72>_( 2 >exp <2_—012 (52+53)>, (5.21)

where S? is the sum of squares at Level 1, N = Z}]:l n; and Sy the scale

parameter of the prior for 02. The conditional distribution of o given 6

N+V1 52+88
2 0T 2

In the Level 2 model, an inverse Wishart distribution with small degrees

of freedom v9 can be used as a diffuse proper prior for T. It follows that

and 3 is an inverse-gamma distribution with parameters (

T ~ inv — Wishart (1/2 +J,(S+ Sl)_1> (5.22)

where v > () +1, the dimension of 3, S is the weighted sum of squares
at Level 2 and Sy a positive definite scale matrix.

The difficulty with both priors lies in the specification of the scale
parameters (Sg,S1) . Some idea about the values of the scale parameters
could be obtained by estimating the multilevel parameters with ability
parameters estimated from the program Bilog-MG (Zimowski, Muraki,
Mislevy, & Bock, 1996). This two-stage estimation procedure ignores the
uncertainty concerning @ in the estimation of the multilevel parameters,
and, on the other hand, in the estimation of 8 the multilevel structure
is ignored.

Conjugated proper prior information for v can be expressed as a nor-
mal distribution, that is,

0 ad N (707 E’Y)

where both parameters, expectation 7, and variance ¥,, must be spec-
ified. A diffuse proper prior is obtained by defining a very large spread.
Another way to handle improper priors is to truncate the domain to a
compact region, which will result in a proper prior. For example, Jef-
freys’ prior, v ~ ¢, defined on a compact space A, results in a proper
prior, and the full conditional of v given 3, T becomes

J
p(v 18,1 o« [[p(B; | % T) I (v €A)

=1
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where I (.) is an indicator function. However the impropriety of Jeffreys’
prior, v ~ ¢, does not result in an improper posterior,

c [p(BT|v)dy

where ¢ cancels. The technique of truncating the domain of an improper
prior can also be used for improper priors for the variance components.
Obviously, restricting the domain will result in a more informative prior.

The normal distribution can be used as an informative prior for the
difficulty parameter. Specifying this distribution with a large spread re-
sults in a diffuse proper conjugated prior. A noninformative prior for
the discrimination parameter must at least express positivity (Mislevy,
1986). This can be accomplished by assuming that the distribution of
ag,k =1,... K, is lognormal. The lognormal prior is a non-conjugate
prior which leads to difficulties in sampling from the full conditional
distribution of the discrimination parameter. The Metropolis-Hastings
algorithm can be used to sample from approximate full conditional dis-
tributions whilst maintaining the stationary distribution of the Markov
chain (Gilks, 1996; Tierney, 1994). Therefore, sampling from the full
conditional consists of the following three steps:

p(v|B,T)= (5.23)

1. Sample aj}, from p (ax; 1, 0?)
2. Sample u from U (0, 1)

1 p(v&|0.a} br )p(a);p,0%)
7 p(yel0,ak,br)p(ar;1,02)

3. if u < min accept aj, else holds the old value

of ag.

It is also possible to change the prior specifications, (,u, (72) , during the
estimation procedure, see, for example, Patz and Junker (1999b). This
method, labeled Metropolis-Hastings-within-Gibbs, produces a different
Markov chain but with the same stationary distribution. If a parameter
cannot be sampled directly from its complete conditional distribution, a
Metroplis step can be incorporated to sample from the full conditional.
It must be mentioned that the convergence of the algorithm is depended
on the proposal distribution in the Metropolis-Hastings step. Further,
the parameters of the proposal distribution must be chosen carefully to
establish an acceptable convergence rate for the Markov chain.

The specification of diffuse proper priors avoids, in most cases, pos-
sible problems as improper posteriors. Kass and Wasserman (1996)
pointed out that possible problems can still occur if the prior domi-
nates the data. In data dominated cases, that is, when the posterior



100 MULTILEVEL IRT: A BAYESIAN PERSPECTIVE

is dominated by a peaked likelihood, the use of improper and diffuse
proper priors remains acceptable. Determining whether a posterior is
data dominated is hard to establish. A possible solution is to use several
noninformative priors and to check the results for agreement.

6. An Analysis of a Dutch Primary School
Mathematics Test

This section is concerned with the study of a primary school leaving
test. In Chapter 3, this dataset was analyzed to compare parameter es-
timates of a multilevel IRT model and an hierarchical linear model using
observed scores. Here, the goodness of fit of the multilevel IRT model
will be analyzed. Residuals at different levels are analyzed, outliers are
identified and different models are compared. Further, heteroscedastic-
ity at Level 1 is tested.

The dataset consisted of responses from 2156 grade 8 students, un-
equally spread over 97 schools, to 18 mathematics items taken from the
school leaving examination developed by the National Institute for Ed-
ucational Measurement (Cito). Of the 97 schools sampled, 72 schools
regularly participated in the school leaving examination, denoted as Cito
schools and the remaining 25 schools will be denoted as the non-Cito
schools. Socio-economic status (SES), non-verbal intelligence test (ISI)
and Gender were used as predictors for the students’ achievement. SES
was based on four indicators: the education and occupation level of both
parents (if present). Predictors SES and ISI were normalized and stan-
dardized. The dichotomous predictor Gender was an indicator variable
equal to 0 for males and equal to 1 for females. Finally, a predictor
variable labeled End equaled 1 if the school participates in the school
leaving test, and 0 if this was not the case.

Students were clustered over schools with a distinction between Cito
and non-Cito schools. Consider the model M; given by

01 = Bo, + e (5.24)
Boj = Yoo + Yo End; + u;

where ¢;; ~ N <O,(72) , ugj ~ N <O,T(2)>. The model contains random
groups and random variation within groups. The dependent variable
equals the sum of a general mean vy, a random effect at the school
level, ug;, and a random effect at the individual level, e;;, corrected for
the predictor End. The two-parameter normal ogive model is used as
measurement model. In Table 5.1, the estimates of the parameters is-
sued from the Gibbs sampler are given under the label IRT Model Mj.
The reported standard deviations and HPD regions are the posterior
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Table 5.1. Parameter estimates of a multilevel IRT model with explanatory variable
End on Level 2.

IRT Model M1

Fixed Effects Coefficient s.d. HPD
Yoo —.273 210 [—.621,.067]
Yo1 463 240 [.072,.854]
Random Effects Variance Component  s.d. HPD
o2 .593 .071 [.476,.707)
T3 .204 .046  [.130,.275]

standard deviations and the 90% highest posterior density intervals, re-
spectively.

The general mean achievement of the students was zero for those at-
tending non-Cito schools and slightly higher for the students attending
Cito schools. The intraclass-correlation coefficient was approximately
.26, which is the proportion of variance accounted for by group mem-
bership given the explanatory variable End.

The behavior of the Bayesian latent residuals for this data set were
considered. The Bayesian latent residuals, the probabilities of a cor-
rect response, and the outlying probabilities, that is, the probabilities
that the residuals were larger than 2, were estimated using formulae
(5.4),(5.5),(5.9), and (5.10). In Figure 5.1, the Bayesian latent resid-
uals, €451, are plotted against the probabilities of a correct response of
person ij to item k, p;jx, and the outlying probabilities. The residuals
were grouped by the value of y; . If the answer was correct, y;;x = 1,
the Bayesian residual, e;5;, was negative, otherwise, it was positive. In
general, it was possible that a correct answer corresponded with a nega-
tive residual and the other way around. Successes, y;;; = 1, with fitted
probabilities close to one and failures, y;;, = 0, with fitted probabilities
close to zero corresponded to small absolute values of the residuals. In
these cases, the fitted probabilities agreed with the observed data. The
outlying probability increased if the value of the residuals increased. The
points with low fitted probabilities corresponding to correct answers and
high fitted probabilities corresponding to incorrect answers were marked
as outliers. Obviously, Figure 5.1 shows that there are a lot of outliers
so the model doesn’t fit the data very well.
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Outlying, Probability

Figure 5.1. Bayesian latent residuals plotted against the probabilities of a correct
response and the outlying probabilities.

The marginal prior of each residual, €, was standard normal dis-
tributed. Fitted probabilities close to one corresponding to successes and
fitted probabilities close to zero corresponding to failures had residuals
that resembled the standard normal curves. However, the observations
had large influence on the posterior distribution of the residuals when
the fitted probabilities were in conflict with the observations. In Figure
5.2, posterior distributions of the residuals corresponding to Item 17 of
the math test of several students are plotted. In this case, the Bayesian
residuals were easily compared to each other because they were supposed
to have the same spread. Some of the Bayesian residuals were marked as
outliers because their posterior distributions differed from the standard
normal distribution. That is, the conflict between the observations and
the fitted probabilities was expressed in the nonzero location and the
smaller standard deviation of the posterior distribution of these residu-
als. The outlying probability of the largest residual, in Figure 5.2, was
982, The corresponding response pattern showed that all items were
scored correct except for Ttem 17 which was answered correctly by 88%
of the students.
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Posterior density

Bayesian latent residuals

Figure 5.2. Posterior densities of the Bayesian latent residuals corresponding to Item
17 for a number of students.

It was assumed that the non-verbal intelligence test and the socio-
economic status provide information about the achievements on a math
test. These predictors should discriminate more between the students’
achievements. Therefore, Model M, formula (5.24) , was extended with
these Level 1 predictors, that is,

0ij = Bo; + B11SLi; + B2SESi; + eij (5.25)
Boj = Yoo + Yo End; + uoj

B1= "0

By =20

where e;; ~ N <O,(72) and ug; ~ N <O,T(2J> . In the sequel, this model will
be labeled Ms. Here, it was assumed that the effects of the scores of the
intelligence test and the socio-economic status of the students did not
differ per school, that is, the random regression coeflicients were fixed
over schools. The parameter estimates resulting from the Gibbs sampler
are given in Table 5.2.

The residual variance at Level 1 was decreased due to the predictors
at Level 1. The Level 1 residuals were easily estimated as a by-product
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Table 5.2. Parameter estimates of a multilevel IRT model with explanatory variables
ISI and SES on Level 1 and End on Level 2.

IRT Model Ma>

Fixed Effects Coefficient s.d. HPD
Yoo —.248 .210 [—.593,.094]
Yo1 .348 238  [.047,.827]
Y10 .425 .030  [.374,.471]
Y20 .225 .023  [.187,.263]
Random Effects Variance Component  s.d. HPD
o? .380 045 [.294,.442]
T2 .156 .038  [.097,.212]

of the Gibbs sampler, and were assumed to be normally distributed.
The latent variable, 8, depends on the Level 1 and Level 2 residuals but
also on the residuals, €, at the item level. It is impossible to consider
these residuals separately. Except that the Level 1 residuals, e, can
be estimated such that they are unconfounded by the Level 2 residuals
(Snijders & Bosker, 1999, pp. 128-132).

The Level 1 residuals were estimated within each group using only
the Level 1 variables. This had the advantage that the estimates of the
Level 1 residuals were no longer influenced by a Level 2 misspecification.
In Figure 5.3, the posterior means of the standardized Level 1 residuals,
e, are plotted against the corresponding expected values of the standard
normal distribution, according to the rank of e. This was done with the
estimated residuals at Level 1 confounded and unconfounded with the
Level 2 residuals, denoted as posterior means with Level 2 and poste-
rior means without Level 2, respectively. It was remarkable that the
distributions of the residuals had smaller tails than the standard normal
distribution. This indicated that the spread in the achievements of the
students was rather small, although an item response model was used,
instead of sum scores, to distinguish students’ achievements better from
each other.

6.1 Heteroscedasticity

The residuals at level 1 were assumed to have a constant variance,
that is, they were assumed to be homoscedastic. It was investigated if
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Figure 5.3.  Normal probability plot of standardized residuals at Level 1.

the residual variance at Level 1 differed between male and female stu-
dents. Both variances were randomly drawn under the assumption of
equal variances. So, each group specific residual error variance was sam-
pled during the parameter estimation of model (5.25), which assumed
homoscedasticity at Level 1. In Figure 5.4, the top figure shows the
posterior distribution of the group specific residual variance at Level 1
for both the male and the female group, respectively. It can be seen
that the posterior means of the variances did not differ much. The 90%
HPD region of the ratio of the two group specific residual variances was
[.84,1.04]. Thus the point of equal variances was included in the 90 per
cent region. In Figure 5.4, the bottom figure shows the posterior distri-
bution of the variance ratio and illustrates the 90% HPD region. This
ratio consisted of the residual error variance within the male group di-
vided by the residual variance within the female group. The posterior
mean of the variance ratio was shifted towards the left of zero. Therefore,
the residual variance within the female group was slightly, but not signif-
icantly, higher. The other test statistics, formula (5.13) and (5.20), were
computed in every iteration of the Gibbs sampler. Both means of the
computed test statistics corresponded with a p-value of .27. Therefore,
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Figure 5.4.  Testing heteroscedasticity at Level 1.

it can be concluded that there were no indications of residual variance
differences between the male and female group at level 1.

6.2 The Choice of Priors

The use of noninformative prior distributions may lead to problems
in estimating parameters and testing hypothesis. For example, testing
hypotheses by a Bayes factor requires proper prior distributions on the
parameters of interest (see, for example, Kass & Raftery, 1995). Further,
the parameter estimates and test statistics can be sensitive to choice of
priors. In estimation, the influence of the priors is small if the sample is
fairly large. But in hypothesis testing the test statistic can be defined up
to an undefined multiplicative constant leading to unjustified inference.

In this section, the sensitivity of the priors and the improperness of
the posterior distributions are checked by computing the parameter es-
timates and the test statistics using proper informative priors. Proper
inverse chi-square priors were used for both the variance components. To
remain vague, the scale parameter and the degrees of freedom were both
set equal to two. Further, a normal distribution with a large variance
(standard deviation = 100) was used as prior for the difficulty parame-
ters and the fixed effects. The prior distribution for the discrimination
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Table 5.3. Parameter estimates of a multilevel IRT model with explanatory variables
ISI and SES on Level 1 and End on Level 2 using proper informative priors.

IRT Model M3

Fixed Effects Coefficient s.d. HPD
Yoo —.305 .216 [—.669,.040]
Yo1 517 242 [.105,.902]
Y10 .500 .034  [.442,.554]
Yao .264 .027  [.220,.307]
Random Effects Variance Component s.d. HPD
o2 514 .063  [.406,.605]
T2 211 046 [.140,.284]

parameter was a log-normal distribution with mean zero and variance
two. The Metropolis-Hastings algorithm was used to sample the discrim-
ination parameters. Convergence of the Markov chain was established in
the same way as in Chapter 3. In Table 5.3, the estimates of model M3
are given, where model M3 is equal to model Ms, but with proper priors.
The scale of the latent variable 8 changed due to changes of the priors.
Therefore, the parameter estimates in Table 5.3 differ from the estimates
in Table 5.2, where the same model was estimated with noninformative
priors. But the conclusions that can be drawn from both tables are much
the same. The same parameters are significantly different from zero, and
also the intraclass correlation coefficient remains almost the same. Also
tests on heteroscedasticity led to the same conclusions. This indicates
that, in this situation, the use of noninformative priors doesn’t result
to improper posteriors for the parameters of interest. The Bayes factor
was well-defined using proper priors and resulted in a small favour of
Model 3 in comparison to Model 1 with proper priors. Also, the loga-
rithm of the marginal likelihood of the data, f(y | Ms3), was increased,
in comparison to Model 1 using proper priors. Finally, small changes
in the prior specifications, that is, increasing the degrees of freedom, or
changing the scale or mean of the prior distributions did not result in
major differences in the parameter estimates or the Bayes factor.
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7. Discussion

Above, methods for evaluation of the fit of a multilevel IRT model
was discussed. It was shown that Bayesian latent residuals are easily es-
timated and particularly useful in case of dichotomous data. Estimates
of these Bayesian latent residuals can be used to detect outliers. More-
over, outlying probabilities of the residuals are easily computed with the
Gibbs sampler. Together, these estimates provide useful information
regarding the fit of the model. One particular assumption of the multi-
level IRT model is homoscedasticity at Level 1. Several tests are given
to check this assumption. They can be computed as a by-product of the
Gibbs sampler. Finally, the impact of prior distributions was discussed.
The multilevel IRT model was easily estimated with informative priors
and a Metropolis-hastings algorithm can be used to sample parameters
from their conditional distributions. Estimating the model with proper
priors justifies the use of the Bayes factor. This ratio can be used to test
several hypothesis (Kass & Raftery, 1995; Pauler et al., 1999).

One class of tests to check the discrepancy between the model and the
data are the so called posterior predictive checks, introduced by Rubin
(1984). Posterior predictive checks consist of quantifying the extreme-
ness of the observed value of a selected discrepancy. Several general
discrepancies are developed but this can be any function of the data and
the model parameters (Meng, 1994; Gelman et al., 1996). Obviously,
these tests can be used to judge the fit of a multilevel IRT model. More
research is required into the relation between the tests described in this
chapter and posterior predictive checks.

The introduction of the latent data to connect the binary data to
the continuous latent data has several advantages. The problem of esti-
mating all parameters reduces to sampling from standard distributions,
as can be seen in Chapter 3. The latent residuals provide information
concerning the fit of the model and possible outliers are easily detected.
These techniques can be extended to multilevel IRT models with latent
variables in the dependent and independent variables, as described in
Chapter 2. This simulation technique introduces extra randomness in
the estimation procedure, therefore, establishing the convergence of the
algorithm requires extra attention.



Chapter 6

A Stochastic EM Approach

Abstract

Keywords:

An item response (IRT) model is used as a measurement error model for
the dependent variable of a multilevel model. The dependent variable is
latent but can be measured indirectly by using tests or questionnaires.
The advantage of using latent scores as dependent variables of a multi-
level model is that it offers the possibility of modeling response variation
and measurement error and separating the influence of item difficulty
and ability level. The two-parameter normal ogive model is used for the
IRT model. It is shown that the stochastic EM (SEM) algorithm can be
used to estimate the parameters which are close to the maximum likeli-
hood estimates. This algorithm is easily implemented. The estimation
procedure will be compared to an implementation of the Gibbs sampler
in a Bayesian framework. Examples using real data are given.

Bayes estimates, Data Augmentation, Gibbs sampler, item response
theory, Markov chain Monte Carlo, multilevel model, stochastic EM,
two-parameter normal ogive model.

1. Introduction

Many data in educational science have a hierarchical or clustered
structure. For example, in schooling systems students are nested within
schools. Information relevant to educational outcomes is inherently mul-
tilevel or hierarchical. In order to properly understand educational phe-
nomena relevant to schooling, it is important to work with multilevel
models that explicitly take this hierarchical organization into account.
Therefore, multilevel analysis is a common way for properly analyzing

109
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such data (Bryk & Raudenbush, 1992; Goldstein, 1995). Furthermore,
multilevel analysis makes it possible to compare schools in terms of the
achievements of their students and factors can be studied that explain
school differences.

In Chapter 2, a multilevel IRT model is proposed to model such data
and a latent variable is used as outcome in the multilevel analysis. This
approach takes into account that, for example in school effectiveness
research, the students’ abilities are latent variables. A measurement
error model is used to model this latent variable. Tests or questionnaires
consisting of separate items are used to perform a measurement error
analysis. This approach has the advantage that it is no longer assumed
that the error component is independent of the outcome variable, i.e.,
the score of the test taker. Measurement error is defined locally as
the variance of the ability parameter given a response pattern. This
local definition of measurement error results in heteroscedasticity. An
IRT approach to multilevel models gives a more realistic treatment of
measurement error. Besides, contrary to observed scores, latent scores
are test-independent, which offers the possibility of analyzing data from
incomplete designs, such as, for instance, matrix-sampled educational
assessments, where different (groups of) persons respond to different
(sets of) items.

In the field of IRT models some applications of the multilevel model
can be found. Adams, Wilson and Wu (1997) discuss the treatment
of latent variables as outcomes in a regression analysis. They show
that a regression model on latent proficiency variables can be viewed
as a two-level model where the first level consists of the item response
measurement model which serves as a within-student model and the
second level consists of a model on the student population distribution,
which serves as a between-students model. Further, Adams, Wilson and
Wu (1997) show that this approach results in an appropriate treatment
of measurement error in the dependent variable of the regression model.
Raudenbush and Sampson (1999) embedded the Rasch model within
a three-level hierarchical regression model, that is, the Level 1 model
consists of the predictable and random variation among item responses
within each group. Another application of multilevel modeling in the
framework of IRT models was given by Mislevy and Bock (1989) where
group-level and student-level effects are combined in an hierarchical IRT
model. Finally, Patz and Junker (1999b) developed a generic hierarchical
item response model which allow covariates on subjects and covariates
on items.

In Chapter 3, a fully Bayesian estimation procedure is described, and
within this procedure a Markov chain Monte Carlo method (Gibbs sam-
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pler) is used for estimating all parameters. The fully conditional de-
composition of Gelfand and Smith’s (1990) Gibbs sampling produces an
approximation for the posterior distributions of the parameters. That is,
the Gibbs sampler is used to find the mode of the posterior distribution
in a Bayesian framework, taking account of all sources of uncertainty in
the estimation of the parameters. In the present paper, Bayes estimator
will be compared to the maximum likelihood estimator which has attrac-
tive features, as good-large sample properties. More specific properties
of maximum likelihood estimates can be found in, for example, Lehmann
and Casella (1998) and Rao (1973). Besides, the likelihood of the sample
of observations represented by the data is maximized without any prior
knowledge regarding the parameters of interest.

The likelihood function is complex due to the absence of some part of
the data. Maximizing the likelihood directly is often numerically infea-
sible. The idea is to associate with the given incomplete-data problem,
a complete-data problem for which maximum likelihood estimation is
feasible. That is, the problem of maximizing the likelihood is reformu-
lated in such a way that the maximum likelihood estimates are more
easily computed from a complete-data likelihood. The stochastic EM
(SEM) algorithm is particularly appealing in situations where inference
on complete-data is easy. The algorithm handles complex missing-data
structures in which high-dimensional integrations may be involved. It
imputes values for the missing data and then iteratively performs di-
rect parametric inference based on the complete-data. This makes it
attractive for estimating the multilevel IRT model with latent variables
defined by a complex structural model. Moreover, the parameter esti-
mates resulting from the algorithm are close to the maximum likelihood
estimates. Further applications of the SEM algorithm can be found in,
e.g., Celeux and Diebolt (1985), Celeux, Chauveau, & Diebolt, (1996),
Diebolt and Ip (1996) and Ip (1994).

In the first section, the notation and a general multilevel IRT model
is presented. Next, the principles of SEM and the implementation for
estimating the parameters of a multilevel IRT model are described. Fur-
thermore, a parallel will be drawn between parameter estimation with
SEM and Markov chain Monte Carlo (Gibbs sampler). After that, a
Dutch primary language test will be analyzed and the mentioned esti-
mators will be compared. Finally, the last section contains a discussion
and suggestions for further research.

2. A Multilevel IRT Model

This section contains the basic principles and formulae of a multilevel
IRT model. For a detailed introduction of the model, see Chapter 2 and
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3. In its general form, Level 1 of the two level multilevel model consists of
a regression model, for each of J nesting Level 2 groups (j =1,...,J),
in which the (n; x 1) ability vector 8; is modeled as a function of @
predictor variables (Xi;, ..., Xg;):

where e; is an (n; x 1) vector of residuals, that are assumed to be nor-
mally distributed with mean 0 and variance O'QInj. All @ + 1 regression
parameters, y;, ..., ¢;, are treated as varying across Level 2, although
it is possible to constrain the variation in one or more parameters to zero.
The random regression parameters are treated as outcomes in a Level 2
model

B; = Wy +uj, (6.2)

where u; is a vector of random effects assumed normally distributed
with mean zero and covariance T, W is a matrix consisting of Level 2
characteristics and - is a (S x 1) vector of fixed effects. This corresponds
with the formulation of the multilevel IRT model in Chapter 3, formula
(3.4) and (3.5).

Suppose each of Zj n; persons, labeled i =1,... ,n;,j=1,...,J, are
exposed to K items, labeled k =1,... , K. A binary response Y, = 1
or 0 is recorded. Furthermore it is assumed that, conditionally on the
item and population parameters, the response Y, with realization y;;z,
is an independent Bernoulli random variable, with probability of success
pijk = P (Yijr = 1] 045, ar, by) . The normal ogive model is used to model
the p;jx. This leads to,

pijk = © (arbij — be) (6.3)

where @® denotes the standard normal cumulative distribution func-
tion. Below, the parameters of item k will also be denoted by &,
&, = (ag, bk)t. Notice, the item difficulty is denoted by the usual choice b
while regression coefficients are denoted by 3. The two parameter model
constitutes a discriminatory parameter ag for each item £k =1,... K.
The restriction ar > 0, k = 1,..., K, assure that a student, indexed
tj, with a better ability ;; have a higher probability of getting the Eth
item correct. To eliminate the effect of guessing in a multiple choice
test another set of parameters, the guessing parameters, are introduced
in the so called three parameter model. The probability that a student
correctly answers an item, indexed k, is represented as the sum of the
probabilities that the student guesses and gets the item correct, ¢, plus
the probability that the student does not guess, (1 — ¢x), and gets the



A Stochastic EM Approach 113

item correct, ® (agf;; — by); that is,
P (}/ij =1 | Hz-j,ak, bk,Ck) =cC, + (1 — Ck) 0} (akez-j — bk) . (64)

An elaborate description of both models can be found in the pioneering
work of Birnbaum (1968) and Lord (1980). Discussions and literature
reviews are found in Johnson and Albert (1999) and van der Linden and
Hambleton (1997).

Formulae (6.1) and (6.2) define the structural model and formula (6.3)
or (6.4) the measurement model. Jointly, this defines a multilevel IRT
model which will be estimated using SEM.

3. The SEM Algorithm

The EM (expectation-maximization) algorithm is a well-known ap-
proach for computing maximum likelihood estimation in a wide variety
of situations (see, Dempster, Laird, & Rubin, 1977). Notably, many in-
complete data problems can be handled with the EM algorithm. Also,
latent variable models and random parameter models turn out to be
solvable by EM when they are formulated as missing value problems.
In spite of its many appealing features, the EM algorithm has several
drawbacks. For example, it can converge to local maxima or saddle
points of the log-likelihood function and its limiting position is often
sensitive to starting values. In some models, the computation of the E-
step involves high dimensional integrations. Therefore, the E-step can
be computationally difficult.

SEM (Celeux & Diebolt, 1985) provides an alternative to EM. Par-
ticularly, in situations where inference based on complete data is easy,
but also in cases where EM is intractable or where the E-step involves
high dimensional integrations.

The basic idea underlying SEM is to impute missing data with plau-
sible values and then update parameters on the basis of the complete-
data. The SEM algorithm consists of two steps. The S-step generates a
complete-data sample by drawing missing data, given the observed data
and a current estimate of the parameters. At the M-step, the maxi-
mum likelihood estimate of the parameters is computed, based on the
complete-data. The entire procedure is iterated a suflicient number of
times.

Under specific conditions, the array of estimates corresponding to each
draw of pseudo-complete data forms a Markov chain that converges to
a stationary distribution (Ip, 1994). The mean of this stationary dis-
tribution is close to the maximum likelihood estimate and its variance
reflects the information loss due to missing data (Diebolt & Ip, 1996).
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4. Maximum Likelihood Estimation

Let Y be the observed random sample. The values of the Level 1 and
Level 2 explanatory variables are known, denoted as, X and W, respec-
tively. The model has parameters 8, &, Level 1 regression coefficients
3, Level 2 regression coefficients v and variance components o2 and T.
The observed or incomplete-data likelihood of the parameters of interest
is given by

(&% Ty) =[] / I1 /P(yz‘j | 6i5,€) g (035 | B;,0°) dbyy
i L

h(B; |~,T)dB;, (6.5)

where p (yi; | 0i5,&) is the IRT model, formula (6.3) , specifying the prob-
ability of the observing response pattern y;; as a function of the ability
parameter 6;; and the item parameters §. Further, g (02-]- | Bj,O'Q) is the
density of 8;; and h (ﬂj | v, T) is the density of 8,. The marginal like-
lihood entails a multiple integral over 6;; and (3;. Computation of two
dimensional integrals suffices. An EM algorithm is easily implemented
in case all discrimination parameters are equal, that is, in case the mea-
surement error model is the Rasch model (Raudenbush & Sampson,
1999). The probability model is then a member of the regular exponen-
tial family of distributions. The lesser restrictive IRT model, where the
discrimination parameters may differ per item, is widely applicable but
estimating the parameters becomes more difficult. This problem of inte-
gration and maximization relates to the estimation of a random-effects
model for ordinal data and to the bi-factor full information factor analy-
sis model (Gibbons & Bock, 1987; Gibbons & Hedeker, 1992; Hedeker &
Gibbons, 1994). Hedeker and Gibbons (1994) utilized a Gauss-Hermite
quadrature to numerically integrate over the distribution of random ef-
fects. Fisher’s method was used to provide the solution to the likelihood
equation. The numerical integration is feasible in these problems. The
solution can involve summation over a large number of points when the
number of random effects is increased, this could affect the parameter
estimates.

An alternative approach is the stochastic EM algorithm which can
handle these problems and also further developments of the multilevel
model to three or more levels and more complex IRT models, including
a guessing parameter. The likelihood should be defined as a function of
the complete-data in such a way that a simpler likelihood maximization
could be performed if the complete-data were observed. Therefore, as-
sume that there exists a continuous latent variable that underlies each
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binary response. The latent variables 0;; are related to the observed
responses, Yk, of a person, indexed ij, on an item, indexed k. This
observation Yj;x can be interpreted as an indicator that a continuous
variable with normal density is above or below zero. This variable is
denoted as Z;;, with realization z;j, it follows that

Zijk = agbi; — b + €ijk, (6.6)

with g1 ~ N (0,1) and Y, = I (Z;j, > 0). Here, I(.) is an indicator
variable taking the value one if its argument is true and zero otherwise.
The latent variable structure yields a model that is equivalent to the
normal ogive model. This approach follows the procedure of Albert
(1992) and Johnson and Albert (1999). The complete-data likelihood is
given by

lC (‘57 0_2777 Ta z, 07/6) = H Hp (le ’ 02]75) g (Qlj ’ /337 0_2)
JoLds

h(B;17,T), (6.7)
where p(z;; | 0;;,€) represent the IRT model which is normally dis-
tributed according to formula (6.6). The maximization of (6.7) becomes
easily, which will be shown below, due to the fact that the complete-data
likelihood consists of a product of normal densities. In the exponential
family case the stochastic EM estimates converge to the maximum like-
lihood estimates by O (1/n) (Diebolt & Ip, 1995). It must be pointed
out that the SEM algorithm provides only convergence in distribution
and not a pointwise estimator, like EM. This can be obtained by aver-
aging a sufficient number of successive iterations during the estimation
procedure. The values generated by stochastic EM at the M-step, corre-
sponding to each draw of the complete-data, form a Markov chain with
a stationary distribution which is approximately centered at the max-
imum likelihood estimates. The sequence of points represents a set of
good guesses, called the plausible region, with respect to various plau-
sible values of the missing data. Usually, the mean of this stationary
distribution is considered as an estimate for the parameters. But in the
plausible region, the point with the largest observed log-likelihood could
also be considered as an estimate for the parameters, this requires the

extra effort of evaluating the observed log-likelihood in every iteration
(Diebolt & Ip, 1995).

5. Implementation of the SEM Algorithm

The multilevel IRT model can be set up as a missing data problem by
defining 8 and 3 as unobserved variables. The main interest is estimat-
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ing the item parameters, &, the regression coeflicients on Level 2, v, and
the variance on Level 1 and Level 2, 02 and T, respectively. The SEM
procedure, for current values of the parameters &, v, 02 and T, com-
pletes the observed data by drawing pseudo-complete data, and then
computes the maximum likelihood estimates of the parameters based
on the completed data. The first step in implementing SEM is creat-
ing pseudo-complete data. Hence, samples from the joint distribution
of 8,3 | Y,0% ~,T are required. Directly drawing a sample from this
joint conditional distribution is difficult. It turns out to be easier to
use the Gibbs sampler (e.g., see, Gelfand & Smith, 1990; Geman & Ge-
man, 1984) to simulate independent draws from the joint conditional
distribution of 8 and 3. Therefore, introduce a continuous latent vari-
able structure that underlies each binary response, formula (6.6). A
sample from Z,0,3 | Y,€,02%,~, T is obtained by drawing from the
distributions p (z | y,0,€),p (0 | 2,&,3,0°) and p (B 6,0%,~,T). The
proposed Gibbs sampler consists of three steps.

First, consider the distribution of p(z | y,0,&). This conditional dis-
tribution of the latent variables Z given 8,£,Y follows from formula
(6.6) . For the three parameter normal ogive model, formula (6.4) , con-
sider random variables V;;; such that Vj;; = 1 if a student, indexed ij,
knows the correct answer to item k and Vj;, = 0 if the student does not
know the correct answer to item k. The variables Z;j, formula (6.6),
are related to the variables V3. That is, several cases arise depending
on the value of Yj;;. Suppose that Y;;; = 0, then Vi, = 0 and Z;;;, < 0.
Next, if ;5 = 1 and Vj;; = 0, then Z; 5 > 0. Otherwise if ¥ = 1 and
Zijk < 0, then Vi = 1. The Gibbs sampling procedure can be extended
to obtain a sample from the distribution of the underlying dichotomous
latent variables Z;j, and Vi, (Béguin, 2000; Johnson & Albert, 1999).

Second, the ability parameter 6, given pseudo-complete data Z, and
estimates of <£ , 3, (72> are independent and distributed as a mixture of
normal distributions. From (6.1) and (6.6) it follows that,

p(0ij | 2i;,€.8;,0%) o< p(zi | 055,€) p (055 | By, 07)
1 N2 1 )
X exp % (QU — 023> exp F (QU — XZJ,BJ)
with
S e ak (zigk + be)

Qij = 74 5
> k=1 Q%

-1
and v = (Zle a%) . It follows directly from standard Bayesian results

)

for normally distributed observations and a normal prior (e.g., see, Box
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& Tiao, 1973; Lindley & Smith, 1972) that
/9\2' v+ X8 o2 1

2

02J|Z2J7€76j70- NN( 1/U+1/0’2 71/1)4—1/0'2
Notice that the posterior mean is a composite estimator; as the sampling
variance v of 0;; increases, the relative amount of weight placed on the
prior mean, X;;(3;, increases.

Third, the fully conditional distribution of 3, entails a normal prior
induced by the Level 2 model and normally distributed observations 0;;,
that is,

p(B;105,0%~,T) o p(6;]B8;5°)p(B;17,T)
o (b (5-5) %, (53)
exp (%1 (B, = W) T (8, - Wﬂ))
with B; = (X{X;) ' X10;. Thus
B,186;,0%,~,T ~N(Dd,D), (6.9)

-1 ~
where ¥; = o? (X;X]> ,d = E;lﬁj + T_1Wj'y and variance com-

—1
ponent D = (E;l —|—T’1) . It Xy, 5 =1,...,J, does not have a
full column rank, X;Xj has no inverse and the least squares estima-

tor, Bj, is not the unique solution to the normal equations. Besides, if
X;Xj, when in the form of a correlation matrix, is not nearly a unit
matrix, the least squares estimates are sensitive to errors. Estimates
depending on a generalized inverse of X:X; are not an estimator for 3
because it depends entirely on what generalized inverse is used in obtain-
ing the estimator (Searle, 1971). Estimation of 3; based on the matrix

(X;Xj + kIQ+1) ,k > 0 rather than on X;Xj has been found to be a

procedure that can help to circumvent the difficulties associated with
the usual least squares estimates (Hoerl & Kennard, 1970).

At each step, the fully conditional distributions of Z and 6 are con-
sidered at the level of persons, samples are drawn for i = 1,... nj,
j=1,...,J. The regression coeflicients on Level 1 are sampled for each
group j. Eventually, an independent sample (Z, 0, 3) is obtained after
sufficient draws from the sequentially updated fully conditional distri-
butions.
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In case of normal components, a more eflicient alternative of updat-
ing is a block Gibbs update (Gelman, Carlin, Stern, & Rubin, 1995;
Hobert & Geyer, 1998; Roberts & Sahu, 1997 ). In that case, all of the
normal components are updated simultaneously. In order to use this
block Gibbs sampler, the density of 8,3 | Z, &, 0%, v, T is needed. Treat
the regression on the regression parameters, 3, on Level 1 as J (Q + 1)
prior ‘data points’. The joint fully conditional distribution of 8y, 3;
can be deduced from the weighted linear regression of ‘observations’ Z;
on (0]-,[3]-) , using ‘explanatory variables’ X% and ‘variance matrix’ X7,
where

[ z;+Db agl,, O
Z; = 0 , X = Ly =X |,
L Wj 0 IQ+1
B [I,x O 0
¥ = 0 o, O
0 0o T

It follows that,
t 5 a2\ NRE T
with
=~ S\ N e -1 L
(%@-) = (Xj %] Xj> Xj x5 Zj.

The proposed Gibbs sampler samples successively from (6.6) and
(6.10) until an independent sample (Z, 0, 3) has been obtained. That is,
until convergence of the Gibbs sampler has occurred. This completes the
stochastic S-step of the SEM algorithm. The attained pseudo-complete
data (Z,0,3) is then used to estimate (§,0%,7,T). Therefore, the M-
step entails computing the estimates of (S, %7, T) .

Because the item-parameters depend only on the latent data Z and
the ability parameters, 6, according to (6.6), it follows that

Zp,=[0 —1]& +ep,

where Z = (Z11ks- - » Znyths - - -+ Znyak)’ and € = (€115, - -+ ,Enyap)’ 1
a random sample from N (0,1). Therefore,

&, = (H'H) ™' H'z, (6.11)

with H = [ 0 -1 ] The E stands for an estimate of the item pa-
rameters based on the pseudo-complete data (Z,0,3). The estimate
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exclusively based on the observed data are marked with a hat. The
same notation will be used for the other parameters.

The estimator of the variance on Level 1, o2, follows directly from the
regression of 8 on X, with 3 as regression coefficients. Thus,

1 LSS (0 - X8 (612)

7j=11i=1

which is the maximum likelihood estimator of o given 8 and 3.
The Level 2 model for school j can be written as

ﬂj = Wj")/ + u;, (613)

with E(u;) = 0, E (ujuz-) = T. Because (6.13) is a normal linear
model given regression coefficients 3; it follows that the generalized least
squares estimator of -~y is

—1

J J
Y= (> Wit'w; | > Wit '8, (6.14)
j=1

j=1
Likewise it follows that the estimator of T is

T- 15 (5, - W) (6, - W) (6.15)
j=1

Notice that an Iterative Generalized Least Squares algorithm (Goldstein,
1995) is needed to compute both estimates in formula (6.14) and (6.15) .

In conclusion, the algorithm to estimate all parameters involves iter-
ating two steps. At the S-step, the missing data are sampled, given the
observed data and a current estimate of the parameters. Here the S-step
is made up of formula (6.6) and (6.10). With use of the Gibbs sampler a
pseudo-complete sample is drawn. At the M-step, the missing data are
imputed to estimate all parameters, see formula (6.11),(6.12),(6.14)
and (6.15).

Eventually, plausible values or estimates from the M-step, based on
the augmented data from the S-step, are used in the estimation of the
parameters of interest. Therefore, define the parameters of interest

(E 02,7, ) The array of points generated by SEM are a Markov
chain, denoted by {5 ) g2m) 3(m) pm) m e N} = {S\(m),m € N},
where m denotes the iteration number. Under some conditions, (Ip,

1994), the sequence {S\(m)} is approximately stationary. That is, the
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stationary distribution of X(m) does not change as m takes on different

values. As noted above, usually, the mean of the stationary distribution
is considered as an estimate of A. That is, after a burn-in period of Mj
iterations,

M

A= (673 7) =5 oy (&, 72m.4m, ).

(6.16)

Each step of the SEM algorithm incorporates a stochastic step, which
prevents the sequence from being immobilized near a saddle point. Ac-
cordingly, SEM does not terminate in any stationary point.

As noted above, another estimator for the parameters can also be
derived from the values in the plausible region, generated at each M-
step. This estimator from the stochastic EM iterates is the point with
the largest observed log-likelihood, formula(6.5),

A" = arg 1£¢a§XMl Ay)- (6.17)

Obtaining this point requires the calculation of this incomplete log-
likelihood in every iteration of the stochastic EM algorithm. Gauss-
Hermite quadrature can be used to carry out the integration over the
parameters (8, 3). It is also possible to compute the incomplete likeli-
hood via the expected complete likelihood, that is,

LA ly)=E[l*(A]y,Z%)] = / Xy, z") k(2" |y, A)dz”, (6.18)
JZ
where Z* represent the augmented data (Z,0,3) and k (z* | y, A) is the
density of the missing data conditional on the observed data. In this
case, computing A* via (6.18) involves a higher dimensional integration
and is consequently computational more demanding. A rough method
as Monte Carlo integration of (6.18) is rather difficult because it needs
independent samples of the augmented data Z* at every iteration. The
point in the plausible region which maximizes the observed likelihood is
an approximation of the actual maximum likelihood estimator related
to the observed likelihood, formula (6.5). For a sufficient number of
stochastic EM iterates, that is, for a sufficient number of points in the
plausible region gets A* close to the maximum likelihood estimator. This
point can also be used to check whether the stochastic EM estimator,
A, approximates the maximum likelihood estimator of formula (6.5) .
The variances of the estimators are estimated by the inverse of the
observed information matrix evaluated at A = X, formula (6.16), or at
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the point with the largest observed likelihood A = A*, formula (6.17).
The observed information matrix is easily computed using Louis iden-

tity which relates the observed-data likelihood and the complete-data
likelihood (Louis, 1982), that is

2l (A y) d21° (\; 7*) di° (A; z*)
ELILACAIR SRy P S LIV _E Az 6.19
XA’ [ DN y} VA [ e y] » (6:19)

where the expectation is taken with respect to k (z* | y,A). The right-
hand side of (6.19) is computed with augmented data samples generated

independently from k& (z* | y,A) where X is fixed at X or A*.

6. SEM in Comparison with the Gibbs Sampling
Approach

It seems worthwhile to compare this implementation of SEM with a
fully conditional decomposition of the Gelfand and Smith’s (1990) Gibbs
sampling, described in Fox and Glas (2001). Define the augmented data
Z* = (Z,0,3) and the parameters of interest as A. This Gibbs sampler
generates samples from the following posterior distribution,

p(Aly) = / /IP(A\Z*J)p(Z*\X,y) dz*p (X' | y)dN.  (6.20)

In fact, the described Gibbs sampler generates samples from the marginal
posterior distributions of parameters &, 02,~ and T, including priors for
the parameters. There are two natural estimates for A following from
formula (6.20) (see, Lehmann & Casella, 1998, pp. 257):

- 1M )

TN mzzl)\ (021
R 1 M m)
Am = i m§:1E ()\ |y, z" ™ ) ) (6.22)

Here, 3\5 is called the empirical estimator (Liu, Wong, & Kong, 1994).
The estimator Xm which is often easy to compute assuming that the con-
ditional density p (X | z*,y) is simple, is called the mixture estimator.
Finally, the following difference can be notified between these estimates.
The SEM estimate, formula (6.16), and the mixture estimate result-
ing from the Gibbs sampler calculates the means of the expectations
of the parameters given the pseudo-complete data, whereas the empir-
ical estimate resulting from the Gibbs sampler calculates the means of
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the marginal posterior distributions of the parameters. Liu et al. (1994)
showed that the mixture estimator is always better in this situation, i.e.,
it has a smaller variance than the empirical estimator. That is, the mix-
ture estimator has a smaller variance attributable to the Gibbs sampler
in estimating the posterior mean. The posterior variances and credibility
intervals are estimated from the sampled values obtained from the Gibbs
sampler. Because the posterior density of A given Z*, 'Y contains a prior
for A in formula (6.20), it follows that the mixture estimate, formula
(6.22), differs from the SEM estimate, formula (6.16). Moreover, the
differences between the sampling schemes will cause different estimates.

7. A Dutch Primary School Language Test

To compare the SEM algorithm with the MCMC algorithm, a dataset
from a Dutch primary school language test was analyzed. A multilevel
IRT model was estimated with the SEM algorithm and the Gibbs sam-
pler. Furthermore, a comparison was made with a hierarchical model
using observed scores.

This research project entailed in investigating whether schools that
participate in the central primary school leaving test in the Netherlands
on a regular basis perform better than schools that do not participate
on a regular basis. The pupils of 97 schools were given a language
test for grade 8 students. In this analysis, 24 items designed by the
Netherlands National Institute for Educational Measurement (Cito) were
used. These items were taken from a standardized Cito test used in most
Dutch schools at grade 8, called the primary school leaving test. The
total number of pupils for which data were available was 2156. Schools
participating in the Cito test (72 schools) on a regular basis are called
the Cito schools. The remaining 25 schools will be called the non-Cito
schools.

Two students’ characteristics were used as a predictor for the students’
achievement: socio-economic status (SES) and a non-verbal intelligence
test (ISI). The SES is based on four indicators: the education and occu-
pation of the parents. Non-verbal intelligence was measured in grade 7
by using three parts of an intelligence test. The predictors ISI and SES
were normally standardized. A predictor labeled End equaled 1 if the
school participates in the school leaving test, and equals 0 if this is not
the case. A complete description of the data can be found in (Doolaard,
1999, pp. 57). The same predictors were used as in the data-set of
Chapter 3. But in this study the dependent variable corresponded to a
language test instead of a math test.
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The structural model used in the analysis is given by,

0ij = Boj + B11S1i; + BoSES;; + €55 (6.23)
Boj = 00 T YorEnd; + uo;

B1 =10

B2 = 720,

where €;; ~ N <O,(72> and ug; v~ N (0,72) . The two-parameter normal
ogive model was used as the measurement model.

The following procedure was used to obtain initial estimates. Ini-
tial values of the item parameters were computed using Bilog-MG (Zi-
mowski, Muraki, Mislevy, & Bock, 1996). A distinct ability distribution
was used for every subgroup j. Then the MCMC procedure by Albert
(1992) for estimating the normal ogive model was run. As the Gibbs
sampler had reached convergence the means of the sampled values of
(Z,0,&) were computed. An EM algorithm was used for estimating
<,3, %7, T) with the 8 (see, for instance Bryk & Raudenbush, 1992).

The number of iterations necessary to reach convergence of the SEM
algorithm cannot be evaluated simply in a general setting. For the Dutch
primary leaving test described above, 5,000 iterations were “enough”
in the sense that after a burn-in period of 1,000 iterations a substan-
tial increase in the number of iterations did not perturb the values of
ergodic averages. Additionally, at every iteration 25 Gibbs sampling
steps were taken to generate an independent sample of the pseudo-
complete data. The differences in the results were negligible when rang-
ing these Gibbs sampling steps between 20 to 75. The fully conditional
decomposition of Gibbs sampling as in Chapter 3 was run for 20,000
iterations, with a burn-in period of 5,000 iterations. Non-informative
priors were used for the parameters in the Gibbs sampling implemen-
tation. A non-informative prior for the difficulty and discrimination
parameter, insuring that each item will have a positive discrimination
index, and assuming independence between the item difficulty and dis-
crimination parameter leads to the simultaneous noninformative prior
p(€) o TTE, I (a > 0) . A uniform prior was placed on the fixed effects
and on the variance components, that is, p(vy) o ¢, p ((72) o« 1/0? and
p(7%) o 1/72.

First, the parameter estimates of the measurements model are con-
sidered, after that, the parameter estimates of the structural model and
further implications of these estimates are considered.

In Table 6.1 and Table 6.2, the estimates of the item parameters re-
sulting from the Gibbs sampler with the mixture estimator and the SEM
algorithm are given. The SEM algorithm produces two estimators, the
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Table 6.1. Parameter estimates of the discrimination parameter with SEM and the
Gibbs sampler.

SEM Gibbs Sampler
mean max
Item a sd a sd a psd CI
1 .856 .075 .816 .074 784 .074 [0.646,0.938]
2 .654 .066 .619 .064 .597 .061 [0.485,0.724]
3 .928 .086 1.038 .085 .870 .096 [0.698,1.073]
4 .668 .057 .631 .064 .628 .059 [0.520,0.751]
5 1.158 .086 1.058 .087 1.089 .099 [0.906,1.296]
6 1.190 .087 1.165 .085 1.097 .091 [0.927,1.290]
7 297 .052 .280 .056 .265 .042 [0.186,0.351]
8 1.454 .072 1.445 .074 1.407 .122 [1.186,1.663]
9 968 .072 .894 .074 911 .078 [0.767,1.078]
10 972 .073 912 .072 910 .078 [0.765,1.073]
11 927 .083 .845 .082 .845 .084 [0.691,1.025]
12 1.019 .075 981 .075 .960 .088 [0.796,1.143]
13 .738 .060 .652 .061 .696 .064 [0.578,0.830]
14 1.112 .076 1.047 .075 1.055 .092 [0.888,1.250]
15 746 .062 .681 .062 .698 .066 [0.575,0.833]
16 .562 .055 571 .053 525 .053 [0.427,0.632]
17 .685 .058 .641 .057 .647 .061 [0.533,0.775]
18 1.042 .062 964 .062 1.011 .087 [0.850,1.195]
19 1.174 .083 1.050 .084 1.084 .107 [0.888,1.304]
20 977 .071 .884 .072 914 .082 [0.764,1.083]
21 .973 .080 .898 .080 .881 .075 [0.743,1.037]
22 955 .071 909 .072 .893 .082 [0.741,1.062]
23 1.113 .063 982 .063 1.081 .089 [0.916,1.265]
24 1 0 1 0 1 0 (1,1]

mean of the stationary distribution, formula (6.16), labeled under the
column mean, and the point corresponding to the largest observed like-
lihood, formula (6.17), labeled under the column max. The multilevel
IRT model was identified by fixing two item-parameters, here, agq = 1
and 624 =0.

The columns labeled sd present the standard deviations of the esti-
mates resulting from the SEM algorithm using Louis identity, formula
(6.19). In this application, 100 samples of (Z,8,3) were obtained to
compute the observed information matrix. Unlike the SEM estimates are
the estimates resulting from the Gibbs sampler calculated in a Bayesian
framework. Therefore the posterior standard deviations of the param-
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Table 6.2. Parameter estimates of the difficulty parameter with SEM and the Gibbs
sampler.

SEM Gibbs Sampler
mean max
Item b sd b sd b psd CI
1 —.227 .049 —.257 .045 —.259 .044 [—.341,—.168]
2 —.169 .045 —.190 .046 —.197 .038 [—.266,—.119]
3 —.843 .048 —.836 .043 —.870 .051 [—.963,—.766]
4 332 .042 315 .042 313 .040 [.241, .396]
5 —.281 .051 —.284 .052 —.312 .056 [—.414,—.195]
6 .708 .059 .733 .059 .663 .060 [553 .790]
7 A75 .041 444 .042 458 .031 [.400, .521]
8 —.086 .048 —.072 .044 —.109 .069 [—.234,.035]
9 .481 .049 .468 .051 455 .051 [.362,.560]
10 .100 .047 .080 .045 .073 .049 [-.016,.176]
11 —.451 .050 —.454 .050 —.487 .048 [—.574,—.388]
12 —.222 .048 —.207 .050 —.249 .051 [—.342,—.143]
13 152 .041 121 .041 133 .042 [.056,.218]
14 .052 .049 .031 .049 026 .055 [-.072,.142]
15 —.045 .043 —.078 .043 —.067 .041 [—.142,.020]
16 216 .041 233 .042 .198 .035 [[133,.271]
17 .243 .041 223 .042 226 .040 [.152,.309]
18 .160 .043 126 .044 147 .054 [.049, .259]
19 —.557 .052 —.591 .050 —.595 .056 [—.698,—.476]
20 —.124 .074 —.132 .068 —.154 .049 [—.244,—.053]
21 .289 .054 .259 .055 244 .048 [156 .346]
22 —.177 .046 —.212 .046 —.205 .048 [—.293,—.105]
23 .199 .043 .154 .043 .184 .055 [.083,.299]
24 0 0 0 0 0 0 [0,0]

eters are denoted by psd. Further, the parameter estimates resulting
from the Gibbs sampler are the posterior means. It can be seen that the
SEM estimates of the item parameters are close to the mixture estimates
resulting from the Gibbs sampler. Confidence intervals are used to com-
pare the uncertainty about the parameter estimates in relation to the
different estimators. The Bayesian analogue of a frequentist confidence
interval is usually referred to as a credibility interval. In the Bayesian
framework the central posterior credibility intervals are calculated as
confidence regions for the parameters. The 95% central posterior credi-
bility intervals are given under the column labeled CI. All SEM estimates
are well within the computed central posterior credibility intervals. No-
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Table 6.3. Parameter estimates of the multilevel model with the Gibbs sampler,
stochastic EM, and HLM using sum scores.

SEM Gibbs Sampler HLM
mean max

Fixed Par. sd Par. sd Par. psd CI Par. sd
Effects

Yoo 334 .204 349 197 327 206 [—.074,.729] 361 .044

Yo1 262 .237 273 225 277 236 [—.183,.740] 223 .051

Y10 184 .014 .196 .013 194 .018  [.160,.231] .156 .010

Ya0 .158 .014 .168 .014 .168 .017  [.136,.204] 127 .011
Random Par. sd Par. sd Par. psd CI Par.
Effects

o 423 .020 1439 .021 445 .027  [.387,.506] 443

T 223 .010 .216 .009 294 027  [.222,.390] .191

table, the posterior standard deviations are, in almost all cases, larger
than the standard deviations related to the SEM estimates. More de-
tailed information concerning this point will be provided later.

Table 6.3 presents the results of estimating the fixed effects and ran-
dom components of the model with the Gibbs sampler and stochastic
EM. The main result of the analysis is that conditionally on SES and
ISI, the Cito schools perform better than the non-Cito schools. The
fixed effect, 7yq;, models the contribution of participating in the school
leaving exam to the ability level of the students via its influence on the
intercept B;. This intercept f; is defined as the expected achievement
of a student in school j when controlling for SES and ISI. Thus a posi-
tive value of v, indicates a positive effect of participating in the school
leaving exam to the students’ abilities. Further, there is a highly sig-
nificant association between the Level 1 predictors ISI and SES and the
ability of the students. Obviously, students with high IST and SES scores
perform better than students with lower scores. The residual variance
for the school-level, 7¢, is the variance of the achievement of students
in school j, By,;, around the grand mean, 74y, when controlling for SES
and ISI. Obviously, the use of a multilevel model is justified, because
a substantial proportion of the variation in the outcome at the student
level was between the schools.
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The fixed and random effects are generally quite the same for the
SEM and the Gibbs sampling estimates, except for the Level 2 variance,
7. The significant difference between the Level 2 variance-estimates re-
sults in different intraclass correlation coeflicients. The proportion of
variance in ability accounted for by group-membership, after control-
ling for the Level 1 predictor variables is .345 according to the SEM
variance-estimates and .330 according to the SEM variance-estimates
which maximizes the observed likelihood. This coefficient is .398 in case
of the variance-estimates resulting from the Gibbs sampler. As an addi-
tional check the fixed effects and variance components are also estimated
from the observed scores using HLM for windows (Bryk, Raudenbush,
& Congdon, 1996). For comparative purposes, the unweighted sums of
the item responses were rescaled such that their mean and variance were
equal to the mean and variance of the posterior estimates of the ability
parameters, respectively. The standard deviations of the HLM estimates
are given under the column labeled sd. The estimate of the Level 2 vari-
ance component is smaller in the HLM analysis whereas the estimate
of ¢ is almost similar in comparison to the other estimates. The intr-
aclass correlation coefficient consisting of these variance components, is
301, which is smaller than the estimates of the intraclass correlation
coefficient from the SEM approach. Furthermore, the estimates of the
fixed effects are smaller except for the main effect, vyy. In conclusion,
the multilevel IRT analysis, estimated with the Gibbs sampler and SEM,
measures a greater variance between students’ abilities which results in
a larger school-level effect. Further, a sharper distinction in students’
achievements is attained.

The standard deviations of the SEM estimates are larger than the
standard deviations of the estimates resulting from the analysis in HLM
using observed scores. Obviously, the estimates resulting from HLM are
based on the observed scores, which results in more accurate estimates,
that is, the HLM analysis does not take the uncertainty of the ability
parameter into account. It can be seen from Tables 6.1 to 6.3 that the
standard deviations related to the stochastic EM estimates are smaller,
in most cases, than the posterior standard deviations. This observation
was also made in Chapter 3 and Glas, Wainer and Bradlow (2000). It
seems that the smaller size of the standard deviations in the frequentist
framework is related to the fact that they are based on an asymptotic
approximation that does not take the skewness into account.

Finally, Figure 6.1 shows the plausible region of the variance compo-
nents. The region of interest contains the parameter estimates of (o, 7),
obtained at every iteration of the stochastic EM algorithm. The most
central point, that is the mean of (o, 7), correspond to the stochastic
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Figure 6.1. Plausible region for (o, 7), generated by the stochastic EM algorithm.

EM estimate of (o,7), formula (6.16). The point with the largest ob-
served log-likelihood, formula (6.17), lies in the circle close to the mean.
The points within the circle represent estimates of (o, 7) with high ob-
served log-likelihood values, that is, the corresponding log-likelihood val-
ues are close to each other and therefore close to the highest observed
log-likelihood. This illustrates the general idea behind stochastic EM.
The parameters of interest are estimated by taking the mean over all
points within the plausible region, where all points correspond to high
observed log-likelihood values. As a result, this estimate lies close to
the maximum likelihood estimate, which is checked by computing the
observed log-likelihood at every iteration.
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8. Discussion

In this chapter, a stochastic EM algorithm is used to estimate the pa-
rameters of a multilevel IRT model. As mentioned, the multilevel IRT
model has several advantages, by treating the dependent ability param-
eters as latent variables in a multilevel model and using an IRT model
to model these variables. Although direct parametric inference is hard
because the likelihood function is very complex, maximum likelihood
estimates can be obtained with the stochastic EM algorithm.

The use of a SEM algorithm for estimating the parameters of a mul-
tilevel IRT model has several appealing features. First, the algorithm
is easy to implement. Second, although the amount of computation in-
volved can be prohibitive, the SEM algorithm can handle the numerical
integrations needed also in cases with more than two levels. Moreover,
there are no limitations to the number of parameters or the number of
explanatory variables. It must be remarked that MML or Bayes model
estimation procedures are possible but require the calculation of two-
dimensional integrals in the case of two levels. The implementation of
the Gibbs sampler also has no limitations to the number of levels (Fox
& Glas, 2001). Moreover, other measurement error models can be used
to model the latent ability parameters.

The comparison with the Gibbs sampler showed that both methods
estimate the parameters by sampling the missing data. SEM performs
direct inference based on the pseudo-complete data whereas the Gibbs
sampler samples the entire posterior distributions of the parameters.
Both methods gave almost similar results. It must be pointed out that
the differences between the standard deviations and the posterior stan-
dard deviations needs further research.

The convergence of this implementation of the algorithm is held up
through the Gibbs sampling procedure for sampling the pseudo-complete
data. The convergence is speeded up by the block Gibbs sampler, but
a further improvement could be the use of another samplings-technique
to sample all pseudo-complete data at once. General techniques for
simulating draws directly from the target density as rejection sampling
or importance sampling (Gelman et al., 1995) could improve the rate
of convergence. Furthermore, the number of iterations needed to get a
stable estimate could be reduced.

Appendix 6.A: Geometric Convergence of SEM

In this section, it will be shown that the convergence of the SEM
algorithm, described above, depends on the convergence of two Markov
chains. Because of the nested structure of the algorithm, it is shown that
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the convergence of one Markov chain can be deduced from the conver-
gence of another Markov chain, which results in the convergence of the
SEM algorithm. First, the Markov chain formed by the imputed pseudo-
complete data at each iteration is considered. Second, the Markov chain
formed by the estimates of the parameters at each iteration will be ob-
served. A consequence of this approach is that it can be shown that
SEM is similar to Data Augmentation (Tanner & Wong, 1987).

As above, define Z* = (Z,0,3) , {Z*(m)} = {Z*(O), YA .} isase
quence of random variables with the Markov property, that is, the future
of the process is independent of the past given only its present value.
Therefore, {Z*(m)} is a Markov chain containing the random variables
{Z*(m),m € N} where Z* takes on values z*, in R™. The probabilistic

motion of the chain {Z*(m)} is defined by a transition (probability) ker-
nel. The Gibbs sampler, as described above, defines a stochastic process
with transition kernel (Gibbs kernel), as defined in formulae (6.6) , (6.8)
and (6.9) ,

K (Z*<m>7z*(m+1>) g (Z<m+1> LN (z<m>,0<m>> ,y>
f (g(m+1) | 7D gim) 52 (9<m>, 5<m>>>
f (5(m+1) ’ 9(m+1)7§, (g(m)) 7fi‘ (5(7%)» , (6.A.1)

where E (Z(m), O(m)) is the maximum likelihood estimate of £ based on

(Z(m), H(m)) , for the other parameters the same notation applies. In the

sequel, the parameters (f, 2., T) are written as A.

Here, convergence of a chain is considered in terms of its transition
probabilities. Convergence has occurred if the chain {Z*(m)} has reached
a stable or stationary state. That is, the strongest form of stability, the
density of Z*(™) does not change as m takes on different values. By
definition there exists a target or stationary density of Z* given the data
Y and the parameters A. Clearly,

W(Z*|A7y):f(z797/8|£70-2777T7Y)7

is the stationary density of the chain {Z*(m)} . This density is invariant
because it satisfies

7 (7 | Ay) = /K(x,z*) (x| Ay) dx, (6.A.2)

which stems from formula (6.A4.1). This invariant density is important
because it defines the stationary process, but it also defines the long
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term or ergodic behavior of the chain. Furthermore, it turns out that
the iterated kernels, formula (6.4.1), converge to this invariant density.
This can be seen as follows. The probability that the chain at x will be
in the set A after m transitions is defined as,

P(zm e A 270 =x) = / K™ (x,2%) dz". (6.4.3)
JA
Thus, after infinite many iterations,

P (Z* cA|z" = X) = lim [ K™ (x,z")dz"

m—00 A

= lim / /Km1 (x,w) K (w,z") dwdz*
JA.

= / /W(Z* | Ay) K (w,z") dwdz*
JA

= / w(z" | Ay)dz". (6.A.4)
JA

This follows from formula (6.4.2) and (6.A4.3) . Here, it will be shown
that not only the convergence of iterated kernels to the invariant distri-
bution is guaranteed, but that also information can be given on the rate
of convergence of the considered Markov chains. Therefore, two defini-
tions will be given that provides information on the rate of convergence
(see, e.g., Meyn & Tweedie, 1993; Tierney, 1994).

DEFINITION 6-6.A.1 (Geometric Ergodicity) A Markov chain, with a
transition kernel K™ (x,.) and invariant distribution 7, is geometrically
ergodic if there exists a nonnegative real-valued function C and constant
p > 1 such that

K™ (x,.) =7y, <C(x)p~™
for all x.

Here, ||.||;, is the total variation norm,

= su A) — inf A
Il = sup je(A) = ot p(A).
which measures the difference between two probability distributions.
The next definition gives a stronger form of ergodicity that comprehends
geometric ergodicity.

DEFINITION 6-6.A.2 (Uniform Ergodicity) A Markov chain, with a
transition kernel K™ (x,.) and invariant distribution 7, is uniformly
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ergodic if there exists a constant C < oo and p > 1 such that
K™ (x,.) —all, <Cp™™,

where ||.||; is defined as the L*-norm,||f|l; = [ |f (6)]d6.

If the Markov chain is uniformly ergodic, the m-step transition prob-
abilities converges, with a uniformly geometric rate to the stationary
distribution of the Markov chain. Meyn and Tweedie (1993, pp. 395)
gave conditions under which a Markov chain is uniformly ergodic. These
conditions will be discussed here to prove that the Markov chain {Z*(m)}
is uniformly ergodic. All parts of the space can be reached by the Markov
chain, no matter what starting point, as a result of the strict positivity of
the Gaussian distributions given by formula (6.A.1) . Therefore, {Z*(m)}
with invariant distribution 7 is irreducible. There are no specific por-
tions of the state space which can only be visited at certain regularly
spaced times, thus the chain is aperiodic. Since K (z*(m),z*(m+1)> is
also continuous and the Z*(™)’s take values in a compact space, {Z*(m)}
is uniformly ergodic. As a result, after a burn-in period, Z*™ is dis-
tributed according to the stationary density =.

The convergence of the SEM algorithm can be described as the it-
erative action of two dual Markov kernels (Diebolt & Robert, 1994).
The first Markov chain is described above. The second Markov chain is
formed by iterations of parameter estimates using the imputed data at
each iteration. It will be shown that the second Markov chain converges
because of the convergence of the first chain {Z*(m)} . That is, it will be
shown that this second Markov chain is geometrically ergodic by means
of the uniform ergodicity of the first Markov chain.

Firstly, the kernel and stationary density of this second chain are ob-
tained. This is done using the principles of Data Augmentation. As a
result, it is shown that this implementation of the SEM algorithm is a
special case of the Data Augmentation algorithm. Secondly, the con-
vergence of the second Markov chain is proven with use of the achieved
formulae of the kernel and stationary distribution.

The SEM algorithm consists of sampling pseudo-complete data Z* =
(Z,0,3) given the data and an estimate of the parameters, say, XN =
(EI,(NIIQ,:)?',’T’) , and estimating the parameters A= (E, 52,'7,'i‘). It is

shown that given Z* = (Z, 0, 8) it is easy to calculate A, using formulae
(6.11),(6.12),(6.14) and (6.15). From this it can be seen that the iter-
ative SEM algorithm induces samples of maximum likelihood estimates
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with the following marginal distribution:

Y (3\ €A y> = / /I(S\(y,z*) € A) ™ (z* | S\I,y) dz* v (3\/ | y) dN
o (6.A.5)

where I (.) is defined as the indicator function and X (y,z*) represents
the functions for estimating the parameters A given the data and the im-
puted data. Specifically, from formulae (6.11), (6.12),(6.14) and (6.15) ,
it can be seen that

Ay, z")=Eg[A|y,z"], (6.A.6)

where the expectation is taken with respect to the stationary distribution
v,

A Monte Carlo implementation to calculate the multiple integrals in
formula (6.4.5) is provided by the Data Augmentation algorithm. To

calculate W (3\ | y) using Monte Carlo integration:
1. Generate X; ¥ (5\/ | y) ,I=1,... L.

2. Generate, for each 5\;, Zj T (z* | X;,y> .

These two steps are alternated repeatedly, say K times. Eventu-
ally, calculate W ()\ €A y) = %Z, % Sl ()\ (v,z*) | y,z}kk) . Step

1 is done by calculating by given the imputed z* and the data y using
A(y,z*) (see, Lehmann & Casella, 1998, pp. 291). Step 2 is done via
the Gibbs sampler defined in the so-called S-step of the SEM algorithm.
Notice, this entire procedure is the SEM algorithm described in the for-
mer section if L = 1. Furthermore, Tanner and Wong (1987) note that
this algorithm will work even if L = 1. Therefore, this implementation
of the SEM algorithm is proven to be an implementation of the Data
Augmentation algorithm of Tanner and Wong (1987).

Formula (6.4.5) and (6.A4.6) shows that W (X ] y) is the invariant
stationary density of the Markov chain {Eg [ |y, z*(m)]} — {X(m)} 7
v(Xy)= / K (NA) o (X |y)aX (6.A.7)

with kernel

K* (S\,,S\) = /I (3\ (y,z*)) ™ (z* | y,j\/> dz”. (6.A.8)
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This defines the motion of the chain {X(m)

3 (m) Jmtl) %

, that is, the probabilistic

motion from A = )\ to state A = AX. The estimator for A is
1 M
—\"F [A ) } A Euy [A
Mn; v Az MZ N[joo v ] as.

(6.A.9)

if the Markov chain converges. Notice that the expectation is taken with
respect to the stationary distribution W. The described iteration scheme
is needed to calculate the mean of this conditional expectation of A given
the pseudo-complete data. Clearly, the proposed estimator is equivalent
to the SEM estimator, formula (6.16).

Under regularity conditions on K* ()\/,)\> the Data Augmentation

algorithm converges, (Tanner & Wong, 1987). In this section, a different
approach is used to establish the convergence of the algorithm. As a
result, a geometric convergence is derived, which guarantees fast conver-
gence to the marginal distributions of the conditional expectation of the
parameters given the pseudo-complete data.

The main properties of the chain {Z*(m)} can be transferred to the

chain {S\(m)} because of a duality principle (Diebolt & Robert, 1994).

Instead of deducing properties of the Markov kernel formula (6.4.8), to
5 (m)

establish the convergence of {)\ }, as above, it appears to be more

convenient to show the convergence of {S\(m)} through the convergence

of {Z*(m) } A duality principle relates the distributions of the two chains

{Z*(m)} and {X(m)};
v (5\ €A | y> = ./I (S\ (y,z") € A> s (z* | X,y) dz*.  (6.A.10)

The geometric convergence of {S\(m)} can be expressed in the following
manner:

e () -],

= Sup‘/ (y,z" eA))

{K(m) (x,2%) —7 (z* ] S\I,y)} ‘ dz*
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e (5.) -0

< sup /I(X(y,z* € A))
A
‘K(m) (x,2") — 7 (z* | S\I,y> ‘ dz*

< / ‘K(m) (x,2") — 7 (z* | S\I,y> ‘ dz*
— K™ (x,.) — 7l - (6.A.11)

From formula (6.A4.11) follows the geometric convergence of {S\(m)} be-

cause of the uniform convergence of {Z*(m)} . Also, Liu (1991) proved
the geometric rate of convergence of the Data Augmentation algorithm
under mild conditions. Finally, Diebolt and Robert (1994) showed the
geometric rate of convergence of the Data Augmentation algorithm for
estimation of finite mixture distributions with use of a duality principle.






Epilogue

Multilevel models are often used in the analysis of hierarchical struc-
tured data because dependencies between different levels are properly
described without wasting any information. A proper specification of a
model should also include the measurement error of the variables. For
example, in school effectiveness research, students’ abilities or degree of
skills are analyzed in relation to school characteristics. Students’ abil-
ities and certain school characteristics cannot be observed directly and
are measured using tests or questionnaires. These measurements can-
not be made without an error. In this thesis, a model is introduced for
dealing with measurement error in both the dependent and independent
variables of a structural multilevel model.

A classical true score model and an item response theory model are
proposed to model measurement error. The combination of a multilevel
model with one or more latent variables modeled by a classical true score
model or an item response theory model is called a multilevel true score
model or a multilevel IRT model, respectively. In Chapter 2, the effects
of measurement error on the estimation of the parameters of a multilevel
model are analyzed using the multilevel true score model. It is shown
that attenuated parameter estimates are obtained if the measurement
error in the manifest variables is ignored. Modeling the measurement
error by a classical true score model or an item response theory model
leads to disattenuated parameter estimates. The effects of measurement
error are also shown with a simulation study.

Shrinkage estimators are used to estimate the random regression co-
efficients. The shrinkage estimators are biased but have a mean squared
error that is less than the mean squared error of the least squares es-
timator. Further research is needed to investigate the relationship be-
tween the amount of disattenuation and bias of the parameter estimates.
Also, alternative ways of shrinkage could lead to estimators with a lower
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mean squared error. For example, estimating a random regression coeffi-
cient of group j with shrinkage towards observed variables related to the
characteristics of school j could be extended by shrinkage towards the
observed variables related to the characteristics of all J schools. This
double shrinkage estimator could lead to a lower mean squared error.

In Chapter 3, a Markov chain Monte Carlo estimation procedure is de-
scribed to estimate the parameters of a structural multilevel model where
a latent dependent variable is measured by the normal ogive model. It
is shown that the evaluation of the multiple integrals needed to solve the
estimation equations in an MML framework, are avoided by using the
Gibbs sampler. Measurement errors are taken into account and prior
knowledge could be incorporated to restrict parameters or to incorpo-
rate knowledge from previous research. The Gibbs sampler is easily
implemented but requires a lot of iterations. Future research should
focus on other sampling techniques or a more efficient implementation
of the Gibbs sampler to reduce the amount of iterations. It should be
investigated whether combining an efficient implementation of the block
Gibbs sampler with the Metropolis-Hastings algorithm would lead to a
reduction in the required number of iterations. That is, instead of sam-
pling parameters from their conditional distributions, sample parame-
ters from the simultaneous distribution using an efficient approximation,
from which sampling is possible.

It is shown in Chapter 4 that the Gibbs sampler can also be used to
estimate the structural multilevel model where some of the explanatory
variables are modeled by an item response theory model or a classical
true score model. The Bayesian formulation of the multilevel IRT model
results in a straightforward model identification. The model is identified
by fixing each latent ability scale. The multilevel true score model needs
prior knowledge about the variance components for identification of the
model. With a simulation study and a real data example it is shown
that the required prior knowledge highly affects the parameter estimates.
Further, the multilevel IRT model has a lower mean squared error than
the multilevel true score model. Correcting for measurement error with
the normal ogive model results in more variance of the parameter esti-
mates but less bias and a better fit of the model. Using observed scores,
instead of modeling the latent variables by an IRT model or a classical
true score model, always lead to a lower mean squared error. More re-
search is needed to explain the differences between the IRT model and
the classical true score model as measurement models. This includes,
specifying guidelines for choosing the classical true score model or an
IRT model as a measurement model, and specifying conditions under
which the IRT model results in a better fit of the model.
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In the first chapters of the thesis it is assumed that the multilevel
IRT model is correct. In Chapter 5, attention is focused on analyz-
ing residuals, detecting outliers, testing heteroscedasticity at Level 1,
and checking the sensitivity of the prior distributions. It is shown that
Bayesian latent residuals have standard normal marginal distributions
which can be used to assess the extremeness of the realized marginal
distributions. Rao-Blackwellised estimators are derived for the Bayesian
latent residuals at the item level. Also, tests for detecting outliers and
for heteroscedasticity at Level 1 are easily computed as a by-product of
the Gibbs sampler.

The multilevel IRT model is specified with proper priors to insure that
the posterior distributions are proper. The comparison with the use of
improper priors shows no differences. Further, small changes in the
prior specifications do not result in major differences in the parameter
estimates. As an advantage, the Bayes factor is well-defined using proper
priors. In some cases, sampling from the conditional distributions is
difficult when proper priors are used. Then, the Metropolis-Hastings
algorithm is used to obtain samples from the conditional distributions.
The convergence of the algorithm is highly depended on the proposal
distributions. More research needs to be done about the specification of
the parameters of the proposal distribution to establish an acceptable
convergence rate.

Besides the Bayesian MCMC estimation procedure for estimating the
parameters of a multilevel IRT model other procedures may result in
parameter estimates with a smaller mean squared error. In Chapter 6,
a stochastic EM algorithm is implemented resulting in estimates close
to the maximum likelihood estimates. Further research could focus on
the differences between the parameter estimates resulting from SEM,
the Gibbs sampler, and estimates from other procedures like marginal
maximum likelihood (MML) or Bayes modal estimation using Gauss-
Hermite quadrature. In this comparison, the mean squared error of
the different estimates, and the amount of computer time and prior
knowledge should be taken into account to specify the advantages of the
different estimation methods.

More research is needed to develop a statistical computer package
for handling measurement errors. The Bayesian approach is computer
intensive and requires an efficient implementation. But the statistical
inference can be very misleading when the measurement error is ignored
and the lack of programs impedes the use of modeling measurement error
within a structural multilevel model.






Samenvatting

Data bezitten vaak een hiérarchische of geneste structuur. Voor-
beelden hiervan zijn data afkomstig uit een enquete waarbij respon-
denten gekoppeld zijn aan een interviewer, longitudinale data waarbij
meerdere observaties per individu beschikbaar zijn, en toets resultaten
van studenten binnen klassen en scholen. Vanaf begin jaren tachtig is er
een klasse van modellen ontwikkeld, de multiniveau modellen, die reke-
ning houdt met de geneste structuur van de data en die de mogelijkheid
biedt om verklarende variabelen te incorporeren op verschillende niveaus.
Tevens is er specialiseerde software ontwikkeld voor het analyseren van
multiniveau data met behulp van een multiniveau model.

Vooral in onderwijseffectiviteitsonderzoek wordt het multiniveau mo-
del veel gebruikt. Hiermee worden de effecten van het onderwijs op
individuele leerprestaties bepaald, terwijl gecontroleerd wordt voor re-
levante achtergrondkenmerken van leerlingen, klassen en scholen. De
verzamelde multiniveau data bestaan uit, onder andere, toets resultaten,
achtergrondkenmerken, en school- en klaskenmerken. Bepaalde ken-
merken zoals, socio-economische kenmerken en klasse-grootte zijn direct
observeerbaar. Eigenschappen als leerprestaties en sociale vaardigheden
zijn niet direct observeerbaar en worden aangeduid als latente variabe-
len. In praktijk, worden de niet direct observeerbare kenmerken geschat
op basis van een aantal vragen, ook wel items genoemd. Hierbij worden
de gemaakte meetfouten overigens vaak genegeerd.

In dit proefschrift wordt een nieuw model geintroduceerd voor het
analyseren van multiniveau data waarbij rekening wordt gehouden met
meetfouten in geobserveerde athankelijke en verklarende variabelen. On-
derzocht wordt of de meetfouten invloed hebben op verdere analyses en
daaruit voortvloeiende conclusies. Tevens wordt onderzocht of het ge-
bruik van een meetmodel (een item response model c.q. een IRT model)
er toe leidt dat de geschatte parameters gecorrigeerd worden voor meet-
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fouten in geobserveerde variabelen. Er wordt een schattings-procedure
ontwikkeld voor het simultaan schatten van alle parameters in het model.
Verder wordt het IRT model vergeleken met het klassieke test theorie
model als meetmodel. Hieronder volgt een samenvatting van de ge-
noemde aspecten en gerapporteerde conclusies.

Fen meetmodel is een model voor de relatie tussen de geobserveerde
variabelen en de meting van een (latente) construct. Meetmodellen wor-
den vooral gebruikt om een schatting te krijgen van de betrouwbaarheid
van de meting. In de klassieke testtheorie onderscheidt men de geob-
serveerde en ware, niet direct observeerbare totaal score op een toets.
Fen nadeel van de klassieke testtheorie is dat de definitie en schatting van
betrouwbaarheid meestal populatieafhankelijk is. ITtem response theorie
stelt niet de toetsscore centraal maar de items en de antwoorden op de
items. Een item response theorie model beschrijft de samenhang tussen
de latente vaardigheid en het antwoordgedrag op een verzameling items.
IRT komt tegemoet aan de eerder genoemde nadelen van klassieke test-
theorie omdat betrouwbaarheid hier conditioneel op de waarde van de
latente variabele gedefinieerd is, waardoor de schatting van de betrouw-
baarheid van een individuele meting niet meer van de verdeling van de
latente variabele hoeft af te hangen. Daarnaast heeft het als voordelen,
onder andere, de scheiding van de item moeilijkheid en de latente va-
riabele, en de toepasbaarheid in onvolledige designs. De combinatie van
een multiniveau model met latente variabelen gemodelleerd met een item
response theorie model wordt het multilevel IRT model genoemd. Het
klassieke test theorie model als meetmodel resulteert in het multilevel
ware score model.

In hoofdstuk twee wordt aangetoond dat het negeren van meetfouten
in de geobserveerde afhankelijke en/of verklarende variabelen van een
multiniveau model kan leiden tot een onzuiverheid in de parameter schat-
tingen. Daarnaast wordt aangetoond dat de variantie in de afhankelijke
variabele aanzienlijk toeneemt. Met behulp van een simulatie studie wor-
den de effecten van meetfouten geillustreerd. De geschatte parameters
gecorrigeerd met behulp van de beide meetmodellen worden vergeleken
met geschatte parameters op basis van som scores. Met name de schat-
tingen van de variantie termen wijken van elkaar af. De geschatte para-
meters, gecorrigeerd met een twee parameter IRT model, liggen het
dichtst bij de werkelijke parameters.

De intraklasse correlatie coéfficient is een maat voor de proportie va-
riantie van de afhankelijke variabele verklaard door variabelen op groeps-
niveau. De verschillen in geschatte varianties leiden tot grote verschillen
in schattingen van de intraklasse correlatie coéfficient. In hoofdstuk
drie is een multilevel TRT model geanalyseerd waarbij de afhankelijke
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latente variabele van een multiniveau model gemodelleerd is met een
IRT model. Een simulatie studie laat onder meer zien dat de intra-
klasse correlatie coéfficient afwijkt van de gesimuleerde waarde wanneer
geobseerveerde scores gebruikt worden. Met dit multilevel IRT model
zijn tevens de uitkomsten van een CITO rekentoets geanalyseerd. De
verklarende variabelen hebben een groter effect op de rekenvaardigheid
wanneer de meetfouten gemodelleerd worden met een IRT model. De
vaardigheden geschat met het multilevel IRT model discrimineren de
leerlingen beter, hetgeen tevens leidt tot een groter groepseffect.

In hoofdstuk vier zijn een of meerdere verklarende variabelen in een
multiniveau model gemodelleerd met een twee parameter IRT model
en het klassieke test theorie model. De modellen zijn met behulp van
een simulatie studie en een rekentoets met elkaar vergeleken. Daarbij
is de gemiddelde kwadratische fout (MSE) tussen de geobserveerde en
voorspelde scores geévalueerd. Het multilevel IRT model met alle latente
verklarende variabelen gemodelleerd met het twee parameter IRT model
resulteert in de kleinste MSE waarde.

Het multilevel IRT model is eenvoudig te identificeren door de schaal
van de latente variabelen vast te leggen. De identificatie van het multi-
level ware score model vereist a priori informatie over de variantie van
de meetfout. Deze variantie is moeilijk te schatten, en deze schatting
heeft invloed op de schattingen van de overige parameters.

De standaard schattingsmethode voor item response theorie modellen
is “Marginal Maximum Likelihood”. Het simultaan schatten van alle
parameters van een multilevel IRT model met deze methode is pro-
blematisch aangezien er veel meervoudige integralen uitgerekend moeten
worden. Standaard methoden schieten hierin te kort, of kunnen slechts
gedeeltelijke de klasse van multilevel IRT modellen schatten. Met behulp
van recent ontwikkelde technieken, Markov chain Monte Carlo (MCMC),
kunnen de parameters wel simultaan worden geschat. In hoofdstuk drie
en vier worden implementaties gegeven waarbij latente variabelen in een
multiniveau model gemodelleerd worden met het IRT model en met het
klassieke test theorie model. Simulatie studies laten zien dat de para-
meters met beide meetmodellen behoorlijk nauwkeurig geschat kunnen
worden. De schattingsmethode is flexibel en biedt mogelijkheden om an-
dere meetmethoden te gebruiken waardoor een realistische manier van
modelleren mogelijk is. Aan de andere kant is de methode tijdrovend,
maar met de toenemende computer snelheid lijkt dit in de toekomst geen
obstakel meer te zijn.

Met deze Bayesiaanse schattingsmethode worden de gemiddelden van
de a posteriori verdelingen van de parameters gebruikt als schatters.
In hoofdstuk zes wordt een andere schattingsprocedure gebruikt om de
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meest aannemelijke schatter te bepalen. Deze methode levert vergelijk-
bare schattingen voor de parameters op.

Het multilevel IRT model bevat een aantal aannames die gecontroleerd
moeten worden. Het toetsen van deze verschillende aannames van het
multilevel IRT model vereist nog veel onderzoek. Hoofdstuk vijf laat
een aantal aspecten zien maar is geenszins volledig. Er wordt aandacht
besteed aan het analyseren van de residuen en de gebruikte priors, het
bepalen van uitschieters, en het toetsen op heteroscedasticiteit. Baye-
siaanse residuen hebben verschillende marginale verdelingen en zijn
hierdoor moeilijk te vergelijken. Dit in tegenstelling tot de Bayesiaanse
latente residuen die een standaard normale verdeling hebben en direct
vergelijkbaar zijn. In hoofdstuk vijf zijn schatters voor deze latente
residuen afgeleid. Tevens zijn formules afgeleid om uitschieters te kun-
nen identificeren. De residuen en uitschieters zijn eenvoudig te bereke-
nen tijdens de schattingsprocedure. In hoofdstuk drie en vier zijn niet-
informatieve priors gebruikt voor het analyseren van de data sets. Deze
priors zijn vaak oneigenlijk, omdat de integraal over hun domein niet
gelijk aan één is. Dit heeft als nadeel dat de gerelateerde a posteriori
verdelingen ook oneigenlijk kunnen zijn. In hoofdstuk vijf is aangetoond
dat het gebruik van niet-informatieve eigenlijke priors leidt tot nagenoeg
dezelfde uitkomsten.
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